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Introduction

Why speech features for locating nonspeech?

The Four Segment-Summary Statistics

Summary: This work uses the acoustic model from a speech recognizer to estimate the probability that the current signal corresponds to a phoneme.  
Statistics of these distributions are used to distinguish speech from nonspeech (such as music) with high accuracy.

• In a hybrid connectionist-HMM speech recognizer [MorgB95], a 
neural net estimates the posterior probability of a phone label given a 
window of acoustic features, p(qk|X) :

• This acoustic model net embodies a lot of information about which 
feature vectors correspond to speech sounds and phonemic 
boundaries (in this case, in a Broadcast News corpus [Cook99]).

• Plotting the posterior probabilities of every (context-independent) 
phone as a function of time reveals clear differences between speech 
and nonspeech such as music:

• We designed some simple statistics to apply to a segment’s worth of 
posterior probabilities to reveal if the segment was speech or not:

• Segmenting audio and classifying the segments is useful to avoid 
wasting effort attempting to recognize words in nonspeech 
[Williams99], as well as for indexing etc.

• The basic features we are using to represent the sound (PLP 
cepstra) have been specifically developed to represent phonetic 
variety in speech, not other audio (unlike [ScheirS97]).

• However, they are precisely tuned to the characteristics of speech, 
and consequently behave very differently when the signal is not.
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• Entropy is a measure of the randomness or 
unpredictability of a process.  Low entropy 
signals are regular; high entropy systems 
are unpredictable.

• Given a discrete probability distribution 
function, such as the posteriors from the 
acoustic model, the entropy is defined as:

H(x) = -Σ p(x)·log2(p(x))
This can be interpreted as the number of 
bits of information carried by each sample 
of the process.

• When the feature vectors are a good fit to 
the acoustic model, the model is confident 
which phone is present and entropy is low.

• Music fails to fit the model, posteriors are 
equivocal, and the average per-frame 
entropy  over the segment is high.

• The acoustic model was trained on a large 
Broadcast News corpus with one label (h#) 
used for all silence and nonspeech.  

• In examples of clean speech, segments 
labeled h# will usually be pauses and gaps 
between words. 

• In nonspeech, an arbitrary variety of sounds 
may fall into the nonspeech class.

• The average energy ratio of the signal in 
frames labeled h# to the rest of the signal:

Σn p(qn
h#)·en / Σn p(qn

h#)

Σn (1-p(qn
h#))·en / Σn (1-p(qn

h#))
(where p(qn

h#) is the probability of 
nonspeech at time n and en is the signal 
energy) is close to 0 for clean speech and 
around 1.0 for nonspeech.

• We can see from the posterior display in 
the introduction that speech segments 
have regular, sharp transitions in the 
posteriors, corresponding to phone 
transitions in the utterance.

• Music segments, by contrast, give 
posteriors that change less often and 
typically have slow transitions because the 
model cannot decide which phone is 
present.

• The squared first-order difference,
Σk (p(qk

n) - p(qk
n-1))2

(where p(qk
n) is the probability of phone qk 

at time step n) is large across sharp 
transitions, and thus when averaged 
across a segment, giving so-called 
dynamism, it is higher for speech than 
nonspeech.

• The measures were evaluated on the Scheirer/Slaney database of 15 
second segments recorded at random from FM radio stations.

• The database contains 80 examples of speech alone, 100 of music of 
various kinds, and 60 of speech over background music.

• We tested in two conditions: segment statistics calculated over the full 15 
second examples, and over 2.5 second segments formed by dividing 
each example into 6 equal pieces.  

• Longer segments have more stable statistics and are easier to classify.

• The data was divided in 4 equal ‘cuts’, with 3 used to set the decision-
model parameters (single-Gaussian models of the feature distributions 
for speech and nonspeech classes) to test the remaining quarter, 
repeated for each cut.  d' is a measure of class mean separation.

• Classification was via a simple likelihood ratio test between the two 
distribution models.

• ‘4 features’ classifications are made with all features;
‘3 features’ use just Entropy, Dynamism and h# energy ratio.

• Some nonspeech segments will, by 
chance, fall into one of the phone classes.

• When this happens, however, the balance 
between phones in the segment will 
typically be very different from a segment 
of real speech.

• We tried to capture this by defining a 
template of the per-label variance for 
speech segments, along with the variance 
of those samples over the training set.

• For an unknown example, the variance-
weighted (Mahalanobis) distance to this 
template is a measure of how speech-like 
the segment is.

• This was useful for the 15 second  
segments (see Results), but 2.5 second 
segments are too short to be balanced.
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    15 second segments       2.5 second segments
Feature Speech Music Error d' Speech Music Error d'
Entropy 75/80 73/80 7.5% 3.3 425/480 402/480 13.9% 1.9
Dynamism 80/80 80/80 0% 4.9 447/480 462/480 5.3% 3.0
h# energy 78/80 79/80 1.9% 6.0 434/480 458/480 7.1% 2.9
Var. tplt. 78/80 80/80 1.3% 4.3 151/480 444/480 38.2% 0.5
4 features 80/80 80/80 0% 9.6 472/480 472/480 1.7% 4.7
3 features 80/80 80/80 0% 7.9 476/480 472/480 1.3% 4.7


