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Testing and troubleshooting network protocols and stacks can be 
painstaking. To ease this process, our team built packetdrill, a tool 
that lets you write precise scripts to test entire network stacks, from 

the system call layer down to the NIC hardware. packetdrill scripts use a 
familiar syntax and run in seconds, making them easy to use during develop-
ment, debugging, and regression testing, and for learning and investigation.
Have you ever had the experience of staring at a long network trace, trying to figure out what 
on earth went wrong? When a network protocol is not working right, how might you find the 
problem and fix it? Although tools like tcpdump allow us to peek under the hood, and tools 
like netperf help measure networks end-to-end, reproducing behavior is still hard, and know-
ing when an issue has been fixed is even harder.

These are the exact problems that our team used to encounter on a regular basis during 
kernel network stack development. Here we describe packetdrill, which we built to enable 
scriptable network stack testing. packetdrill allows a user to specify a sequence of inter-
actions with the network stack in a short script and then execute the script to verify the 
network stack’s behavior.

packetdrill has a range of applications that we have been using it for on a daily basis:

 ! Regression testing a network stack: we have a suite of hundreds of packetdrill scripts that 
are run by all developers on our team before submitting a patch for review.

 ! Test-driven development of network protocols: we have developed several new features for 
Linux TCP using packetdrill.

 ! Reproduction of bugs seen in production network traces: we have used packetdrill to isolate 
hard-to-reproduce bugs seen in complex real traces.

We also believe that packetdrill can have significant value for

 ! self-directed learning of a network protocol, by writing scripts to elicit various behaviors 
from the network protocol in question;

 ! as a tool for teaching about network protocols in a university setting; and
 ! with minor extensions, scriptable testing of network applications that live above core net-

work protocols.

packetdrill currently enables the user to test the correctness, performance, security, and 
general behavior of core network protocols—TCP, UDP, and ICMP—running on IPv4 and 
IPv6, and runs on Linux, FreeBSD, NetBSD, and OpenBSD. The tool is primarily for black-
box testing, though it provides some support for examining internal network protocol state 
when supported by the OS.

packetdrill is released under version 2 of the GNU Public License (just like the Linux kernel), 
and we encourage patches, which you can send to the packetdrill email list (packetdrill@
googlegroups.com), to extend the tool. For example, adding support for other IP-based proto-
cols, such as DCCP or SCTP, would be straightforward, and we welcome patches to support 
these and other protocols.
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The packetdrill Scripting Language
The packetdrill scripting language provides all the basic build-
ing blocks needed to set up a detailed, reproducible scenario 
for black-box testing of a network stack. The tool supports four 
types of statements: packets, system calls, shell commands, and 
Python scripts. Each statement is timestamped and is executed 
by the interpreter in real time, verifying that events proceed as 
the script expects. We discuss each type of statement in turn.

Packets
Arguably the most essential building block of any networking 
scenario is the packet. packetdrill allows the user to specify 
both inbound packets to inject into the system under test and 
outbound packets to expect the system to send. To keep the 
tests succinct and easy to both write and read, we use a  syntax 
like that of tcpdump, which is familiar to most developers and 
system administrators who troubleshoot networking issues on 
UNIX systems. Modeled after UNIX shell input/output redirec-
tion operators, < denotes an input packet to construct and inject 
and > denotes an output packet to sniff and verify.

Here’s an example of a TCP SYN packet, which packetdrill cre-
ates and injects into the network stack under test 100 ms after 
the start of the test:

0.100 < S 0:0(0) win 32792 <mss 1000,nop,nop,sackOK,nop,wscale 6>

Here’s an example of an outbound UDP packet expected to be 
sent immediately after a prior event (denoted by +0), which 
packetdrill sniffs for and then verifies for matching specification 
(e.g., length, headers, etc.):

+0 > udp (1472)

System Calls
System calls are the other essential building block of a black-box 
network stack test scenario, since they express the application’s 
intent and the work the kernel is supposed to perform. To specify 
a system call in packetdrill, the user only needs to provide the 
call’s salient inputs, the duration for which the call is expected 
to block (if at all), and the expected outputs. The syntax mir-
rors that of strace, which we chose because it is familiar to most 
Linux users and is clear to any C programmer. In addition, in 
most cases it provides a quick one-line summary of both the 
inputs and outputs of a system call.

Here’s an example of a bind() system call invocation in packet-
drill notation:

+0 bind(3, ..., ...) = 0 

In this example, 3 denotes the file descriptor number to pass 
in, and the = 0 denotes the expected return value (i.e., the user 
expects the system call to succeed). The ellipsis (…) here in 
place of the traditional addr and addrlen parameters is not to 

simplify the presentation in this article; rather, packetdrill 
supports this notation, again borrowed from strace, to allow 
scripts to omit irrelevant details. Under the hood, packetdrill 
fills in a sockaddr for bind and connect using an IP address 
and port number from command line options (with defaults for 
those options chosen to be appropriate for the address family 
involved—e.g., RFC 1918 private IPv4 address spaces). Hid-
ing these details simplifies scripts and makes them quicker 
and easier to write and read. Just as important, it allows most 
scripts to be run without modification using IPv4, IPv6, or 
dual-mode (AF_INET6 socket with IPv4 traffic), depending on 
the command line arguments to packetdrill.

Shell Commands
packetdrill also allows scripts to specify arbitrary shell com-
mand sequences to execute, typically to configure the machine 
under test (e.g., with sysctl) or to assess the state of the machine 
(e.g., with netstat or ss). packetdrill implements this, as you 
would imagine, using a simple invocation of the C library’s 
system() call. To enclose the commands, packetdrill borrows the 
backtick syntax used in shells and Perl. 

Here’s a typical example, which disables TCP timestamps in 
order to test TCP behavior without them:

+0 `sysctl -q net.ipv4.tcp_timestamps=0`

Python Commands
Finally, packetdrill allows inline Python code snippets to print 
information and to make assertions about the internal state of a 
TCP socket using the TCP_INFO getsockopt() option supported 
by Linux and FreeBSD. Users can enclose such snippets between 
%{ and }% tokens, a nod to lex/flex and yacc/bison syntax for 
embedding inline C snippets.

The following Linux-based example asserts that the sender’s 
congestion window is 10 packets:

+0 %{ assert tcpi_snd_cwnd == 10 }%

In this example, under the hood packetdrill will make a TCP_
INFO getsockopt() call for the socket under test and then stash 
the output tcp_info struct in memory. Then, when the test 
finishes execution, packetdrill emits a Python script encoding 
the contents of the tcp_info struct, followed by the Python code 
snippet that can print or make assertions about any interesting 
values.

An Example packetdrill Script
Next we give a short example. Suppose that you want to verify 
that your TCP stack correctly validates incoming TCP RST 
packets (see RFC 5961, Improving TCP’s Robustness to Blind 
In-Window Attacks). Listing 1 shows a script (targeted at Linux) 
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that verifies that a TCP endpoint ignores a RST whose sequence 
number is just beyond the offered window.

// Create a listening TCP socket.

0   socket(..., SOCK_STREAM, IPPROTO_TCP) = 3

+0  setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

+0  bind(3, ..., ...) = 0

+0  listen(3, 1) = 0

// Establish a new connection.

+0  < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>

+0  > S. 0:0(0) ack 1 win 29200 <mss     

       1460,nop,nop,sackOK,nop,wscale 6>

+.1 < . 1:1(0) ack 1 win 257

+0  accept(3, ..., ...) = 4

// sequence number out of window!

+.010 < R. 29202:29202(0) ack 1 win 257

// verify that the connection is OK

+.010  write(4, ..., 1000) = 1000

+0  > P. 1:1001(1000) ack 1

Listing 1: Validating handling of out-of-window RSTs

packetdrill’s Design
Execution Model
packetdrill parses an entire test script, and then executes each 
timestamped line in real time—at the pace described by the 
timestamps—to replay and verify the scenario. The packet-
drill interpreter has one thread for the main flow of events and 
another for executing any system calls that the script expects to 
block (e.g., poll()).

For convenience, scripts use an abstracted notation for packets. 
Internally, packetdrill models aspects of TCP and UDP behavior; 
to do this, packetdrill maintains mappings to translate between 
the values in the script and those in the live packet. The trans-
lation includes IP, UDP, and TCP header fields, including TCP 
options such as SACK and timestamps. Thus we track each 
socket and its IP addresses, port numbers, TCP sequence num-
bers, and TCP timestamps.

Local and Remote Testing
packetdrill enables two modes of testing: local mode, using a TUN 
virtual network device, or remote mode, using a physical NIC.

In local mode, packetdrill uses a single machine and a TUN 
virtual network device as a source and sink for packets. This 
tests the system call, sockets, TCP, and IP layers, and is easier 
to use because there is less timing variation, and users need not 
coordinate access to multiple machines.

In remote mode, users run two packetdrill processes, one of 
which is on a remote machine and speaks to the system under 
test over a LAN. This approach tests the full networking system: 
system calls, sockets, TCP, IP, software and hardware offload 
mechanisms, the NIC driver, NIC hardware, wire, and switch; 
however, due to the inherent variability in the many components 
under test, remote mode can result in larger timing variations, 
which can cause spurious test failures.

The packet plumbing is, naturally, a bit different in local and 
remote modes. To capture outgoing packets we use a packet 
socket (on Linux) or libpcap (on BSD-derived OSes). To inject 
packets locally we use a TUN device; to inject packets over the 
physical network in remote mode we again use a packet socket 
or libpcap. To consume test packets in local mode we use a TUN 
device; remotely, packets go over the physical network and the 
remote kernel drops them, because it has no interface with the 
test’s remote IP address.

Local Mode
Local mode is the default, so to use it you need no special com-
mand line flags; you only need to provide the path of the script to 
execute:

./packetdrill foo.pkt

Remote Mode
To use remote mode, on the machine under test (the “client” 
machine), you must specify one command line option to enable 
remote mode (acting as a client) and then a second option to 
specify the IP address of the remote server machine to which the 
client packetdrill instance will connect. Only the client instance 
takes a packetdrill script argument, which can be the path of any 
ordinary packetdrill test script:

client# ./packetdrill --wire_client --wire_server_ip=<server_ip> 

foo.pkt

On the remote machine, on the same layer 2 broadcast domain 
(e.g., same Ethernet switch), run the following to have a pack-
etdrill process act as a “wire server” daemon to inject and sniff 
packets remotely on the wire:

server# ./packetdrill --wire_server

How does this work? First, the client instance connects to the 
server (using TCP), and sends the command line options and the 
contents of the script file. Then the two packetdrill instances 
work in concert to execute the script and test the client 
machine’s network stack.
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Timing Models
Because many protocols are sensitive to timing, we added sup-
port for significant timing flexibility in scripts. Each statement 
has a timestamp, enforced by packetdrill: if an event does not 
occur at the specified time, packetdrill flags an error and reports 
the actual time. Table 1 shows the packetdrill timing models.

Protocol Features
IPv4 and IPv6
packetdrill supports IPv4, IPv6, and dual-stack modes. The user 
specifies which mode to use when executing a test by using the 
--ip_version command line flag: AF_INET sockets with IPv4 
traffic (--ip_version=ipv4), AF_INET6 sockets with IPv6 traffic 
(--ip_version=ipv6), and AF_INET6 sockets with IPv4 traffic 
(--ip_version=ipv4-mapped-ipv6).

To enable running the same script unmodified in any of the three 
modes, scripts omit IP-version-specific aspects of packets and 
system calls. For example, scripts do not specify the local and 
remote IP addresses of packets inside the script itself. Likewise, 
scripts do not specify a domain (AF_INET or AF_INET6) in a 
socket() call, nor do they specify the address and address length 
in a bind() call. As a result, getting a local test originally used for 
AF_INET sockets and IPv4 to work in other addressing modes 
is easy.

To run the test using AF_INET6 sockets with IPv4 traffic, use: 

./packetdrill --ip_version=ipv4-mapped-ipv6 foo.pkt

To run the test using AF_INET6 sockets with IPv6 traffic, you’ll 
need to specify both --ip_version and an MTU that is 20 bytes 
larger than the typical 1500-byte MTU, to accommodate the 
IPv6 header, which is 20 bytes larger than the IPv4 header:

./packetdrill --ip_version=ipv6 --mtu=1520 foo.pkt

With these small adjustments to the packetdrill command line, 
you can test all three addressing modes with a single script, with 
no extra development work.

Note that to get FreeBSD and NetBSD to allow using ipv4-
mapped-ipv6 mode you must first tell the kernel you want to 
enable this mode of operation with:

sysctl -w net.inet6.ip6.v6only = 0

Also note that OpenBSD does not support ipv4-mapped-ipv6 
mode because it explicitly disallows AF_INET6 sockets from 
handling IPv4 traffic.

Path MTU Discovery
packetdrill allows testing of Path MTU Discovery, which most 
TCP senders use to dynamically find an Internet path’s maxi-
mum transmission unit (MTU), the biggest packet size that can 
safely traverse the path without suffering a performance hit due 
to IP-layer fragmentation and reassembly. Path MTU Discovery 
is described in RFC 1191 for IPv4 and RFC 1981 for IPv6. The 
basic idea is that senders mark the “Don’t Fragment” (DF) bit 
in all outgoing IP headers. If a router along the path sees that it 
needs to fragment the packet but the DF bit is set, then the router 
sends an ICMP message saying “unreachable - fragmentation 
needed and DF set,” with the MTU that the sender should use. 
When the sender receives this ICMP message, it retransmits any 
outstanding data and uses smaller packets in the future.

Listing 2 shows a simple Path MTU scenario (this script passes 
on Linux):

// Send a data segment.

+0 write(4, ..., 1460) = 1460

+0 > P. 1:1461(1460) ack 1

// ICMP says that segment was too big.

+0.100 < [1:1461(1460)] icmp unreachable frag_needed mtu 1200

// TCP retransmits with smaller packet size.

+0 > . 1:1161(1160) ack 1

+0 > P. 1161:1461(300) ack 1

Listing 2: TCP Path MTU Discovery example

Model Syntax Example Description
Absolute 0.75 The specific time at which an event should occur.

Relative +0.2 The interval after the last event at which an event should occur.

Wildcard * Allows an event to occur at any time.

Range 0.750~0.900 The absolute time range in which the event should occur.

Relative Range +0.1~+0.2 The relative time range after the last event in which the event should occur.

Loose --tolerance_usecs=800 Allows all events to happen within a range (from the command line).

Blocking 0.750...0.900 Specifies a blocking system call that starts/returns at the given times.
Table 1: Timing models supported by packetdrill
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Explicit Congestion Notification
packetdrill supports Explicit Congestion Notification, or ECN 
(see RFC 3168), a standard protocol that allows routers to 
explicitly signal to Internet transports (typically TCP) that there 
is congestion in the network by setting bits in the IP header. 
The ECN approach has several advantages over the traditional 
congestion signaling mechanism of dropping packets, but it is 
not yet widely deployed.

Any packet can have an ECN clause following the direction (< or 
>) field. Tests that do not care about ECN (and most tests do not) 
can simply omit the ECN clause. The supported ECN clauses 
allow tests to directly specify the injected or expected values of 
the two ECN bits; they are:

 ! [noecn]  The IP ECN field is 00; sender transport (e.g., TCP)  
 does not support ECN

 ! [ect1]   The IP ECN field is 01, ECT(1), indicating  
 “ECN-Capable Transport”

 ! [ect0]  The IP ECN field is 10, ECT(0), indicating  
 “ECN-Capable Transport” 

 ! [ce]  The IP ECN field is 11, set by a router to say  
 “Congestion Experienced”

One interesting aspect of ECN is that ECN-capable senders 
(such as ECN-savvy TCP stacks) can set the ECN bits to either 
the ECT(0) or ECT(1) codepoints to indicate that they “speak 
ECN.” This allows the sender and receiver to collaborate to 
detect whether some network element or receiver is corrupt-
ing or lying about the ECN bits, which would disrupt conges-
tion signaling and potentially allow senders to grab an unfair 
share of bandwidth (see RFC 3540, Robust Explicit Congestion 
Notification (ECN) Signaling with Nonces). To cope with this 
potential variation, packetdrill also allows outgoing packets to 
use a fourth type of ECN clause, which specifies that an outgoing 
packet should have either the ECT(0) or ECT(1) codepoint:

 ! [ect01]  The (outgoing) IP ECN field should be 10 or 01

Future Work
packetdrill can be used at present for testing not only funda-
mental network protocols that it supports natively (TCP, UDP, 
and ICMP on IPv4/IPv6) but also applications that use these 
protocols (e.g., a Web application that runs over TCP); however, 
because packetdrill has no knowledge of application-level data-
grams, its ability to mimic, in script form, specific higher-layer 
protocols and application interactions is limited. We hope to 
make it easier for users to specify application-level payloads to 
be sent or received.

Also, packetdrill currently only supports testing a single connec-
tion at a time. We hope to extend it to support testing multiple 
concurrent connections. Furthermore, although packetdrill cur-
rently supports local (stand-alone) and on-the-wire (two-host) 
operations, it does not yet support multi-host operation or testing 
a remote machine that is not itself running packetdrill. These 
may be useful in some cases, and they should be straightforward 
to add to the current framework.

We welcome patches from the community, both for bug fixes and 
new features.
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