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(@) Auditory Scene Analysis

“The organization of sound scenes
according to their inferred sources”

e Sounds rarely occur in isolation
- need to ‘separate’ for useful information

 Human audition is very effective
- it's a shock that modeling it is so hard
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How can we separate sources?

* In general, we can'’t
- mathematically, too few degrees of freedom
- sensor noise limits separation

» ‘Correct’ analysis is subjectively defined
- sources exhibit independence, continuity, ...
— ecological constraints enable organization

» Goal not complete separation (reconstruction)
but organization of available information
into useful structures

- telling us useful things about the outside world

« ‘The auditory system as a separation machine’
(Alain de Cheveigne)
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Psychology of ASA

» Extensive experimental research
- perception of simplified stimuli (sinusoids, noise)

* “Auditory Scene Analysis” [Bregman 1990]
- first: break mixture into small elements
- elements are grouped in to sources using cues
- sources have aggregate attributes

* Grouping ‘rules’ (Darwin, Carlyon, ...):
- common onset/offset/modulation,harmonicity,
spatial location, ...

Mo. of sources Pitch Yowel quality

[ onset map J Ewar‘mom’city mapﬂ [ position map]

Grouping Mechanisms - onset, harmonicity etc
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Frequency Analysis Darwin 1996)
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Thinking about information processing:
Marr’s levels-of-explanation

* Three distinct aspects to info. processing

Computational
Theory

Algorithm

Implementation

Why bother? - helps organize interpretation
- it's OK to consider levels
separately, one at a time
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Cues to grouping
« Common onset/offset/modulation (“fate”)

« Common periodicity (“pitch”)

Common onset Periodicity
: A i Nonlinear |
Computational coustic (Nonlinear) cyclic
consequences tend processes are
theory )
to be synchronized common
: Group elements that ? Place patterns
Algorithm , : :
start in a time range ? Autocorrelation
implementation Onset detector cells ? Delay-and-mult
P Synchronized osc’s? ? Modulation spect

« Spatial location (ITD, ILD, spectral cues)
» Sequential cues...

e Source-specific cues...
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Simple grouping

 E.g.isolated tones

freq i

»

time

Computational e common onset
theory e common period (harmonicity)
Algorithm  locate elements (tracks)

group by shared features

? exhaustive search

Implementation S
e evolution in time
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Complications for grouping:
1: Cues in conflict

* Mistuned harmonic (Moore, Darwin..):

freq 4

»time

- harmonic usually groups by onset & periodicity
- can alter frequency and/or onset time

- ‘degree of grouping’ from overall pitch match

 Gradual, various results:
pitch shift

<

\4 3% »mistuning

- heard as separate tone, still affects pitch
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Complications for grouping:
2: The effect of time

e Added harmonics:

freq A

»

time

- onset cue initially segregates;
periodicity eventually fuses

« The effect of time
- some cues take time to become apparent
- onset cue becomes increasingly distant...

 What is the impetus for fission?
- e.g. double vowels
- depends on what you expect .. ?
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@ Computational Auditory Scene Analysis

(CASA)

e Automatic sound organization?

convert an undifferentiated signal into a
description in terms of different sources

« Translate psych. rules into programs?

representations to reveal common onset,
harmonicity ...

* Motivations & Applications

It's a puzzle: new processing principles?
real-world interactive systems (speech, robots)
hearing prostheses (enhancement, description)
advanced processing (remixing)

multimedia indexing

CASA for TICSP - Dan Ellis 1999sep01 - 11



A simple model of grouping

 “Bregman at face value” (e.g. Brown 1992):

input signal discrete
mixture features i objects i
>| Frontend Object ) Grouping I Source
(maps) formation rules groups

freq =

- feature maps
periodicity cue
common-onset boost
resynthesis
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Grouping model results

* Able to extract voiced speech:
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« Periodicity is the primary cue

- how to handle aperiodic energy?
* Limitations

- resynthesis via filter-mask

- only periodic targets
- robustness of discrete objects
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Other CASA systems (1)

* Weintraub 1985
- separate male & female voices

- find periodicities in each frequency channel by
auto-coincidence

- number of voices is ‘hidden state’

o Cooke 1991
- ‘Synchrony strands’ auditory model

- Fusing resolved harmonics and AM formants
- led to [Brown 1992]
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Other CASA systems (2)

o Okuno, Nakatani &c (1994-)
- ‘tracers’ follow each harmonic + noise ‘agent’
- residue-driven: account for whole signal

« Klassner 1996
- search for a combination of templates
- high-level hypotheses permit front-end tuning
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- model for events perceived in dense scenes
- prediction-driven: observations - hypotheses
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Other signal-separation approaches

« HMM decomposition (RK Moore '86)
- recover combined source states directly

» Blind source separation (Bell & Sejnowski '94)

- find exact separation parameters by maximizing
statistic e.g. signal independence

* Neural models (Malsburg, Wang & Brown)
- avoid implausible Al methods (search, lists)
- oscillators substitute for iteration?
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@ Context, expectations & predictions

Perception is not direct
but a search for plausible hypotheses

 Data-driven...

input signal discrete
mixture features Obiect objects G ; Sour
»| Frontend jec rouping ource
- formation rules groups

vsS. Prediction-driven

. hypotheses :
Noise [

_ components [fiINg ]
Hypothesis ¥ ; Predict
management |\ Periodic |p & combine

~ 1 |components|||
prediction !

errors

predicted
features

Compare
& reconcile

input signal
mixture features
Front end

* Motivations
- detect non-tonal events (noise & clicks)
- support ‘restoration illusions’...
- hooks for high-level knowledge

+ ‘complete explanation’, multiple hypotheses,
resynthesis
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The effect of context

« Context can create an ‘expectation’:
l.e. a bias towards a particular interpretation

e e.g. Bregman’s “old-plus-new” principle:
A change in a signal will be interpreted as an
added source whenever possible
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- a different division of the same energy
depending on what preceded it
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Streaming

e Successive tone events form separate streams

freq.A
TRT: 60-150 ms
1kHz|-------- —a— : —
Af: !
+2 octave I
-— - '— ] ]

—
time

* Order, rhythm &c within , not between, streams

Computational Consistency of properties for
theory successive source events

» ‘expectation window’ for known

Algorithm streams (widens with time)

e competing time-frequency
affinity weights...
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Restoration & illusions

« Direct evidence may be masked or distorted
— make best guess using available information

« E.g. the ‘continuity illusion’
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- tones alternates with noise bursts

- noise is strong enough to mask tone
... SO listener discriminate presence

- continuous tone distinctly perceived
for gaps ~100s of ms

- Inference acts at low, preconscious level
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Speech restoration

» Speech provides very strong bases for
inference (coarticulation, grammar, semantics):
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Modeling top-down processing:
‘Prediction-driven’ CASA (PDCASA).

i hypotheses
1 Noise

) #’|components [\ )
Hypothesis V' See0eeee—eem=1 1 Predict
management [N\ — 9] & combine

Periodic  |[p

components||

prediction
errors

Front end Compare
& reconcile

predicted
 An approach as well as an implementation...

input

signal
mixture

features

features

» Key features:
‘complete explanation’ of all scene energy

multiple hypotheses
explanation hierarchy
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PDCASA for old-plus-new

* Incremental analysis
t1 t2 t3
Input signal

Time t1;
initial element
created

Time t2:

Additional

element required
I

Time t3;
Second element
finished
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PDCASA for the continuity illusion

* Subjects hear the tone as continuous
... If the noise is a plausible masker
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« Data-driven analysis gives just visible portions:
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* Prediction-driven can infer masking:

-
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PDCASA analysis of a complex scene
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Problems in PDCASA

o Subjective ground-truth in mixtures?
- listening tests collect ‘perceived events’:

Mames

hom |

Subject dpwe [ Example city / Part A

Marks

crash |

squeal

hormnz

_Play | Stop |

e Other problems
- error allocation
- source hierarchy

- rating hypotheses
- resynthesis
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Marrian analysis of PDCASA

« Marr invoked to separate high-level function
from low-level details

Computational Objects persist predictably
theory » Observations interact irreversibly

» Build hypotheses from generic
Algorithm elements
« Update by prediction-reconciliation

Implementation ?77?

“It is not enough to be able to describe the response of single
cells, nor predict the results of psychophysical experiments.
Nor is it enough even to write computer programs that perform
approximately in the desired way:

One has to do all these things at once, and also be very aware
of the computational theory...”
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@ .1 Applications: Speech recognition

« Conventional speech recognition:

Feature Phone HMM
signal extraction [, | classifier phone decoder words
features probabilities

- signal assumed entirely speech
- find valid segmentation using discrete labels
- class models from training data

e« Some problems:

- need to ignore lexically-irrelevant variation
(microphone, voice pitch etc.)

- compact feature space - everything speech-like

« Very fragile to nonspeech, background
- scene-analysis methods very attractive...
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CASA for speech recognition

« Data-driven: CASA as preprocessor
- problems with ‘holes’ (but: Okuno)
- doesn’'t exploit knowledge of speech structure

* Missing data (Cooke &c, de Cheveigné)
- CASA cues distinguish present/absent
- use ‘aware’ classifier

» Prediction-driven: speech as component
- same ‘reconciliation’ of speech hypotheses
- need to express ‘predictions’ in signal domain

Speech
components |
Hypothesis Noise I Predict
management components] & combine
Periodic [j
components

input
mixture
Front end Compare
& reconcile
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Example of speech & nonspeech
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g) ClickS from nonspeech analysis

h) Spurious elements from nonspeech analysis
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 Problems:
- undoing classification & normalization
finding a starting hypothesis
granularity of integration
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CASA & Missing Data

 CASA indicates source energy regions
- e.g. the time-frequency mask of [Brown 1992]

* ‘Missing data’ theory permits inference:
- skip dimensions of an uncorrelated Gaussian
- perform full integral over unknown range
- ‘data imputation’ e.g. for deltas, cepstra

e ... 0rjust weighting of information streams
- 4 band recognizer [Berthommier et al. 1998]

« RESPITE project

CASA . per-stream
S'gn_al quality labels
quality
labels
per-stream
SNR Confidence [l.confidences
estimation .
— Missing data/
Feature Missing-data | I'I: multistream _>d<
. stream classifier | recombination | Wore
signal o
division multiple information per-stream
streams class probabilites
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The RESPITE CASA Toolkit
(Barker, Ellis & Cooke 1999)

CASA toolkit block diagram .
dpwe@icsi.berkeley.edu |nte|'aU'.'a| Spatial
1999mar19 analysis tracking Object location
hypotheses
« cross-correlation(FFT/sampled)
Execution/ « interaural level difference
hypothesis _ -
control Modulation Periodicity
* simple cycle analysis tracking Object periodicity
* blackboard — ~ hypotheses
« ASR-style » modulation filtering » summary & tracking
decoding « stabilized image « channel voting

« cancellation
« autocorrelation (FFT/delay&mult)

Sound Frequency Spectral :
c analysis modeling @

Spectral envelope

: e hypotheses .
Spectral: tf samples Onset hypotheses —)y Integration
« Gammatone *LPC & object
P Cross- :> formation
« general FIR/IIR

Envelope: SpeCtr‘f"l :> « evidence

« [HC model analysis Spectral partition weighting

* HWR/FWR + LPF local maxima hypotheses * ‘re-entry’

« analytic envelope « synchrony

Sinusoid | \| Sinusoid
tracking Sinusoid grouping Sinusoid group
hyps hypotheses

Multidi ional ) ianal C = number of input channels (monaural/binaural)
— ultidimensional continuous signal F = number of frequency channels (2-1024)

I:> Semi-discrete object hypotheses P = number of periodicity bins (25-500)
A = number of spatial (azimuth) bins (16-256)
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@2 Applications: audio indexing

orn orn

door crash

[ car noise |

« Current approaches
- speech recognition (Informedia etc.)
- whole-sample statistics (Muscle Fish)

 What are the ‘objects’ in a soundtrack?
- i.e. the analog of words in text IR
- subjective definition —» need auditory model

 Problems
- parts vs. wholes
- general vs. specific
- how to be ‘data-driven’
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Element-based audio indexing

 Segment-level features

o
| Segment \_
' “L"l‘qu*’“f"w’ﬁ”f" . > fegture = N
. analysis \
|
Sound segment N Seach/
database Feature vectors comparison | R. .
esults
. Segment ’
g '[WW’('WW - > feature
il analysis
Query example
ing ' d el ’
o Usmg generic sound elements
Segment |
SR 111 A feature o S — [
-
‘ analysis el
Continuous audio . Seach/
archive Element representations comparison [
Results
Segment
} “”}?W\M‘"’Wﬂ“' n > feature = =
analysis | I—
Query example

- search for subset (but: masked features?)
- how to generalize?

- how to use segment-style features?
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Object-based audio indexing

« Organizing elements into objects reveals
higher-order properties

N !

analysis

|
Continuous audio Seach/

archive Element representations — comparison
— S aad Results
Segment Obi
i ect
o ‘H‘W}h"”\“””“””” " »- feature i > formjation =

“““ analysis —

m Segment I:I Object %

Query example ) Objects + properties

How to form objects?
- heuristics (onset, harmonicity, continuity)

- machine learning:
associative recall, clustering, ‘data mining

Which higher-order properties?
- current wisdom (brightness, roughness...)
- psychoacoustics

(semi) data-driven hierarchies
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Open issues in automatic indexing

« How to do CASA for element descriptions?
- PDCASA: ‘generic’ primitives
+ constraining hierarchy
- (semi?) automatic learning of object structure

« Classification
- connecting subjective & objective properties
- finding subjective invariants, prominence
- representation of sound-object ‘classes’
- matching incompletely-described objects

 Queries

- .. by example (which part?)

- .. by symboilic descriptions of classes?
* Related applications

- ‘structured audio encoder’
- semantic hearing aid / robot listener
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@ CASA: Open issues

 We're still looking for the right perspective
- bottom up vs. top down
- physiology, psychology, levels of description

« What is the goal?
- simulating listeners on contrived tasks?
- solving practical engineering problems?
- laying the conceptual groundwork

 How to evaluate CASA work?
- evaluation is critical for a healthy field
- .. but people have to agree on a task
- subjectively defined - listening tests

 Looming on the horizon...
- learning
- attention
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Conclusions

* Auditory organization is required in real
environments

« We don’'t know how listeners do it!
- plenty of modeling interest

» Prediction-reconciliation can account for
‘illusions’
- use ‘knowledge’ when signal is inadequate
- important in a wider range of circumstances?

 Speech & speech recognizers
- urgent application for CASA
- good source of signal knowledge?

« Automatic indexing implies ‘synthetic listener’
- need to solve a lot of modeling issues
- the next big thing?
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