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ABSTRACT
Traditionally, capacity on the Internet has been allocated be-
tween competing flows through a distributed fairness calcu-
lation implemented by end-to-end congestion control pro-
tocols like TCP. Increasingly, however, network operators
are deploying fair queuing and other forms of router-based
enforcement mechanisms to prevent greedy or misbehaving
end points from consuming more than their fair share of the
network’s capacity. In environments where fairness is en-
forced by the network itself, it seems worthwhile to recon-
sider the role of the congestion control protocol. In particu-
lar, we ask if it might be both safe and sensible in the long
term for self-interested senders to send at rates that exceed
the capacity of the network. Through simulation, we iden-
tify and quantify the source of inefficiency in this regime,
which we term zombie packets. Surprisingly, we show that
such aggressive mechanisms are not only tenable in a wide
variety of network structures, but, combined with effective
use of erasure coding, they can avoid creating zombie pack-
ets and achieve throughputs that approach optimal.

1. INTRODUCTION
The Internet is fundamentally a shared medium, where in-

dividual end hosts compete to receive their ‘fair’ share of the
capacity between themselves and their chosen remote end
points. Historically, the rate allocation problem has been
solved in a distributed fashion, through end-to-end conges-
tion control protocols like TCP. In particular, end hosts co-
operate with each other to empirically determine and main-
tain an appropriate sending rate in an effort to promote both
global efficiency and local fairness. Indeed, the IETF (In-
ternet Engineering Task Force) mandates that all proposed
new transport protocols employ a “TCP-friendly” end-to-
end congestion control mechanism [13].

Increasingly, however, researchers and operators have ob-
served that individual end hosts deviate from the prescribed
altruistic behavior, and instead attempt to greedily increase
their share of the network capacity [1, 37], resulting in unfair
rate allocations. If an application can tolerate losses induced
by over-sending, there is little to be gained by conformance.
Fountain codes [25, 30], for example, famously highlighted
the feasibility of loss-tolerant transport for broadcast and

bulk data transmission [8, 9]. Hence, many of today’s net-
works have deployed router-based fairness enforcement like
fair queuing [10, 39] to prevent such traffic from overbur-
dening the network.

We observe that in such networks there are actually two
separate control loops computing an individual flow’s fair
share: one at the routers, and another at the end points.
Clearly, the routers’ enforcement takes precedence—they
can simply drop packets they deem excessive—so the tradi-
tional end-host based fairness computation, inherent in con-
gestion control protocols like TCP, is redundant. Hence, in
this paper we reconsider the role of end-to-end congestion
control in networks with fairness-enforcing routers. In par-
ticular, we ask whether end hosts can safely ignore network-
wide fairness concerns and focus entirely on their own self-
ish concerns like throughput.

TCP-friendly protocols are well known to make inefficient
use of network capacity, due in part to their congestion-
avoidance behavior [18]. We consider transport protocols
that exceed the capacity of the network in steady state. Such
an approach (sometimes referred to as a fire-hose [39]) is
often dismissed in the literature due to the potential for con-
gestion collapse—a condition in which the network is satu-
rated with packets but total end-to-end goodput is low. Yet
Williamson and Cheriton showed that over-sending can in
fact be the optimal strategy in networks with a particular
class of fairness-enforcing routers that provide feedback to
the senders about demand [40]. Moreover, recent studies
with toy topologies have shown that over-sending can even
be efficient without feedback in certain situations [6].

In contrast to previous studies, our concern is not with toy
networks [6, 14], nor with protocols that require senders to
respect router feedback [19, 40]. Instead, we are interested
in whether selfish sending causes significant, fundamental
inefficiency due to loss in realistic topologies when fairness
is enforced by routers. Congestion collapse occurs only un-
der two conditions: if receivers are unable to deal with high
loss (so-called classical congestion collapse), or if the net-
work topology is such that packet drops occur deep in the
network, thereby consuming network resources that could
be fruitfully consumed by other flows [14]. The first con-
cern can be addressed by applying efficient erasure coding.



We seek to understand the properties of network structure
and traffic demand that give rise to the second condition—
in particular, where and when drops occur in networks with
router-based fairness enforcement.

A definitive answer is likely to be elusive and certainly re-
quires a more comprehensive and in-depth study than can be
reported here. Hence, we restrict ourselves to the more mod-
est goal of considering a small set of intra-domain topologies
with the hope of identifying aspects of network topology and
traffic demands that impact the efficiency of fire-hose pro-
tocols. Following common practice in congestion control
literature [1, 14, 22, 41], we begin by considering steady
state behavior, noting that studies on toy topologies show
that over-sending can be efficient on toy toplogies even when
considering flow dynamics [6]. We defer studies of inter-AS
topologies and dynamic traffic demands to future work.

As we show, naı̈ve fire-hose-style protocols do indeed
make inefficient use of the network. Fortunately, we also
find that simple, selfish sender adaptations can dramatically
reduce this inefficiency. Our mechanisms perform favorably
to Williamson and Cheriton’s protocol, without the need
for router feedback nor for senders to explicitly compute a
flow’s fair share. Instead, senders make simple adaptations
to enhance the efficiency of their own flows. In contrast to
fairness—which it is not at all clear that end hosts have an
inherent incentive to achieve—throughput maximization is a
rational goal for a self-interested sender to seek.

Our study makes the following key contributions:

• We identify and quantify the cause of (non-classical)
congestion collapse using simulation. Previous work
identified “dead” packets as the main cause [14]; we
refine this definition to a more specific culprit that we
term “zombie” packets.

• We design a set of self-interested, aggressive sender
policies that significantly decrease the rate of zombie
packets in all network topologies we study, including
both synthetic and actual ISP backbone graphs.

• We study the robustness of our results to traffic demand
skew, and show that our aggressive sender policies
rapidly approach the optimal steady-state, fair-share
network allocation as demand variation increases.

The remainder of this paper is organized as follows. We
begin with a brief review of related work in Section 2. Sec-
tion 3 explicitly states our assumptions and models of sender
and router behavior. We present our simulation methodology
in Section 4, and introduce the distinction between dead and
zombie packets. Section 5 develops several simple sender
models that reduce the impact of zombies on flow through-
put. We evaluate the efficiency of these mechanisms using
various synthetic network topologies (Section 6) and traf-
fic demands (Section 7), and two real ISP backbones (Sec-
tion 8). Finally, we consider whether our algorithms are out-
performed by those that consider router feedback by compar-
ing with Williamson and Cheriton’s protocol in Section 9.

2. RELATED WORK
The ARPANET experienced a series of congestion col-

lapses in 1986 and 1987 that led to the pioneering work
on congestion control. Nagle initially observed that net-
works with large buffers were especially susceptible [32];
later, Floyd and Fall concluded that this phenomena—which
they term classical congestion collapse—occurs when the
network is busy forwarding packets that are duplicates or
otherwise irrelevant upon arrival at their destinations [14].
Jacobson alleviated the problem in the ARPANET by imple-
menting end-to-end congestion control in TCP [15], which
seeks to ensure that a network of TCP senders avoids classi-
cal congestion collapse by judicious use of ARQ (automatic
repeat request). Later enhancements such as SACK [28] en-
sure that only useful packets will be retransmitted.

Even in today’s Internet, the precise set of locations where
loss is likely to occur when demand exceeds network capac-
ity is the subject of considerable debate and disagreement.
Historically, public peering points such as MAE-EAST and
MAE-WEST were among the primary sites of congestion
during the 1990s [20]. More recently, however, many re-
searchers have observed that congestion points appear to
be dispersed within the network. For example, Akella et
al. find that bottlenecks are distributed evenly between intra-
ISP links and inter-ISP peering links [2]. In contrast, some
have made the argument that the network core has or will
have practically infinite capacity, and that congestion inside
the network is a minor concern, if at all [27, 34].

Despite the success of TCP and its end-to-end congestion
control mechanisms, the research community has periodi-
cally advocated the delegation of various degrees of com-
putation to the routers. Williamson and Cheriton proposed a
model in which routers enforced fairness by varying per-flow
drop rates based upon offered loads [40]. Routers provided
explicit feedback on total offered load to all clients, thereby
enabling end hosts to individually predict their loss rates and
select appropriate sending rates. The computational com-
plexity of enforcing per-flow drop rates and providing feed-
back was significant for the routers of the time, however. As
the processing power of routers has increased in recent years,
researchers have resumed advocating for transport protocols
that leverage router feedback to help determine fair alloca-
tions [11, 19]. While many have been shown to out-perform
TCP, they fundamentally assume that end hosts abide by the
feedback provided by routers and adapt appropriately.

In contrast, we question whether it is necessary for well-
behaved senders to adapt their sending rates. In previous
work [36], we observed that there are many potential ben-
efits to network architectures based upon non-TCP-friendly
congestion control—including increased stability, enhanced
robustness to misbehaving senders, and perhaps even de-
creased router complexity—and suggested departing from
the long-held notion of TCP-friendly behavior [29]. Others
have made similar suggestions: Matt Mathis, one of the au-
thors of the work that originally defined the notion of TCP-



friendliness, speculates that “we will come to realize that
TCP-friendly was actually a [sic] untenable position, and has
held us back from important innovations” [27]. Following
this line of thinking, Bonald et al. [6] recently explored the
effects of unrestrained senders in simple topologies. Their
analytic results indicate that while such an approach can be
unstable and inefficient in networks networks without fair-
ness enforcement, those with router-enforced fairness are
able to achieve full network utilization. We find that this
is not always the case for more complex topologies, yet it is
still possible to achieve high efficiency if senders adapt in a
strictly self-interested fashion.

3. PRELIMINARIES
Our study starts from the premise that in-network fairness

enforcement will be pervasively deployed to limit the impact
of greedy or misbehaving senders. Secondly, we assume that
senders can leverage erasure coding or other techniques to
make effective use of achieved throughput regardless of loss.

3.1 Router enforcement
Researchers have proposed countless approaches to in-

network fairness enforcement with various goals in mind.
It is therefore critically important to precisely define what
form of fairness we expect routers to provide. Practically
speaking, fairness in today’s Internet is inextricably tied to
TCP-friendliness, which is a poor approximation of max-
min fairness [16] on a per-flow basis. TCP is well known
to be a very poor approximation when faced with multiple
bottlenecks and varied round-trip times, and is only exacer-
bated by recent developments like the pervasive deployment
of auto-tuning TCP stacks.

Hence, there has been a growing call to reevaluate whether
it is effective or even desirable to have end hosts attempt to
calculate and enforce fairness across flows [7, 27].

3.1.1 Max-min flow fairness
While there are many reasonable definitions of fairness,

we consider traditional max-min flow fairness in our study.
An allocation of bandwidth is max-min fair if it is not pos-
sible to increase the rate of any flow without decreasing the
rate of another flow with higher rate. We define a “flow”
to consist of all packets between two hosts, irrespective of
ports or other multiplexing, so no communicating parties can
increase their share by adding more flows [4]. Moreover,
unlike the traditional max-multi-commodity flow problem,
we assume that demand is unsplittable—each flow uses pre-
cisely one path from source to destination. An important
consequence of max-min fairness is that if a max-min fair
allocation exists, it is unique [5].

We opt for max-min flow fairness because link-local max-
min fairness is currently implemented by many deployed
routers using well-known algorithms, including fair queu-
ing algorithms such as deficit round robin (DRR) [38] and
fair dropping algorithms such as approximate fair dropping

(AFD) [35]. Note that while a globally max-min fair flow
assignment is max-min fair at all links, the converse is not
necessarily so—hence, we wish to determine the potential
efficiency of networks that enforce max-min fairness on a
link-by-link basis.

We model a perfect max-min-fair dropping enforcer as it
allows us to avoid issues relating to queuing effects. In par-
ticular, it ensures that there is no queuing in the network, so
over-sending does not increase end-to-end delay. Implemen-
tations of dropping-based enforcers have a number of addi-
tional, practical benefits. AFD, in particular, benefits from
O(1) per-packet complexity, no per-class or per-flow state,
and appears likely to enjoy widespread deployment in the
near future (AFD is expected to ship in the next generation
of routers from Cisco). Finally, max-min fairness provides
the following useful property.

3.1.2 Pervasive brickwall dropping
Max-min fair routers implement what we term a brick-

wall policy, meaning, given a fixed set of competing de-
mands, an overloaded router provides each flow with a well-
defined maximum outgoing share of the link regardless of
the amount of demand in excess of its share that a flow of-
fers. Concisely, throughput is not proportional to offered
load: increasing a flow’s arrival rate above its fair share
will not increase its delivery rate. Most explicitly designed
router fairness mechanisms of which we are aware (includ-
ing AFD) have this property. Neither FIFO or RED queuing
are brickwall policies, however. In particular, a flow can in-
crease its share of the bottleneck by offering more load [24].

Max-min fair brickwall enforcement can be viewed as one
endpoint in a more general space of fairness-enforcing drop-
ping policies, with Kelly’s proportional fairness at the other
extreme [21]. In Kelly’s scheme, routers drop packets in
proportion to flow arrival rates. Mo and Walrand general-
ize proportional fairness with α-fairness, which they show
converges from Kelly proportional fairness to max-min fair-
ness as α goes to infinity [31]. Williamson and Cheriton’s
loss-load routers [40] drop flow relative to an offered flow’s
deviation from aggregate demand in accordance to a penalty
factor, k. In such an environment, Williamson shows that,
assuming end hosts each optimize their own throughput,
routers converge to a steady-state dropping rate of 1/(k+1).
While higher values of k lead to more efficient network op-
eration, the protocol dynamics take much longer to converge
and require every client to numerically solve a k-th order
polynomial to calculate its optimal sending rate. While we
do not present bounds, Section 5 presents several far simpler
sending strategies that achieve similar levels of performance
in networks with brickwall routers.

Of course, fairness enforcement is only triggered at a par-
ticular router if demand exceeds capacity—i.e., the router
is adjacent to a bottleneck link in the network. We will
show, however, that many practical topologies have few bot-
tlenecks in the core. Hence, networks may not need fairness



enforcement at all routers. Indeed, Bonald et al. suggest that
uncontrolled senders can function in a drop-tail network if
the ratio of the access-link capacity to core capacity is very
small [6]. One could enforce such a ratio through a limited
deployment of fairness-enforcing routers at the edges [39].
We defer a comprehensive study of the implications of alter-
native fairness models or partial enforcement to future work;
for this study, we assume that every router in the network
provides brickwall max-min fairness enforcement.

3.2 Sender behavior
When the onus of fairness control rests with the network,

a sender is responsible only for choosing a locally efficient
transmission rate and coping with packet loss. While our
goal is to study the practicality of strictly self-interested
methods of addressing the former task, there remains a wide
spectrum of approaches that could be employed for the lat-
ter. Hence, as much as possible, we ignore the details of the
mechanism employed to recover from packet loss. In par-
ticular, we assume that senders employ forward error cor-
rection (FEC) to ensure that all delivered packets are use-
ful. Luby’s development of rateless erasure codes—codes
for which a practically-infinite number of unique erasure-
coded blocks can be efficiently generated—makes it possi-
ble to leverage erasure coding to transmit data streams that
are almost impervious to loss [25, 30].

Unlike traditional codes, such as Reed-Solomon, encod-
ing in a rateless fashion can be quite fast—many schemes
require only XOR operations—but requires the delivery of a
few more coded blocks than the length of the original pay-
load. For most codes, the number of additional blocks de-
pends on the size of the erasure coded payload. One par-
ticular approach for utilizing FEC in a fire-hose protocol,
Achoo [36], leverages Online codes, whose overheads have
been shown to be as low as 3% in practice [30]. In addition,
Achoo is robust to loss in the feedback channel as acknowl-
edgments are simply advice of data-receipt and goodput. We
postpone consideration of the overheads of specific protocol
realizations and focus here on unidirectional flows, neglect-
ing coding overhead when discussing flow throughput.

4. THE IMPACT OF LOSS
With a crisp definition of the problem space, we are now

prepared to uncover the source of inefficiency in max-min
flow-fair networks with fire-hose-style senders that drive the
network past capacity. Any excess demand leads to packet
loss, which has two distinct classes of impact: direct and
indirect. Packet loss within a flow directly reduces the
throughput delivered to the intended receiver. Any potential
direct impact of packet loss can be mitigated through rateless
erasure coding as discussed above. Indirectly, packet loss
may cause inefficient use of upstream network resources:
flows other than the one experiencing loss may have been
able to put the upstream capacity to better use. We use sim-
ulation to quantify this inefficiency.
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Figure 1: Dropped and dead packets. Each link is labeled
with its capacity.
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Figure 2: A slightly modified topology leads to zombies.

4.1 Dead and zombie packets
In previous work, Floyd and Fall focus on dead packets

that are transmitted over several hops, only to be dropped
before arriving at their destinations [14]. We call a packet
dead if it is dropped at a router other than its source’s access
router. Figure 1 illustrates this distinction. There are two
flows, S1 ! D1 and S2 ! D2, and each sender is trans-
mitting at a rate of twenty, saturating its access link. Both
routers enforce max-min flow fairness, so the throughput of
the S1 ! D1 flow is five, while the throughput of S2 ! D2

is two because they are restricted by the final links. Twenty
packets are dropped at R1, ten from each flow, but none are
dead, as R1 is the access router. At R2, however, eight more
packets are dropped from the S2 ! D2 flow. These eight are
dead packets, as they traversed the bottleneck link R1 → R2.

4.1.1 Goodput
The issue is not purely the presence of dead packets, rather

the presence of dead packets that cause potentially live pack-
ets (those that would have otherwise contributed to some
flow’s goodput) to be dropped. Hence, we introduce a re-
stricted class of dead packets, which we term zombie pack-
ets, that are deleterious to the network’s potential goodput
and/or fairness. For example, in Figure 1, if S2 were send-
ing to D2 at a rate of only two, eight more packets from the
S1 ! D1 flow could have traversed the R1 → R2 link but
would be subsequently dropped. The goodput of the network
would not increase and these dead packets are inconsequen-
tial. In contrast, Figure 2 slightly modifies the topology by
increasing the capacity of the link from R2 → D1 to 20.
Here, flow S2 ! D2 continues to receive a goodput of two,
but S1 ! D1 only increases to 10—not 18, as would be the
case in an optimal flow assignment. Hence, in this topology,
the eight dead packets in flow S2 ! D2 being dropped at R2

are not only dead, but also zombie packets, as they are pre-
venting S1 ! D1 from achieving its optimal rate. Zombie
packets are the only cause of inefficiency.
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Figure 3: Zombies do not always hurt global goodput.

More formally, we consider a network G = (V, E), with
k flows defined by Ki = (si, ti, di) where si and ti are
the source and sink of flow i, and di is the demand (i.e, the
amount of flow generated by the source). Let Fu,v be the set
of flows traversing (u, v) ∈ E, and fi(u, v) be the amount
of flow i traversing edge (u, v). Define MMF(i) to be the
demand, di of flow i under the ideal, max-min-fair assign-
ment1, and Li(u, v) to be the amount of flow i dropped at
edge (u, v). The set of flows being under-served at an edge
under a flow assignment F is then

Under(u, v) = {i ∈ Fu,v| fi(u, v) ≤ MMF(i)},

and the number of dead packets generated at this edge is

D(u, v) =
∑

i∈Fu,v\Under(u,v),si "=u

(fi(u, v) − MMF(i)).

We calculate the number of zombie packets at an edge as

Z(u, v) =
∑

i∈Under(u,v)

Li(u, v).

We assign zombie packets in proportion to the number of
dead packets caused by a particular flow. That is, for each
flow i ∈ Fu,v\Under(u, v), the number of zombie packets
generated at (u, v) is given by

Zi(u, v) =
(

fi(u, v) − MMF(i)
D(u, v)

)
· Z(u, v).

4.1.2 Fairness
Zombie packets arise when flows compete at a bottleneck

(and receive their max-min allocation) while their ultimate
throughputs are different from one another. We observe,
however, that the occurrence of zombies, while indicating
a deviation from the optimal max-min fair allocation, need
not lead to a decrease in total network goodput. Figure 3 fur-
ther extends our running example topology to demonstrate
this case. In the optimal max-min fair flow assignment,
S2 ! D2 continues to have a goodput of two, S1 ! D1

achieves ten, and S3 ! D3 also obtains a throughput of
ten, for a total network goodput of 22 (and Jain’s fairness
index [17] of 0.79). When senders drive their access links to
capacity, however, S1 ! D1 achieves a goodput of only six
in the resulting max-min fair allocation (due to zombies at
R2), but S3 ! D3 increases to fourteen, leaving the network
goodput unchanged (but decreasing Jain’s index to 0.68). It
1Under an ideal flow assignment with no loss, fi(u, v) is the same
for each edge flow i traverses.

is unknown whether there are likely to be other flows that
make use of the “wasted” capacity in general [39]. We ad-
dress this question through simulation.

4.2 Evaluation methodology
To facilitate evaluation at scale, we implemented a flow-

based simulator that models perfect max-min link fairness.
In contrast to previous efforts that consider random arrivals
of finite flows in small networks [6], our simulation models
steady state as the behavior of flow dynamics depends criti-
cally on the details of an actual protocol which we explicitly
avoid modelling. Our simulator takes as input a topology an-
notated with link capacities and a set of flow demands. Each
flow is routed via its shortest path (or actual route in the case
of the real topologies used in Section 7) from source to des-
tination, and is subject to no notion of propagation, trans-
mission, or queuing delay (recall that our model assumes
dropping—not queuing—routers). At each link, we derive
the output flow allocation using a max-min apportionment
of the input flows.

Because our simulator does not model packets per se, we
cannot use packets as the quantity of dead traffic. Instead,
we consider the total quantity of dead “flow”—a unit-less
quantity where access links are typically assigned a capacity
of one flow unit. That is, the maximum possible goodput
of a network is equal to the number of access links. If two
flows in such a network compete fairly on a link with capac-
ity one, each will drop half of a flow unit. More generally,
a given flow has demand minus goodput units of dead flow.
For ease of exposition, however, we will continue to refer to
this quantity as dead “packets.”

The prevalence and location of dead packets in any given
network depends on traffic demands. For simplicity, we as-
sume that each source has an infinite amount of data to send.
Note that, when using rateless erasure coding, a source with
any data to send can have infinite data to send. The flow will
complete at some point, of course, but flow dynamics are
outside the scope of this study. Initially, we assume senders
have uniform demand, but relax this assumption shortly.

4.3 Potential inefficiency
We are now equipped to answer the question of whether

and where dead and zombie packets may occur with fire-
hose sending and link-enforced fairness. As an initial exam-
ple, we simulate the effect of a simple, uncontrolled fire-hose
protocol by setting all of the flow demands to be infinite, and
keeping track of the amount of loss at each router. In partic-
ular, we assign the initial flow demands, di, proportionally
as follows. Let S(u, v) be the set of flows that originate at u
(si = u) and traverse edge (u, v), and c(u, v) be the capacity
of link (u, v). Then,

∀(u, v) ∈ E, i ∈ S(u, v), di = c(u, v)/|S(u, v)|. (1)

We simulate the operation of each router to calculate outgo-
ing demand and iterate until flow utilization has been calcu-





∆ = ∞.
while ∆ > ε
compute flow through network
∀i ∈ K, d′i = di

update demand assignment di

∆ = maxi∈K |di − d′
i|

Figure 6: Our fixed-point simulation methodology.

any potential negative impact of such behavior. If a sender
observes no negative impact from over-sending, it has little
incentive not to do so. Conversely, if blindly over-sending
hampers the goodput of a sender’s own flows, the sender is
clearly motivated to adjust its behavior.

We use this insight to devise several slightly more sophis-
ticated send algorithms. The space of potential sending al-
gorithms is vast, and we do not claim to design an optimal
one—although their throughput turns out to approach opti-
mal in practice. Figure 6 shows how we use our flow simula-
tor to model the behavior of reactive senders. Initial demand
assignments are the same as in the naı̈ve case (Equation 1).
After computing the resulting per-flow goodputs, however,
we adjust each flow’s demand according to the sender algo-
rithm and iterate until a fixed-point is reached. In all cases,
we assume senders are aware of the instantaneous goodput
of their flows. We detect a fixed-point when no flow’s de-
mand is adjusted by more than ε in a given iteration.

5.1 Balancing excess capacity
The loss rate—demand minus goodput—of a flow is an

approximation of the amount of excess effort a sender is ex-
erting. One intuitive sender behavior is to attempt to spread
the excess evenly across all of a sender’s flows. A full-
balanced sender seeks to equalize the loss rate experienced
by flows to all of its destinations. In other words, if any flow
is seeing proportionally more drops than another, the sender
transfers some of its send effort from a flow seeing high loss
to a flow seeing low loss. Our simulation of a full-balanced
sender implements the demand update step of Figure 6 in the
following way:

∀(u, v) ∈ E, i ∈ S(u, v), set di such that :
∀i, j ∈ S(u, v), di/gi = dj/gj

and
∑

di = c(u, v)
(2)

This approach behaves identically to the naı̈ve fire-hose
sender in the case which there that is a single flow at a sender
or gi = gj for all flows at the sender.

One potential downside of the full-balanced approach is
that large flows will receive a significant amount of excess
effort, yet there is no reason to believe that the paths large
flows traverse are more likely to experience larger increases
in available capacity—which is the main impetus for over-
sending, after all—than those over which smaller flows are
routed. This observation motivates an alternative, full-share

sender behavior that distributes any excess capacity evenly
(as opposed to proportionally) between flows.

∀(u, v) ∈ E, i ∈ S(u, v), set di such that :

slack = c(u, v) −
∑

i∈S(u,v)

gi

di = gi + slack/S(u, v)
(3)

In all of our simulations, full-share senders perform almost
identically to full-balanced senders, hence we present results
only for the latter. Identifying situations in which these two
sending policies result in significantly different goodputs is
a subject of future work.

5.2 Exercising restraint
Both of the previous approaches always consume the full

capacity of a sender’s access link. Blindly filling one’s ac-
cess link, however, may be counter-productive, as it has the
potential to inject zombie packets. A naı̈ve ratio sender
seeks to balance the potential to capture newly available ca-
pacity against the harm of injecting zombies by attempting
to achieve a certain, fixed loss rate for each of its flows. Said
another way, a naı̈ve ratio sender transmits each flow a small,
fixed constant, α, faster than the goodput currently reported
by the receiver:

∀i ∈ K, d′i = di, di = (1 + α)gi. (4)

While ratio senders may not saturate their outgoing links if
all flows are bottlenecked, they are sure to over-drive their
access links if any flow is not. In our simulations, the sender
itself implements a brickwall max-min fairness policy on its
outgoing link(s). If the total demand on an edge leaving a
sender exceeds edge capacity, flow is dropped in a max-min
fair manner, which may defeat the sender’s attempt to inflate
the rate of certain flows relative to others. Hence, we devise
a slightly more sophisticated limited ratio policy that com-
bines the intents of the full-balanced and ratio strategies to
ensure that senders never attempt to over-drive their access
links.

∀(u, v) ∈ E,i ∈ S(u, v), set di such that :
∀i, j ∈ S(u, v), di/gi = dj/gj ,
∑

di ≤ c(u, v),

and di ≤ (1 + α)gi,

where at least one of the above is tight.
(5)

Obviously, the optimal value of α will depend on the dy-
namics of the network in practice. Clearly, in steady state
these strategies will mimic the behavior of clamp when α ap-
proaches zero. We have conducted a brief sensitivity study
and conclude that steady-state behavior is qualitatively sim-
ilar in our experiments for positive values of α less than 0.5.
We arbitrarily select α = 0.2 for the results presented here.



(a) Barabási (b) Erdös-Rényi

Figure 7: Sample synthetic topologies with the same number of edge nodes (768) as the HOT topology from Figure 4.

6. NETWORK STRUCTURE
We aim to better understand, for a given network topol-

ogy, capacity assignment, and demand distribution, whether
fire-hose-style sending will induce congestion collapse in
networks with max-main fairness enforcement. Our ex-
periments are limited to a single “network” or autonomous
system (AS); we do not consider super-topologies of many
ASes all connected by direct peering links or connections
at public exchanges because we do not have access to such
topologies annotated with link capacities and routing tables.
In our experiments, we consider both actual and synthetic
networks; we start with synthetic networks to study the im-
pact of various aspects of the network independently.

6.1 Topology generation
The composition of the network core directly influences

the appearance of dead and zombie packets. We consider
three distinct styles of synthetic topologies for the network
core: classical Erdös-Rényi random graphs [12]—which we
do not expect to represent many real networks—and two
more realistic classes: a Barabási-style [3] preferential at-
tachment model and the heuristically optimal topologies
(HOT) of Lun Li et al. [23], which are thought to be highly
representative of a large ISP’s router-level topology.

We do not have a generator for HOT graphs. Instead, we
obtained a HOT router-level topology generated by Mahade-
van et al. [26]. This HOT graph consists of 989 links and
939 nodes, 768 of which are edge nodes. In order to facili-
tate comparison, we seek to create broadly similar network
topologies in the other classes. In particular, because the
number of edge routers directly limits the potential through-
put of the topology, we generate graphs with an equal num-
ber of edge routers. Furthermore, because networks are typ-

ically structured hierarchically [23], we do not permit edge
routers to attach to the core of the hierarchy. Thus, for both
Erdös-Rényi and Barabási graphs, we generate instances as
follows. First, we generate a random base graph of the de-
sired class. Then, we select the largest connected component
and remove any edge routers (nodes of degree one) attached
to nodes with more than one non-edge router link. Finally,
we add edge routers to nodes at least half of the radius from
a central node (determined by maximum betweenness) until
we have reached the desired number of edge nodes.

To generate a Barabási-style graph of n nodes and e edges,
we iteratively add nodes one by one and probabilistically at-
tach them to (e/n) other nodes with probability in propor-
tion to the node degrees. Inserting a low number of edges
results in a hierarchical graph much like the Preferential At-
tachment network generated by Li et al. [23]. A high number
of edges results in a much denser hierarchy. A low num-
ber of edges is shown in Figure 7(a). For the Erdös-Rényi
graphs, we insert e edges uniformly at random from among
the set of n2 possible edges. Unlike Li’s General Random
Graph method, we do not expect our Erdös-Rényi approach
to obey any power-law distribution. Instead, we expect it to
have poor connective behavior for a low number of edges,
and to approach a fully connected graph with a high number
of edges. We show a graph with a moderate number of edges
in Figure 7(b).

6.1.1 Capacity assignment
In order to emulate a real communication network’s ca-

pacity hierarchy, where the core is typically much faster than
the edge links in order to effectively aggregate demand, we
assign edge capacities to the synthetic topologies relative to
the each link’s depth in the graph. A link’s depth is com-
puted as the minimum distance from either of its vertices
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Figure 8: Barabási goodput as a function of core edges;
geometric capacity assignment.

 0

 100

 200

 300

 400

 500

 600

 700

 1000  1500  2000  2500  3000

To
ta

l G
oo

dp
ut

Total Edges

Clamp
Limited Ratio
Full Balanced

Naïve

Figure 9: Erdös-Rényi goodput as a function of core
edges; geometric capacity assignment.

to an edge router. We model two distinct capacity assign-
ment schemes—arithmetic and geometric progressions—
which are likely representative of different types of real net-
works. For the arithmetic progression, edge capacity is di-
rectly proportional to its depth, with leaf edges of capacity
one. For the geometric progression, the capacity is directly
proportional to 10(depth(u,v)−1). Capacity is deliberately
unit-less; one can apply arbitrary units.

For the HOT graph, our approach results in a three-tier
bandwidth hierarchy. For the geometric progression, a real-
istic mapping to today’s link technologies might be equiva-
lent to 100 Mbps on the edge links, 1 Gbps on the inter-PoP
(point-of-presence) links, and 10 Gbps on the core links. An
arithmetic progression would then correspond to 100 Mbps
at the edge, 200 Mbps at the PoP, and 300 Mbps in the core.
In our generated synthetic topologies, we find that similar
node counts to the HOT topology create a variance in maxi-
mum depth from two to six in respectively dense and sparse
graphs. We do not expect these capacity assignment to result
in well-provisioned networks or well-engineered networks;
rather, they offer a comparison set for evaluation. For in-
stance, with a geometric progression of capacities, it is un-
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Figure 10: Prevalence of zombie packets in Barabási
topologies; geometric capacity assignment.
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Figure 11: Prevalence of zombie packets in Erdös-Rényi
topologies; geometric capacity assignment.

likely that core nodes will be saturated unless they have an
exponential number of neighbors. This implies that the bot-
tlenecks will be near the edge. Alternatively, the arithmetic
assigned capacities are likely to be under-provisioned with
respect to node degree. If the network is extremely well pro-
visioned, the behavior is equivalent to a fully connected core
which reduces to a star topology. These capacity assign-
ments serve to produce variations in bottleneck behavior.

6.1.2 Traffic demand
To compare the behavior of the synthetic topologies, we

generate uniformly random flows. However, it is impor-
tant to ensure that the traffic distributions are comparable
across topologies. To compare the network-core proper-
ties, we want roughly an all-to-all pattern. However, sim-
ply choosing edge routers uniformly at random can result
in imbalance. In the unlikely case that a one-to-all traffic
distribution were created, the throughput would be limited
to the single access link. Thus, to achieve comparable traf-
fic demands, we sample sources and destinations uniformly
at random without replacement, ensuring that no reflexive
flows are generated, and re-initializing the source and desti-
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Figure 12: Barabási goodput as a function of core edges;
arithmetic capacity assignment.
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Figure 13: Erdös-Rényi goodput as a function of core
edges; arithmetic capacity assignment.

nation sets when they are exhausted. This procedure creates
a variable all-to-all demand when the number of flows is a
multiple of the number of edge routers; if the number of
flows is not a multiple of the number of edge routers, there
will be slight variation.

Even though differences in the traffic distribution can
change the overall flow magnitude, we find that the per-
formance of each algorithm relative to the optimal perfor-
mance of clamp remains relatively constant. Unless other-
wise noted, each data point in the figures that follow repre-
sents the mean across ten different flow patterns. Across all
of these graphs, the performance of the limited ratio algo-
rithm varies by at most 2% of clamp and both naı̈ve and full
balanced remain within 11%. The fractional standard devi-
ations are at most 1% and 6% and 3% for limited ratio, full
balanced, and naı̈ve, respectively.

6.2 Impact of core density
The first question we seek to answer is how our various

sending algorithms perform as a function of the connectiv-
ity of the network core. We construct a series of graphs
with varying core density and measure both the goodput and
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Figure 14: Prevalence of zombie packets in Barabási
topologies; arithmetic capacity assignment.
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Figure 15: Prevalence of zombie packets in Erdös-Rényi
topologies; arithmetic capacity assignment.

prevalence of zombie packets. Because our HOT graph is
a fixed size, we are restricted to Barabási and Erdös-Rényi
graphs for this study. For each of these classes, we fix the
number of nodes to 768 and vary the requested number of
edges. Because we desire similar potential demand, we add
edge routers until a specified number is reached. We as-
sign one-and-a-half-times as many flows as there are edge
routers.

6.2.1 Geometric capacity assignments
We show the results for a geometric progression of capac-

ity assignments in Figures 8 and 9. Somewhat surprisingly,
almost all sender strategies achieve the same level of good-
put. Within each graph type, however, there are a few trends:
First, with small numbers of edges, the core has insufficient
bisection bandwidth to satisfy the edge router demands, al-
though the hierarchical structure of the Barabási-style graph
provides marginally greater goodput. This trend is expected
as a link through a hub is more productive than a link to an-
other edge router. The tendency to connect disparate hubs
also contributes to the effect that the full-balanced algorithm
achieves greater goodput than limited ratio. This discrep-
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Figure 16: Goodput as a function of the number of flows
on Erdös-Rényi, HOT, and Barabási topologies (top-to-
bottom, respectively).

ancy is due to a larger departure from the global max-min
fairness as evidenced by the quantity of zombie flow shown
in Figures 10 and 11.

6.2.2 Arithmetic capacity assignments
One might speculate that the near-optimal performance

of the fire-hose sending algorithms is due to the well-
provisioned nature of topologies with a geometric progres-
sion of capacity assignments. Simulations on corresponding
topologies with an arithmetic progression of capacity assign-
ments show this not to be the case. We repeat the previous
experiments in an identical fashion, except that each topol-
ogy is annotated with an arithmetic progression of capacities
instead of geometric. Figures 12 and 13 plot the goodput
achieved in this case. While the absolute goodput is lower as
expected (due to the significantly decreased capacity of the
core), all of the sending algorithms perform well, although
slightly less than optimal in the case of Barabási topologies.
The gap in performance is explained by the increased preva-
lence of Zombies as shown in Figures 14 and 15 (c.f. Fig-
ures 10 and 11). Due to space considerations, we will only
present results for a geometric progression of capacity as-
signments in the remaining sections; results with an arith-
metic progression are qualitatively similar.

6.3 Increasing demand
To explore how the number of flows in the graph affects

our zombie mitigation techniques, we progressively add
flows to fixed instances of all three different styles of graph.
We employ a Barabási-style topology with 847 nodes, 857
edges, and 768 edge routers (shown in Figure 7(a)) that mim-
ics the HOT topology. The Erdös-Rényi style graph has
the same number of nodes and leaves as the Barabási-style
graph, but it includes 318 more edges, and is much better
connected than either of the others (Figure 7(b)). In all three
cases, we employ a geometric progression of capacity as-
signments. Figure 16 plots the results for all three types of

S1

S2

S3

(a) Total goodput: 6

S1

S2

S3

(b) Total goodput: 5

Figure 17: A simple star graph with links of capacity two.
Starting with three flows (left), adding an additional flow
S2 ! S1 can decrease the overall goodput (right).

graphs. The top set of lines corresponds to the Erdös-Rényi
topologies, HOT is in the middle, and the lower set repre-
sents the Barabási results.

The strong connectivity of the Erdös-Rényi graph enables
all of the sending strategies to satisfy the full demand of
the edge routers. While it appears that the HOT topology is
better provisioned than the Barabási-style graph, the perfor-
mance of the sending algorithms are similar. In particular,
in both cases, naı̈ve fire-hose quickly converges to a sub-
optimal limit, whereas the other sending techniques track
much closer to optimal. Note, however, that full balanced is
further from optimal than limited ratio in the Barabási-style
graph.

A particularly interesting effect most visible in the Erdös-
Rényi style graph is the periodic decrease in overall through-
put with an increasing number of flows. This behavior is
endemic to any network with locally enforced max-min fair-
ness, and can be explained as follows. Consider a simple
star topology with link capacities of two as shown in Fig-
ure 17. First, assign three flows: S1 ! S2, S2 ! S3, and
S3 ! S1. Each flow achieves the full capacity regardless
of sending strategy, resulting in a total goodput of six. If
we add a flow S2 ! S1, it shares the link to the hub with
flow S2 ! S3 and they split capacity of the outgoing link.
Additionally, S2 ! S1 shares the link from the hub to S1

with S3 ! S1. S2 ! S1 was already sending at a rate of
one flow unit from the earlier link sharing, but S3 ! S1 will
decrease to one flow unit due to fairness enforcement. This
leads to a total goodput of five. Additional flows will lead
to an increase in goodput in an oscillatory fashion. As the
number of flows increases, the effect’s magnitude decreases,
leading to the asymptotic behavior as in Figure 16.

7. TRAFFIC SKEW
So far, we have considered uniform demand which is un-

likely in most real networks. Actual Internet traffic has
been observed to exhibit significant locality, or skew. We
model skew as a concentration of demand on an increasingly
small subset of edge nodes. We replace the uniform-without-
replacement flow assignment methodology used previously
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Figure 18: Goodput as a function of traffic skew for
Erdös-Rényi, HOT, and Barabási topologies (top-to-
bottom, respectively).
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Figure 19: Number of zombie packets as a function of
traffic skew for a Barabási topology.

with one in which sources are chosen from an exponential
distribution with exponent λ and destinations chosen uni-
formly at random with replacement. Sampling sources from
a Zipfian distribution produces qualitatively similar results;
we present only the exponential results for brevity.

Intuitively, a uniform traffic demand will produce the
highest goodput, as flows are least likely to share bottle-
necks. As traffic matrices become skewed, more and more
demand bottlenecks at the access links of a few popular
sources, so a smaller portion of the demand will be satisfied.
Figure 18 confirms this hypothesis by plotting the achieved
goodput of 2,500 flows on the Erdös-Rényi, Barabási, and
HOT topologies. Results with a uniform distribution of
sources are similar to those with λ = 0.0001, as can be seen
from the 2,500-flow intercept in Figure 16. Note that it is
not precisely identical as the sources are chosen without re-
placement in the earlier experiment.

Figures 19 and 20 show that zombies rapidly dissipate as
skew increases for both Barabási and HOT topologies (only
the naı̈ve sending strategy generates zombies in the Erdös-
Rényi topology, not shown). Indeed, even the naı̈ve strategy
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Figure 20: Number of zombie packets as a function of
traffic skew for the HOT topology.

ceases to create zombies once the skew surpasses 0.1. While
traffic demands obviously vary from network to network, as
a point of reference we find that traffic in the GEANT2 net-
work presented in the next section is well modeled by an
exponential distribution with exponent 0.5—indicating that
zombies are almost inconsequential in our synthetic topolo-
gies with arithmetic capacity assignments.

8. REAL NETWORKS
Of course results on synthetic graphs are simply that—

synthetic. In order provide some insight into the potential for
fire-hose style sending in existing topologies, we consider
two separate real—if not necessarily representative—large-
ISP PoP (point of presence)-level topologies: an August
2007 snapshot of the GEANT2 pan-European research and
education network, and a once-public Level 3 PoP-level map
from 2006 annotated with link capacities. The GEANT2
topology consists of a variety of European research networks
attached to a core of 21 PoPs connected by a 10-Gbps back-
bone; we prune the topology to the 35 core links for which
we were able to obtain routing and traffic information. The
Level 3 topology contains 66 PoPs connected primarily by
OC-192 links and secondarily by OC-48 and OC-12.

We obtained actual GEANT2 traffic matrices for August
1, 2007. In those snapshots, the demand does not saturate—
let alone over-drive—the network. To generate higher de-
mand that continues to reflect the distribution of the original
traffic matrix, we attach leaf nodes to each flow’s actual ori-
gin and destination and source and sink the simulated traffic
at these leaf nodes. (Hence, each leaf node sources and sinks
precisely one flow.) The total leaf node access capacity at
each original node is identical to the actual capacity of the
original node; each leaf node’s incoming/outgoing capacity
is set in proportion to the fraction its flow represents of the
actual node’s total original incoming/outgoing demand. We
scaled the traffic demands proportionally so that each node’s
demand is 50 times its capacity. We do not have access to
information about the traffic on Level 3’s backbone, so we
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Figure 21: Goodput, zombies, and dead packets for the
GEANT topology.

generated a synthetic traffic matrix following a log-normal
distribution as recommended by Nucci et al. [33] and aug-
mented the topology in the same manner.

As we show in Figure 21, The optimal max-min fair al-
location for the GEANT2 topology achieved by clamp is
approximately 192 Gbps. All of the sending strategies are
surprisingly close, obtaining goodputs of 186 and 162 Gbps,
respectively, for limited ratio and naı̈ve senders. (Recall that
all senders source exactly one flow in our construction, so
full-balanced senders are indistinguishable from naı̈ve.) The
increasing rate of zombies (5.5 and 31 Gbps, respectively)
indicates an increasing deviation from the max-min fair al-
location, however. The number of dead packets induced by
the naı̈ve senders is quite high (approximately 1,675 Gbps),
but the vast majority of them are inconsequential.

The results for the Level 3 topology are qualitatively quite
similar. Figure 22 shows the mean and standard deviation
of ten different traffic distributions. The optimal max-min
allocation achieves a mean goodput of approximately 266
Gbps, while limited-ratio and naı̈ve senders achieve an aver-
age of 263 and 228 Gbps, respectively. Once again, due to
the traffic distribution, full-balanced senders behave as naı̈ve
ones, both generating 42.3 Gbps of zombies on 1,095 Gbps
of dead packets. Limited-ratio generates slightly fewer of
each: 3.1 Gbps of zombies out of 25 Gbps of dead packets.

It is difficult to directly compare the two topologies, as the
demand distributions and capacity hierarchies are quite dif-
ferent. For both GEANT2 and Level 3, however, the naı̈ve
sender achieved a goodput within approximately 85% of op-
timal, and our limited-ratio sender strategy is able to close to
within at least 3%.

9. FEEDBACK COMPARISON
While we are heartened by the performance of our sim-

ple sending algorithms—limited ratio in particular—they are
admittedly somewhat ad hoc. One might ask if better algo-
rithms exist, or, alternatively, if performance bounds can be
obtained. Our sending algorithms belong to the class of al-
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Figure 22: Goodput, zombies, and dead packets for the
Level 3 topology.

gorithms that operate without router feedback; their perfor-
mance is upper bounded by the performance potential of al-
gorithms that leverage router feedback. We briefly compare
against the performance of one such algorithm.

Unfortunately, we are not aware of existing fire-hose al-
gorithms that leverage feedback from max-min brickwall
routers. Williamson and Cheriton, however, devised such an
algorithm for what they call loss-load routers, which enforce
a from of proportional fairness where each flow is dropped
in proportion to its deviation from the average [40]. In their
approach, routers update senders with aggregate flow statis-
tics every few hundred milliseconds. Based on this informa-
tion and a network-wide penalty parameter k, senders can
compute a loss-load curve for their bottleneck links. A loss-
load curve indicates how much loss a sender can expect for
any offered rate. To optimize throughput, sender numeri-
cally solve a degree-k polynomial until the aggregate statis-
tics reported by the routers settle. Williamson and Cheriton
show that, in steady state, flows converge to (1 + 1/k) times
their bottleneck rate with an expected loss rate of 1/(k + 1).

Intuitively, if loss-load is sending (1 + 1/k)-times the
path’s capacity, then its performance should be very sim-
ilar to a limited ratio sender with α = 1/k. To verify,
we implemented the loss-load algorithm in our simulator.
We replaced our max-min brickwall routers with loss-load
routers and provide feedback in an ideal fashion, i.e., instan-
taneously. We apply Newton’s method to solve the degree-k
polynomial; the associated numerical instability necessitated
a higher error tolerance to complete the fixed-point computa-
tion. Figure 23 shows the fractional mean goodput and stan-
dard deviation relative to clamp for ten flow patterns on the
Level 3 topology. For each α = 1/k pair, we find that the
goodput is nearly identical on individual flow patterns and
that the amount of zombie flow is quite similar. However,
for other graphs and flow patterns we observe that α > 1/k
can achieve better throughput. We find that, as the authors
observe [40], loss-load penalizes multi-bottleneck flows. In
particular, repeating the skew experiments from Section 7
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Figure 23: Goodput for Limited Ratio and Loss-Load on
the Level 3 topology.

shows that limited ratio with α = 1 outperforms loss-load
with k = 10 for λ > 0.005. In sum, limited ratio performs
comparably to loss-load with a less complex mathematical
basis and without explicit router feedback.

10. CONCLUSION
Despite the increasing deployment of fairness-enforcing

routers, there has been little work studying the implications
for congestion control. Others have studied the effects of
oversending on toy topologies and oversending in the pres-
ence of router feedback. Our results indicate that for the
larger topologies and traffic demands we study, it may be
possible for end hosts to completely ignore fairness con-
cerns when selecting send rates, and focus strictly on their
own flows’ goodput. Our study provides concrete evidence
that fire-hose sending, traditionally eschewed as untenable,
may be feasible and also identify sending strategies that mit-
igate inefficiency and approach optimal for realistic network
topologies.
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