
48! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Drilling Network Stacks with packetdrill
N E A L C A R D W E L L A N D B A R A T H R A G H A V A N

Neal Cardwell received an M.S.
in Computer Science from the
University of Washington, with
research focused on TCP and
Web performance. He joined

Google in 2002. Since then he has worked
on networking software for google.com, the
Googlebot web crawler, the network stack in
the Linux kernel, and TCP performance and
testing.  neal@google.com

Barath Raghavan received a
Ph.D. in Computer Science from
UC San Diego and a B.S. from
UC Berkeley. He joined Google
in 2012 and was previously a

Senior Researcher at ICSI in Berkeley, CA.
His work has focused on network protocol
design, applied cryptography, and sustainable
computing. barath@google.com

Testing and troubleshooting network protocols and stacks can be
painstaking. To ease this process, our team built packetdrill, a tool
that lets you write precise scripts to test entire network stacks, from

the system call layer down to the NIC hardware. packetdrill scripts use a
familiar syntax and run in seconds, making them easy to use during develop-
ment, debugging, and regression testing, and for learning and investigation.
Have you ever had the experience of staring at a long network trace, trying to figure out what
on earth went wrong? When a network protocol is not working right, how might you find the
problem and fix it? Although tools like tcpdump allow us to peek under the hood, and tools
like netperf help measure networks end-to-end, reproducing behavior is still hard, and know-
ing when an issue has been fixed is even harder.

These are the exact problems that our team used to encounter on a regular basis during
kernel network stack development. Here we describe packetdrill, which we built to enable
scriptable network stack testing. packetdrill allows a user to specify a sequence of inter-
actions with the network stack in a short script and then execute the script to verify the
network stack’s behavior.

packetdrill has a range of applications that we have been using it for on a daily basis:

 ! Regression testing a network stack: we have a suite of hundreds of packetdrill scripts that
are run by all developers on our team before submitting a patch for review.

 ! Test-driven development of network protocols: we have developed several new features for
Linux TCP using packetdrill.

 ! Reproduction of bugs seen in production network traces: we have used packetdrill to isolate
hard-to-reproduce bugs seen in complex real traces.

We also believe that packetdrill can have significant value for

 ! self-directed learning of a network protocol, by writing scripts to elicit various behaviors
from the network protocol in question;

 ! as a tool for teaching about network protocols in a university setting; and
 ! with minor extensions, scriptable testing of network applications that live above core net-

work protocols.

packetdrill currently enables the user to test the correctness, performance, security, and
general behavior of core network protocols—TCP, UDP, and ICMP—running on IPv4 and
IPv6, and runs on Linux, FreeBSD, NetBSD, and OpenBSD. The tool is primarily for black-
box testing, though it provides some support for examining internal network protocol state
when supported by the OS.

packetdrill is released under version 2 of the GNU Public License (just like the Linux kernel),
and we encourage patches, which you can send to the packetdrill email list (packetdrill@
googlegroups.com), to extend the tool. For example, adding support for other IP-based proto-
cols, such as DCCP or SCTP, would be straightforward, and we welcome patches to support
these and other protocols.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 49

PROGRAMMING
Drilling Network Stacks with packetdrill

The packetdrill Scripting Language
The packetdrill scripting language provides all the basic build-
ing blocks needed to set up a detailed, reproducible scenario
for black-box testing of a network stack. The tool supports four
types of statements: packets, system calls, shell commands, and
Python scripts. Each statement is timestamped and is executed
by the interpreter in real time, verifying that events proceed as
the script expects. We discuss each type of statement in turn.

Packets
Arguably the most essential building block of any networking
scenario is the packet. packetdrill allows the user to specify
both inbound packets to inject into the system under test and
outbound packets to expect the system to send. To keep the
tests succinct and easy to both write and read, we use a syntax
like that of tcpdump, which is familiar to most developers and
system administrators who troubleshoot networking issues on
UNIX systems. Modeled after UNIX shell input/output redirec-
tion operators, < denotes an input packet to construct and inject
and > denotes an output packet to sniff and verify.

Here’s an example of a TCP SYN packet, which packetdrill cre-
ates and injects into the network stack under test 100 ms after
the start of the test:

0.100 < S 0:0(0) win 32792 <mss 1000,nop,nop,sackOK,nop,wscale 6>

Here’s an example of an outbound UDP packet expected to be
sent immediately after a prior event (denoted by +0), which
packetdrill sniffs for and then verifies for matching specification
(e.g., length, headers, etc.):

+0 > udp (1472)

System Calls
System calls are the other essential building block of a black-box
network stack test scenario, since they express the application’s
intent and the work the kernel is supposed to perform. To specify
a system call in packetdrill, the user only needs to provide the
call’s salient inputs, the duration for which the call is expected
to block (if at all), and the expected outputs. The syntax mir-
rors that of strace, which we chose because it is familiar to most
Linux users and is clear to any C programmer. In addition, in
most cases it provides a quick one-line summary of both the
inputs and outputs of a system call.

Here’s an example of a bind() system call invocation in packet-
drill notation:

+0 bind(3, ..., ...) = 0

In this example, 3 denotes the file descriptor number to pass
in, and the = 0 denotes the expected return value (i.e., the user
expects the system call to succeed). The ellipsis (…) here in
place of the traditional addr and addrlen parameters is not to

simplify the presentation in this article; rather, packetdrill
supports this notation, again borrowed from strace, to allow
scripts to omit irrelevant details. Under the hood, packetdrill
fills in a sockaddr for bind and connect using an IP address
and port number from command line options (with defaults for
those options chosen to be appropriate for the address family
involved—e.g., RFC 1918 private IPv4 address spaces). Hid-
ing these details simplifies scripts and makes them quicker
and easier to write and read. Just as important, it allows most
scripts to be run without modification using IPv4, IPv6, or
dual-mode (AF_INET6 socket with IPv4 traffic), depending on
the command line arguments to packetdrill.

Shell Commands
packetdrill also allows scripts to specify arbitrary shell com-
mand sequences to execute, typically to configure the machine
under test (e.g., with sysctl) or to assess the state of the machine
(e.g., with netstat or ss). packetdrill implements this, as you
would imagine, using a simple invocation of the C library’s
system() call. To enclose the commands, packetdrill borrows the
backtick syntax used in shells and Perl.

Here’s a typical example, which disables TCP timestamps in
order to test TCP behavior without them:

+0 `sysctl -q net.ipv4.tcp_timestamps=0`

Python Commands
Finally, packetdrill allows inline Python code snippets to print
information and to make assertions about the internal state of a
TCP socket using the TCP_INFO getsockopt() option supported
by Linux and FreeBSD. Users can enclose such snippets between
%{ and }% tokens, a nod to lex/flex and yacc/bison syntax for
embedding inline C snippets.

The following Linux-based example asserts that the sender’s
congestion window is 10 packets:

+0 %{ assert tcpi_snd_cwnd == 10 }%

In this example, under the hood packetdrill will make a TCP_
INFO getsockopt() call for the socket under test and then stash
the output tcp_info struct in memory. Then, when the test
finishes execution, packetdrill emits a Python script encoding
the contents of the tcp_info struct, followed by the Python code
snippet that can print or make assertions about any interesting
values.

An Example packetdrill Script
Next we give a short example. Suppose that you want to verify
that your TCP stack correctly validates incoming TCP RST
packets (see RFC 5961, Improving TCP’s Robustness to Blind
In-Window Attacks). Listing 1 shows a script (targeted at Linux)

50! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Drilling Network Stacks with packetdrill

that verifies that a TCP endpoint ignores a RST whose sequence
number is just beyond the offered window.

// Create a listening TCP socket.

0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3

+0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

+0 bind(3, ..., ...) = 0

+0 listen(3, 1) = 0

// Establish a new connection.

+0 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>

+0 > S. 0:0(0) ack 1 win 29200 <mss

 1460,nop,nop,sackOK,nop,wscale 6>

+.1 < . 1:1(0) ack 1 win 257

+0 accept(3, ..., ...) = 4

// sequence number out of window!

+.010 < R. 29202:29202(0) ack 1 win 257

// verify that the connection is OK

+.010 write(4, ..., 1000) = 1000

+0 > P. 1:1001(1000) ack 1

Listing 1: Validating handling of out-of-window RSTs

packetdrill’s Design
Execution Model
packetdrill parses an entire test script, and then executes each
timestamped line in real time—at the pace described by the
timestamps—to replay and verify the scenario. The packet-
drill interpreter has one thread for the main flow of events and
another for executing any system calls that the script expects to
block (e.g., poll()).

For convenience, scripts use an abstracted notation for packets.
Internally, packetdrill models aspects of TCP and UDP behavior;
to do this, packetdrill maintains mappings to translate between
the values in the script and those in the live packet. The trans-
lation includes IP, UDP, and TCP header fields, including TCP
options such as SACK and timestamps. Thus we track each
socket and its IP addresses, port numbers, TCP sequence num-
bers, and TCP timestamps.

Local and Remote Testing
packetdrill enables two modes of testing: local mode, using a TUN
virtual network device, or remote mode, using a physical NIC.

In local mode, packetdrill uses a single machine and a TUN
virtual network device as a source and sink for packets. This
tests the system call, sockets, TCP, and IP layers, and is easier
to use because there is less timing variation, and users need not
coordinate access to multiple machines.

In remote mode, users run two packetdrill processes, one of
which is on a remote machine and speaks to the system under
test over a LAN. This approach tests the full networking system:
system calls, sockets, TCP, IP, software and hardware offload
mechanisms, the NIC driver, NIC hardware, wire, and switch;
however, due to the inherent variability in the many components
under test, remote mode can result in larger timing variations,
which can cause spurious test failures.

The packet plumbing is, naturally, a bit different in local and
remote modes. To capture outgoing packets we use a packet
socket (on Linux) or libpcap (on BSD-derived OSes). To inject
packets locally we use a TUN device; to inject packets over the
physical network in remote mode we again use a packet socket
or libpcap. To consume test packets in local mode we use a TUN
device; remotely, packets go over the physical network and the
remote kernel drops them, because it has no interface with the
test’s remote IP address.

Local Mode
Local mode is the default, so to use it you need no special com-
mand line flags; you only need to provide the path of the script to
execute:

./packetdrill foo.pkt

Remote Mode
To use remote mode, on the machine under test (the “client”
machine), you must specify one command line option to enable
remote mode (acting as a client) and then a second option to
specify the IP address of the remote server machine to which the
client packetdrill instance will connect. Only the client instance
takes a packetdrill script argument, which can be the path of any
ordinary packetdrill test script:

client# ./packetdrill --wire_client --wire_server_ip=<server_ip>

foo.pkt

On the remote machine, on the same layer 2 broadcast domain
(e.g., same Ethernet switch), run the following to have a pack-
etdrill process act as a “wire server” daemon to inject and sniff
packets remotely on the wire:

server# ./packetdrill --wire_server

How does this work? First, the client instance connects to the
server (using TCP), and sends the command line options and the
contents of the script file. Then the two packetdrill instances
work in concert to execute the script and test the client
machine’s network stack.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 51

PROGRAMMING
Drilling Network Stacks with packetdrill

Timing Models
Because many protocols are sensitive to timing, we added sup-
port for significant timing flexibility in scripts. Each statement
has a timestamp, enforced by packetdrill: if an event does not
occur at the specified time, packetdrill flags an error and reports
the actual time. Table 1 shows the packetdrill timing models.

Protocol Features
IPv4 and IPv6
packetdrill supports IPv4, IPv6, and dual-stack modes. The user
specifies which mode to use when executing a test by using the
--ip_version command line flag: AF_INET sockets with IPv4
traffic (--ip_version=ipv4), AF_INET6 sockets with IPv6 traffic
(--ip_version=ipv6), and AF_INET6 sockets with IPv4 traffic
(--ip_version=ipv4-mapped-ipv6).

To enable running the same script unmodified in any of the three
modes, scripts omit IP-version-specific aspects of packets and
system calls. For example, scripts do not specify the local and
remote IP addresses of packets inside the script itself. Likewise,
scripts do not specify a domain (AF_INET or AF_INET6) in a
socket() call, nor do they specify the address and address length
in a bind() call. As a result, getting a local test originally used for
AF_INET sockets and IPv4 to work in other addressing modes
is easy.

To run the test using AF_INET6 sockets with IPv4 traffic, use:

./packetdrill --ip_version=ipv4-mapped-ipv6 foo.pkt

To run the test using AF_INET6 sockets with IPv6 traffic, you’ll
need to specify both --ip_version and an MTU that is 20 bytes
larger than the typical 1500-byte MTU, to accommodate the
IPv6 header, which is 20 bytes larger than the IPv4 header:

./packetdrill --ip_version=ipv6 --mtu=1520 foo.pkt

With these small adjustments to the packetdrill command line,
you can test all three addressing modes with a single script, with
no extra development work.

Note that to get FreeBSD and NetBSD to allow using ipv4-
mapped-ipv6 mode you must first tell the kernel you want to
enable this mode of operation with:

sysctl -w net.inet6.ip6.v6only = 0

Also note that OpenBSD does not support ipv4-mapped-ipv6
mode because it explicitly disallows AF_INET6 sockets from
handling IPv4 traffic.

Path MTU Discovery
packetdrill allows testing of Path MTU Discovery, which most
TCP senders use to dynamically find an Internet path’s maxi-
mum transmission unit (MTU), the biggest packet size that can
safely traverse the path without suffering a performance hit due
to IP-layer fragmentation and reassembly. Path MTU Discovery
is described in RFC 1191 for IPv4 and RFC 1981 for IPv6. The
basic idea is that senders mark the “Don’t Fragment” (DF) bit
in all outgoing IP headers. If a router along the path sees that it
needs to fragment the packet but the DF bit is set, then the router
sends an ICMP message saying “unreachable - fragmentation
needed and DF set,” with the MTU that the sender should use.
When the sender receives this ICMP message, it retransmits any
outstanding data and uses smaller packets in the future.

Listing 2 shows a simple Path MTU scenario (this script passes
on Linux):

// Send a data segment.

+0 write(4, ..., 1460) = 1460

+0 > P. 1:1461(1460) ack 1

// ICMP says that segment was too big.

+0.100 < [1:1461(1460)] icmp unreachable frag_needed mtu 1200

// TCP retransmits with smaller packet size.

+0 > . 1:1161(1160) ack 1

+0 > P. 1161:1461(300) ack 1

Listing 2: TCP Path MTU Discovery example

Model Syntax Example Description
Absolute 0.75 The specific time at which an event should occur.

Relative +0.2 The interval after the last event at which an event should occur.

Wildcard * Allows an event to occur at any time.

Range 0.750~0.900 The absolute time range in which the event should occur.

Relative Range +0.1~+0.2 The relative time range after the last event in which the event should occur.

Loose --tolerance_usecs=800 Allows all events to happen within a range (from the command line).

Blocking 0.750...0.900 Specifies a blocking system call that starts/returns at the given times.
Table 1: Timing models supported by packetdrill

52! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Drilling Network Stacks with packetdrill

Explicit Congestion Notification
packetdrill supports Explicit Congestion Notification, or ECN
(see RFC 3168), a standard protocol that allows routers to
explicitly signal to Internet transports (typically TCP) that there
is congestion in the network by setting bits in the IP header.
The ECN approach has several advantages over the traditional
congestion signaling mechanism of dropping packets, but it is
not yet widely deployed.

Any packet can have an ECN clause following the direction (< or
>) field. Tests that do not care about ECN (and most tests do not)
can simply omit the ECN clause. The supported ECN clauses
allow tests to directly specify the injected or expected values of
the two ECN bits; they are:

 ! [noecn] The IP ECN field is 00; sender transport (e.g., TCP)
 does not support ECN

 ! [ect1] The IP ECN field is 01, ECT(1), indicating
 “ECN-Capable Transport”

 ! [ect0] The IP ECN field is 10, ECT(0), indicating
 “ECN-Capable Transport”

 ! [ce] The IP ECN field is 11, set by a router to say
 “Congestion Experienced”

One interesting aspect of ECN is that ECN-capable senders
(such as ECN-savvy TCP stacks) can set the ECN bits to either
the ECT(0) or ECT(1) codepoints to indicate that they “speak
ECN.” This allows the sender and receiver to collaborate to
detect whether some network element or receiver is corrupt-
ing or lying about the ECN bits, which would disrupt conges-
tion signaling and potentially allow senders to grab an unfair
share of bandwidth (see RFC 3540, Robust Explicit Congestion
Notification (ECN) Signaling with Nonces). To cope with this
potential variation, packetdrill also allows outgoing packets to
use a fourth type of ECN clause, which specifies that an outgoing
packet should have either the ECT(0) or ECT(1) codepoint:

 ! [ect01] The (outgoing) IP ECN field should be 10 or 01

Future Work
packetdrill can be used at present for testing not only funda-
mental network protocols that it supports natively (TCP, UDP,
and ICMP on IPv4/IPv6) but also applications that use these
protocols (e.g., a Web application that runs over TCP); however,
because packetdrill has no knowledge of application-level data-
grams, its ability to mimic, in script form, specific higher-layer
protocols and application interactions is limited. We hope to
make it easier for users to specify application-level payloads to
be sent or received.

Also, packetdrill currently only supports testing a single connec-
tion at a time. We hope to extend it to support testing multiple
concurrent connections. Furthermore, although packetdrill cur-
rently supports local (stand-alone) and on-the-wire (two-host)
operations, it does not yet support multi-host operation or testing
a remote machine that is not itself running packetdrill. These
may be useful in some cases, and they should be straightforward
to add to the current framework.

We welcome patches from the community, both for bug fixes and
new features.

References
[1] Neal Cardwell, et al, “packetdrill: Scriptable Network
Stack Testing, from Sockets to Packets,” USENIX ATC 2013:
 https://www.usenix.org/conference/atc13/packetdrill
-scriptable-network-stack-testing-sockets-packets.

[2] packetdrill open source project home and git repository:
https://code.google.com/p/packetdrill/.

[3] packetdrill email list, for questions, discussion, and
patches: http://groups.google.com/group/packetdrill.

xkcd

xkcd.com

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:
 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

