Speech/music discrimination based on posterior probability features
Gethin Williams • Department of Computer Science, University of Sheffield, UK•g.williams@dcs.shef.ac.uk
Dan Ellis•International Computer Science Institute, Berkeley CA USA•dpwe@icsi.berkeley.edu
Summary: This work uses the acoustic model from a speech recognizer to estimate the probability that the current signal corresponds to a phoneme. Statistics of these distributions are used to distinguish speech from nonspeech (such as music) with high accuracy

Introduction

In hybrid connectionist-HMM speech recognizer [MorgB95], a neural net estimates the posterior probabiy of a window of acoustic features, $p\left(q_{k} X\right)$

This acoustic model net embodies a lot of information about which feature vectors correspond to speech sounds and phonemic boundaries (in this case, in a B Boadcast News corpus (Cook99)).
Plotting the posterior probabilities of every (context-independent) phone as a function of time reveals clear differences between speech
and nonspeech such as music: and nonspeech such as music
Spectrogram

Posteriors

We designed some simple statistics to anply to a segment's worth of posterior probabilities to reveal if the segment was speech or not:
 Segmenting audio and classifying the segments is useful to avoid wasting effort attempting to recognize words in nonspeech
[Williams99], as well as for indexing etc.

Why speech features for locating nonspeech? The basic features we are using to represent the sound (PLP cepstra) have been specifically developed to represent
variety in speech, not other audio (unlike [ScheirS97]). variety in speech, not other audio (unlike [ScheirS97]). However, they are precisely tuned to the characteristics of speech,

Results

The measures were evaluated on the Scheirer/Slaney database of 15 second segments recorded at random from FM radio stations. The database contains 80 examples of speech alone, 100 of music of
various kinds, and 60 of speech over background music. various kinds, and 60 of speech over background music. We tested in two conditions: segment statistics calculated over the full
second examples, and over 2.5 second segments formed by dividing each example into 6 equal pieces.
Longer segments have more stable statistics and are easier to classify. The data was divided in 4 equal 'cuts', with 3 used to set the decisionmodel parameters (single-Gaussian models of the feature distributions for speech and nonspeech classes) to test the remaining quarte
repeated for each cut. d' is a measure of class mean separation. epeated for each cul. is a mare lin distribution models.

Feature	15 second segments				2.5 second segments			
	Speech	Music	Error		Speech	Music	Error	
Entropy	75/80	73/80	7.5\%	3.3	425/480	402/480	13.9\%	1.9
Dynamism	80/80	80/80	0\%	4.9	447/480	462/480	5.3\%	3.0
h\# energy	78/80	79/80	1.9\%	6.0	434/480	458/480	7.1\%	2.9
Var. tplt.	78/80	80/80	1.3\%	4.3	151/480	444/480	38.2\%	0.5
4 features	80/80	80/80	0\%	9.6	472/480	472/480	1.7\%	4.7
3 features	80/80	80/80	0\%	7.9	476/480	472/480	1.3\%	4.7

' 3 features' use just Entropy, Dynamism and h\# energy ratio.

Acknowledgments \& References
This work was tunded by the European Union through the SPRACH (20077) and THISL
(23495) proiects. We are also vey (23495) projects. We are also very grateful to Eric Scheirer. Malcolm Slaney and Interval
Research Corporation tor making avaiable to us their database of speech/music examples. Thanks to Gary Cook and Tony Robinson of Cambridge University for the RNN acoustic model used in this project.
[MorgB95] N. Morgan and H. Buurlard, "Continuous Speech Recognition: An
Introduction to the Hybrid HMM/Connectionist Approach," Signal P
Magazine, pp 25-42, May 1995.
G. Cook, J. Christie, D. Flis E.
G. Cook, J. Christie, D. Ellis, E. Fossler-Lussier, Y. Gotoh, B. Kingsbury, N.
Morgan, S . Renals, A . Robinson and G. Williams. "The SPRACH System
the Transcription of Broarcast News, Proo. DARPA Broadcast News
Transcription and Understanding Workshoo. Herndon VA, Feb 1999
Transcription and U Udderstanding Workshop, Herndon VA, Feb 1999.
[ScheirS97] E. Scheirer and M. Slaney, Construction and evaluation of a robust

