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Auditory Scene Analysis

“The organization of sound scenes 
according to their inferred sources”

• Sounds rarely occur in isolation
- need to ‘separate’ for useful information

• Human audition is very effective
- it’s a shock that modeling it is so hard
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How can we separate sources?
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• In general, we can’t
- mathematically, too few degrees of freedo
- sensor noise limits separation

• ‘Correct’ analysis is subjectively defined
- sources exhibit independence, continuity,
→ecological constraints enable organization

• Goal not complete separation (reconstructio
but organization of available information
into useful structures
- telling us useful things about the outside 

• ‘The auditory system as a separation mach
(Alain de Cheveigné)



  

Psychology of ASA
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• Extensive experimental research
- perception of simplified stimuli (sinusoids

• “Auditory Scene Analysis” [Bregman 1990]
- first: break mixture into small elements
- elements are grouped in to sources using
- sources have aggregate attributes

• Grouping ‘rules’ (Darwin, Carlyon, ...):
- common onset/offset/modulation,harmon

spatial location, ...

(from 
Darwin 1996)



  

Thinking about information processing: 
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Marr’s levels-of-explanation

• Three distinct aspects to info. processing

Why bother? - helps organize interpretatio
- it’s OK to consider levels 
  separately, one at a time

Computational 
Theory

‘what’ and ‘why’; 
the overall goal
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• Common onset/offset/modulation (“fate”)

• Common periodicity (“pitch”)

• Spatial location (ITD, ILD, spectral cues)

• Sequential cues...

• Source-specific cues...

Common onset Periodicity

Computational 
theory

Acoustic 
consequences tend 
to be synchronized

(Nonlinear) 
processes

commo

Algorithm
Group elements that 
start in a time range 

? Place pat
? Autocorre

Implementation
Onset detector cells
Synchronized osc’s?

? Delay-and
? Modulation



  

Simple grouping
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• E.g. isolated tones

Computational 
theory

• common onset
• common period (harmonicity)

Algorithm
• locate elements (tracks)
• group by shared features

Implementation
? exhaustive search
• evolution in time

time

freq



  

Complications for grouping:
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1: Cues in conflict

• Mistuned harmonic (Moore, Darwin..):

- harmonic usually groups by onset & perio
- can alter frequency and/or onset time
- ‘degree of grouping’ from overall pitch ma

• Gradual, various results:

- heard as separate tone, still affects pitch

time

freq

3%
mistuning

pitch shift



  

Complications for grouping:
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2: The effect of time

• Added harmonics:

- onset cue initially segregates;
periodicity eventually fuses

• The effect of time
- some cues take time to become apparent
- onset cue becomes increasingly distant...

• What is the impetus for fission?
- e.g. double vowels
- depends on what you expect .. ?

time

freq
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Auditory Scene Analysis (ASA) 

Computational ASA (CASA)
- A simple model of grouping
- Other systems

Context, expectation & predictions

Applications: speech recognition, indexing

Conclusions and open issues
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Computational Auditory Scene Analysis
(CASA)

• Automatic sound organization?
- convert an undifferentiated signal into a 

description in terms of different sources

• Translate psych. rules into programs?
- representations to reveal common onset,

harmonicity ...

• Motivations & Applications
- it’s a puzzle: new processing principles?
- real-world interactive systems (speech, ro
- hearing prostheses (enhancement, descr
- advanced processing (remixing)
- multimedia indexing

2



  

A simple model of grouping
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• “Bregman at face value” (e.g. Brown 1992):

- feature maps
- periodicity cue
- common-onset boost
- resynthesis
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Grouping model results
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• Able to extract voiced speech:

• Periodicity is the primary cue
- how to handle aperiodic energy?

• Limitations
- resynthesis via filter-mask
- only periodic targets
- robustness of discrete objects
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Other CASA systems (1)
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• Weintraub 1985
- separate male & female voices
- find periodicities in each frequency chann

auto-coincidence
- number of voices is ‘hidden state’

• Cooke 1991
- ‘Synchrony strands’ auditory model
- Fusing resolved harmonics and AM forma
- led to [Brown 1992]



  

Other CASA systems (2)
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• Okuno,  Nakatani &c (1994-)
- ‘tracers’ follow each harmonic + noise ‘ag
- residue-driven: account for whole signal

• Klassner 1996
- search for a combination of templates
- high-level hypotheses permit front-end tu

• Ellis 1996
- model for events perceived in dense scen
- prediction-driven: observations - hypothes

(a)
TIME
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Other signal-separation approaches
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• HMM decomposition (RK Moore ’86)
- recover combined source states directly

• Blind source separation (Bell & Sejnowski ’9
- find exact separation parameters by maxi

statistic e.g. signal independence

• Neural models (Malsburg, Wang & Brown)
- avoid implausible AI methods (search, list
- oscillators substitute for iteration?



  

Outline

   
CASA for TICSP  - Dan Ellis 1999sep01 - 17

Auditory Scene Analysis (ASA) 

Computational ASA (CASA)

Context, expectation & predictions
- the effect of context
- streaming, illusions and restoration
- prediction-driven (PD) CASA

Applications: speech recognition, indexing

Conclusions and open issues
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Context, expectations & predictions

Perception is not direct
but a search  for plausible hypotheses

• Data-driven...

vs. Prediction-driven

• Motivations
- detect non-tonal events (noise & clicks)
- support ‘restoration illusions’...

→ hooks for high-level knowledge
+  ‘complete explanation’, multiple hypothes

resynthesis

3
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The effect of context
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• Context can create an ‘expectation’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman’s “old-plus-new” principle:
A change in a signal will be interpreted as
added source whenever possible

- a different division of the same energy 
depending on what preceded it
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• Successive tone events form separate strea

• Order, rhythm &c within , not between , str

Computational 
theory

Consistency of properties for 
successive source events

Algorithm
• ‘expectation window’ for known

streams (widens with time)

Implementation
• competing time-frequency 

affinity weights...

±2 octaves

TRT: 60-150 ms

time

freq.

∆f:
1 kHz
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• Direct evidence may be masked or distorted
→make best guess using available informat

• E.g. the ‘continuity illusion’:

- tones alternates with noise bursts
- noise is strong enough to mask tone

... so listener discriminate presence
- continuous tone distinctly perceived

for gaps ~100s of ms

→ Inference acts at low, preconscious level
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• Speech provides very strong bases for 
inference (coarticulation, grammar, semanti
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‘Prediction-driven’ CASA (PDCASA):

• An approach as well as an implementation..

• Key features:
- ‘complete explanation’ of all scene energy
- vocabulary of periodic/noise/transient ele
- multiple hypotheses
- explanation hierarchy
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• Incremental analysis
t1 t2 t3

Input signal

Time t1:
initial eleme
created

Time t2:
Additional 
element req

Time t3:
Second ele
finished
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• Subjects hear the tone as continuous
... if the noise is a plausible masker

• Data-driven analysis gives just visible portio

• Prediction-driven can infer masking:
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PDCASA analysis of a complex scene
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Problems in PDCASA
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• Subjective ground-truth in mixtures?
- listening tests collect ‘perceived events’:

• Other problems
- error allocation - rating hypotheses
- source hierarchy - resynthesis
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• Marr invoked to separate high-level function
from low-level details

“It is not enough to be able to describe the response of s
cells, nor predict the results of psychophysical experime
Nor is it enough even to write computer programs that p
approximately in the desired way: 
One has to do all these things at once, and also be very
of the computational theory...”

Computational 
theory

• Objects persist predictably
• Observations interact irrevers

Algorithm
• Build hypotheses from generi

elements
• Update by prediction-reconcil

Implementation ???
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Auditory Scene Analysis (ASA) 

Computational ASA (CASA)

Context, expectation & predictions

Applications
- CASA for speech recognition
- CASA for audio indexing

Conclusions and open issues
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.1 Applications: Speech recognition

• Conventional speech recognition:

- signal assumed entirely speech
- find valid segmentation using discrete lab
- class models from training data

• Some problems:
- need to ignore lexically-irrelevant variation

(microphone, voice pitch etc.)
- compact feature space → everything spe

• Very fragile to nonspeech, background
- scene-analysis methods very attractive...
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• Data-driven: CASA as preprocessor
- problems with ‘holes’ (but: Okuno)
- doesn’t exploit knowledge of speech struc

• Missing data (Cooke &c, de Cheveigné)
- CASA cues distinguish present/absent
- use ‘aware’ classifier

• Prediction-driven: speech as component
- same ‘reconciliation’ of speech hypothese
- need to express ‘predictions’ in signal dom
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Example of speech & nonspeech
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• Problems:
- undoing classification & normalization
- finding a starting hypothesis
- granularity of integration
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CASA & Missing Data
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• CASA indicates source energy regions
- e.g. the time-frequency mask of [Brown 1

• ‘Missing data’ theory permits inference:
- skip dimensions of an uncorrelated Gaus
- perform full integral over unknown range
- ‘data imputation’ e.g. for deltas, cepstra

• ... or just weighting of information streams
- 4 band recognizer [Berthommier et al. 19

• RESPITE project

CASA

SNR

Signal
quality
labels

Feature
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division

Missing-data
classifier

multistre
recombi

Missing 

per-stream
quality labels

multiple information
streams

signal
per-stream 
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confidencesConfidence

estimation



The RESPITE CASA Toolkit
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(Barker, Ellis & Cooke 1999)

Sound Frequency
analysis

Modulation
analysis

Periodicity
tracking

Spatial
tracking

C CxF

CxFxP

Interaural
analysis CxFxA

Cross-
spectral
analysis

Integra
& obje
forma

Spectral
modeling

Execution/
hypothesis

control

Spectral partition 
hypotheses

Object location
hypotheses

Object periodic
hypotheses

Sinusoid
grouping

Sinusoid
tracking

Sinusoid
hyps

Sinusoid group
hypotheses

Spectral:
• Gammatone
• FFT
• general FIR/IIR
Envelope:
• IHC model
• HWR/FWR + LPF
• analytic envelope

• cross-correlation(FFT/sampled)
• interaural level difference

• simple cycle
• blackboard
• ASR-style
decoding

• modulation filtering
• stabilized image
• cancellation
• autocorrelation (FFT/delay&mult)

• summary & tracking
• channel voting

• t-f samples
• LPC

• eviden
  weight
• ‘re-ent• local maxima

• synchrony

Spectral envelope 
hypotheses

Onset hypotheses

Multidimensional continuous signal

Semi-discrete object hypotheses

C = number of input channels (monaural/binaural)
F = number of frequency channels (2-1024)
P = number of periodicity bins (25-500)
A = number of spatial (azimuth) bins (16-256)

CASA toolkit block diagram
dpwe@icsi.berkeley.edu
1999mar19
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.2 Applications: audio indexing

 

• Current approaches

 

- speech recognition (Informedia etc.)
- whole-sample statistics (Muscle Fish)

 

• What are the ‘objects’ in a soundtrack?

 

- i.e. the analog of words in text IR
- subjective definition 

 

→

 

 need auditory model

 

• Problems

 

- parts vs. wholes
- general vs. specific
- how to be ‘data-driven’
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Element-based audio indexing

 

• Segment-level features

• Using ‘generic sound elements’

 

- search for subset (but: masked features?)
- how to generalize?
- how to use segment-style features?

Segment
feature
analysis

Sound segment
database

Segment
feature
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Seach/
comparison

Results

Query example

Feature vectors

Segment
feature
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Continuous audio
archive

Segment
feature
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comparison

Results
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Object-based audio indexing

 

• Organizing elements into objects reveals 
higher-order properties

• How to form objects?

 

- heuristics (onset, harmonicity, continuity)
- machine learning:

associative recall, clustering, ‘data mining’

 

• Which higher-order properties?

 

- current wisdom (brightness, roughness...)
- psychoacoustics
- (semi) data-driven hierarchies

Segment
feature
analysis

Continuous audio
archive

Segment
feature
analysis

Seach/
comparison

Results

Query example

Element representations

Object
formation

Object
formation

Objects + properties(?)



 

CASA for TICSP  - Dan Ellis 1999sep01 - 38

 

Open issues in automatic indexing

 

• How to do CASA for element descriptions?

 

- PDCASA: ‘generic’ primitives
+ constraining hierarchy

- (semi?) automatic learning of object structure

 

• Classification

 

- connecting subjective & objective properties

 

→

 

 finding subjective invariants, prominence
- representation of sound-object ‘classes’
- matching incompletely-described objects

 

• Queries

 

- .. by example (which part?)
- .. by symbolic descriptions of classes?

 

• Related applications

 

- ‘structured audio encoder’
- semantic hearing aid / robot listener
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CASA: Open issues

 

• We’re still looking for the right perspective

 

- bottom up vs. top down
- physiology, psychology, levels of description

 

• What is the goal?

 

- simulating listeners on contrived tasks?
- solving practical engineering problems?
- laying the conceptual groundwork

 

• How to evaluate CASA work?

 

- evaluation is critical for a healthy field
- .. but people have to agree on a task
- subjectively defined 

 

→

 

 listening tests

 

• Looming on the horizon...

 

- learning
- attention

5
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Conclusions

 

• Auditory organization is required in real 
environments

• We don’t know how listeners do it!

 

- plenty of modeling interest

 

• Prediction-reconciliation can account for 
‘illusions’

 

- use ‘knowledge’ when signal is inadequate
- important in a wider range of circumstances?

 

• Speech & speech recognizers

 

- urgent application for CASA
- good source of signal knowledge?

 

• Automatic indexing implies ‘synthetic listener’

 

- need to solve a lot of modeling issues
- the next big thing?
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