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Abstract

The SFRA: A Fixed Frequency FPGA Architecture

by

Nicholas Croyle Weaver

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor John Wawrzynek, Chair

Field Programmable Gate Arrays (FPGAs) are synchronous digital devices used to realize digital

designs on a programmable fabric. Conventional FPGAs use design dependent clocking, so the

resulting clock frequency is dependent on the user design and the mapping process.

An alternative approach, a Fixed-Frequency FPGA, has an intrinsic clock rate at which

all designs will operate after automatic or manual modification. Fixed-Frequency FPGAs offer

significant advantages in computational throughput, throughput per unit area, and ease of integration

as a computational coprocessor in a system on a chip. Previous Fixed-Frequency FPGAs either

suffered from restrictive interconnects, application restrictions, or issues arising from the need for

new toolflows.

This thesis proposes a new interconnect topology, a “Corner Turn” network, which main-

tains the placement properties and upstream toolflows of a conventional FPGA while allowing effi-

cient, pipelined, fixed frequency operation. Global routing for this topology uses efficient, polyno-

mial time heuristics and complete searches. Detailed routing uses channel-independent packing.

C-slow retiming, a process of increasing the throughput by interleaving independent streams

of execution, is used to automatically modify designs so they operate at the array’s intrinsic clock

frequency. An additional C-slowing tool improves designs targeting conventional FPGAs to isolate

the benefits of this transformation from those arising from fixed frequency operation. This seman-

tic transformation can even be applied to a microprocessor, automatically creating an interleaved

multithreaded architecture.

Since the Corner Turn topology maintains conventional placement properties, this thesis

defines a Fixed-Frequency FPGA architecture which is placement and tool compatible with Xil-
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inx Virtex FPGAs. By defining the architecture, estimating the area and performance cost, and

providing routing and retiming tools, this thesis directly compares the costs and benefits of a Fixed-

Frequency FPGA with a commercial FPGA.

Professor John Wawrzynek
Dissertation Committee Chair
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Chapter 1

Introduction

As VLSI fabrication technologies continue to advance and the number of available tran-

sistors increases, the research community continues to devote considerable effort to build scalable,

high performance computational fabrics. Such architectures offer the promise of performance which

scales linearly with silicon area without increasing the implementation complexity.

One particular class of architectures, commonly described as Field Programmable Gate

Arrays (FPGAs) [82, 4] or Reconfigurable Arrays, are of particular interest because of their scala-

bility, performance, potential for defect tolerance, and ability to map arbitrary digital designs.

Conventional FPGA’s utilize design-dependent clocking, thus the array’s clock frequency

is not an intrinsic constant but depends on the design or program being run. An alternate approach is

a fixed-frequencyFPGA, where the clock frequency is a property of the computational array rather

than the particular design currently running on the FPGA.

This thesis introduces a new FPGA architecture, the SFRA1, and the associated CAD tools

necessary to map designs to this new architecture. The SFRA runs at a significantly higher clock

rate than a conventional FPGA, and can therefore run designs at a significantly higherthroughput.

Unlike previous fixed-frequency FPGAs, the SFRA is designed to map arbitrary digital

designs and is directly compatible with a commercial FPGA, the Xilinx Virtex. Thus the SFRA can

utilize the Xilinx synthesis and placement tools and can be directly compared against a success-

ful commercial FPGA. Unlike other FPGAs, the SFRA’s interconnect enables much faster routing

algorithms, capable of routing designs in seconds rather than minutes.

1“SFRA” means either “Synchronous and Flexible Reconfigurable Array” (based on its fixed-frequency routing ar-
chitecture) or “San Francisco Reconfigurable Array” (based on the numerous “No Left Turn” signs in the city of San
Francisco).
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Figure 1.1: (A) A simplified FPGA Logic Element (LE) consisting of two 4-input lookup tables (4-
LUTs), dedicated arithmetic logic, and 2 flip-flops and (B) The classical components of a Manhattan
FPGA: the LE (logic element) performs the computation, the C-box (connection box) connects the
LE to the interconnect, and the S-box (switch box) provides for connections within the interconnect.

To support the fine-degree of pipelining present in the SFRA, the SFRA’s toolflow in-

cludesC-slow retiming. This transformation automatically repipelines SFRA designs to run at the

array’s intrinsic clock frequency. The tool can also be used to improve designs targeting the Xilinx

Virtex, automatically doubling their throughput in many cases.

1.1 What are FPGAs?

An FPGA, or Field Programmable Gate Array, generally consists of a small, replicated

logic element (LE) embedded in a circuit switched interconnect. These logic elements usually

consist of a group of small lookup tables (LUTs), a small amount of fixed carry-logic, and flip-

flops. Figure 1.1(A) shows a simplified LE containing two 4-LUTs, two bits of carry-logic, and two

flip-flops. This LE can be used to implement a two bit adder or two independent boolean functions

with four inputs each.

These LEs are then embedded in a larger network, as illustrated in Figure 1.1(B). The

LE is connected to connection boxes (C-boxes) which route signals onto a general-purpose, circuit

switched interconnect. Signals on the general interconnect are routed by switch boxes (S-boxes).

By configuring the LEs and interconnect, an FPGA can implement arbitrary synchronous digital

designs.

An FPGA architecture does not just consist of an FPGA design, but an associated suite of

CAD tools (also known as a toolflow) which accepts user designs and maps them to the target FPGA.
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Figure 1.2: A typical FPGA CAD flow. User designs are entered either as schematics or in a high
level description language (HDL). These designs are firstsynthesizedto create a netlist, which is
thenmapped onto the FPGA logic elements. These elements are thenplaced on the array, the
connections between the elements arerouted, and the final design undergoestiming analysis

.

This process, illustrated in Figure 1.2, first begins with a user-specified design. These designs are

usually constructed in a high-level description language (HDL) such as VHDL or Verilog, but may

sometimes be expressed as a series of schematics.

The initial design is firstsynthesizedto the target FPGA. This synthesis converts any

HDL components into a netlist; a series of digital elements (such as gates, memories, and flip-flops)

which represents a translation of the initial design. Once the netlist is created, the components of

the netlist aremapped to the FPGA’s logic elements. The mapping process groups the elements

of the netlist into the FPGA’s LEs. Larger circuits are broken up to fit in the lookup-tables, while

related logic is packed together into the same LE.

After mapping, the design isplaced. During placement, each mapped LE is assigned a

unique location on the FPGA. This process usually utilizes simulated annealing or other approxi-

mation techniques, as determining an optimum placement is NP-hard. After placement, the design

is routed. During routing, all signals are assigned to appropriate channels and switches. Finally, the

design is passed throughtiming analysis. It is only after timing analysis that the final design’s clock

frequency is known. The entire toolflow usually requires minutes or hours to completely process a

design.
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1.2 Why FPGAs as Computational Devices?

Although FPGAs are largely utilized as ASIC (Application Specific Integrated Circuit)

replacements, considerable academic and commercial interest has focused on FPGAs as computa-

tional devices as FPGAs are both scalable and can offer high performance on numerous applications.

FPGAs, by consisting of a replicated tile, are an inately scalable architecture. Thus a

single architecture usually defines an entirefamily of FPGA devices which differ in the number

of logic elements. The capability of an FPGA within a family effectively scales with silicon area.

This is vastly different from microprocessors where adding larger silicon resources usually requires

structural changes and offers relatively minor performance improvements to compensate for the

additional cost.

FPGAs also demonstrate an impressive level of performance on a wide variety of tasks,

often meeting or exceeding the performance of vastly more expensive microprocessors. This is

largely derived from how an application is mapped to an FPGA when compared to a microprocessor.

A microprocessor, being a (mostly) sequential device, requires transforming the application into a

series of discrete, ordered steps, even when the steps are independant.

Yet applications mapped to FPGAs require the computation to be distributed spatially,

with each FPGA element operating on a different part of the computation. This structure gives

rise to two forms of parallelism,spatial parallelism andpipelineparallelism, which can easily be

exploited by FPGA designs. Spatial parallelism is exploited when the different LEs in an FPGA

perform different pieces of the final calculation. As an example, if a computation needs to compute

A + B + C + D, A + B can be executed on one set of LEs,C + D on a second set of LEs, with the

results combined on a third set. Thus, by exploiting spatial parallelism, the initial two adds occur in

parallel.

Likewise, since most FPGA LEs include flip-flops, this can exploit pipeline parallelism.

Again, in the example above, if a pipeline stage is inserted after the initial adds,A + B andC + D

can be calculated on the first clock cycle, with(A + B) + (C + D) calculated on the second cycle.

During the second cycle, a new set of inputs can be calculated. Thus a pipelined design can produce

a result every clock cycle, even when each result requires two cycles to compute.

One other aspect which gives FPGAs an efficiency advantage over conventional micro-

processors is a lack of instruction issue logic needed to exploit this parallelism. Conventional micro-

processors, especially out-of-order superscalar designs, need an immense amount of control logic

to exploit a very small amount of paralellism (often on the order of only 2 to 6 instructions per clock
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cycle). Yet FPGA designs generally require no instruction issue logic, and the control of the design

is built into the FPGA datapath.

The combination of pipeline and spatial parallelism, combined with simplified control

logic, often results in designs which are either significantly faster or cheaper than those targeting a

conventional processor. As an example, Appendix A details an AES [50] implementation capable

of encrypting data at 1.3 Gbps when targeting a conventional FPGA which costs less than $10.

Although AES was designed to run well on microprocessors, only a hand-coded assembly-language

implementation running on a 3 GHz Pentium 4 [45] can match the performance of a low-cost FPGA.

There are two major limitations which FPGAs face when used as computation devices: the

slow toolflow times and design-dependent clocking. Toolflow times represent an obvious problem.

With even small designs requiring minutes to pass through the toolflow and larger designs requiring

hours, the current tool performance represents a significant complaint of users. Even a smaller

design, such as the AES core in Appendix A, requires several minutes to process while compiling a

C version takes only seconds when targeting a conventional microprocessor.

The other concern is the design-dependent clocking. With conventional FPGAs, the final

design’s clock rate can not be accurately predicted until the toolflow is complete. This has several

negative features which all affect an FPGA’s suitability as a computational device, including difficult

interfacing, weak performance guarantees, and sensitivity to design and toolflow quality. A fixed-

frequency FPGA is designed to address these issues, by guaranteeing that all designs will operate at

the array’s intrinsic clock frequency.

1.3 Why Fixed-Frequency FPGAs?

A fixed-frequency FPGA appears to be simply a minor semantic change when compared

to a conventional FPGA. Instead of accepting a user design (with a fixed series of pipeline stages)

and then discovering the final clock rate after mapping is complete, the design is mapped to the

target array which has a guaranteed clock frequency. In order to meet the fixed-frequency FPGA’s

constraints, the design is either manually or automatically modified to include additional pipeline

stages. This seemingly minor change offers several advantages.

Easier Interfacing: Since a fixed-frequency FPGA runs at a given clock regardless of

the design, it is substantially easier to interface a fixed-frequency array in a larger computational

system. While a conventional FPGA will require an asynchronous interface and a clock generator,

a fixed-frequency array can be designed to operate synchronously with a microprocessor or other
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system logic.

Stronger Performance Guarantees: If the design’s performance is limited by the possi-

ble throughput rather than latency, a fixed-frequency FPGA offers superior performance guarantees

as all mapped designs will run at the target rate and can therefore achieve the desired throughput.

Less Sensitivity to Tool and Design Quality: A side-effect of the performance guarantee

is that a fixed-frequency FPGA is less affected by degradations in design and tool quality. On

a conventional FPGA, if the design or toolflow is less than optimal, this results in a lower clock

frequency which impacts both latency and throughput. On a fixed-frequency FPGA, a somewhat

inferior design or tool result will only affect the latency, not the throughput.2

Pipelined Interconnect: Interconnect delays often dominate an FPGA design’s clock

cycle. Although conventional FPGAs could be developed with pipelined interconnect, the timing

model can’t effectively utilize this additional pipelining. Since a fixed-frequency FPGA changes a

design’s pipelining during the mapping process, a fixed-frequency FPGA can utilize pipelined inter-

connect to operate at a substantially higher clock frequency. Thus, by pipelining the interconnect, a

fixed-frequency FPGA can exploit significantly more pipeline parallelism.

Although a seemingly minor change, the fixed-frequency timing model requires substan-

tial architectural and tool changes to the resulting array. The fixed-frequency FPGA must include

pipeline stages on the switches and interconnect to meet the architecture’s fixed timing requirement.

Simply adding pipelined switchpoints would introduce an intolerable number of additional registers.

Likewise, the fixed-frequency FPGA’s tools or designers must somehow account for these

additional pipeline delays. Yet a fixed-frequency FPGA architecture still needs solutions for syn-

thesis, placement, and routing problems.

Previous fixed-frequency arrays have therefore suffered from substantial limitations re-

sulting from these changes. Some arrays (such as Garp [30]) have not included switched intercon-

nect, while others (such as Piperench [57]) can only map feed-forward pipelines. Most have not

included tools to modify arbitrary designs.

Even the most general fixed-frequency FPGA, the HSRA [74], required new toolflows as

both placement and routing were difficult new problems. The routing problem, although believed

to be easier, never received a more satisfying solution than Pathfinder [47], a conventional FPGA

router. The HSRA’s placement problem was equally difficult for datapaths. Finally, the HSRA’s

2This toolflow sensitivity can be quite severe on conventional FPGAs. As an example, if the AES design in Ap-
pendix A is routed with normal instead of maximum effort when targeting the Virtex, the clock rate is reduced by over
5%. Likewise, using automatic placement instead of manual placement (detailed in Chapter 12) degrades both throughput
and latency by 8% on the high-performance version, degradations which do not occur when targeting the SFRA.
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tool pathway did not include a conventional syntheses and mapping flow which could be used on

significant designs.

No previous fixed-frequency FPGA has been compared directly with conventional, com-

mercial FPGAs. Instead, either self-comparisons or comparisons with processor performance was

used. Thus it was never possible to provide apples-to-apples evaluations between a fixed and a

conventional FPGA architecture.

1.4 Why the SFRA?

The SFRA, a new fixed-frequency FPGA architecture, is designed to address many of

the above issues by utilizing two significant components: a new interconnect topology which is

both pipelineable and quick to route, and fast routing and retiming tools which includesC-slow

retiming to map arbitrary designs. Unlike previous fixed-frequency FPGAs, the SFRA is largely

design, synthesis, and placement compatible with the conventional Xilinx Virtex, facilitating direct

comparisons.

The SFRA demonstrates that fixed-frequency FPGAs can possess a general, pipelined

interconnect while maintaining a large degree of toolflow compatibility, and that it is possible to

build fixed-frequency architectures which support much faster routing and retiming operations than

is possible on a conventional FPGA. Unlike previous architectures, the SFRA was designed to be

directly compared with a successful, commercial FPGA.

1.4.1 Why a Corner-Turn Interconnect?

Previous fixed-frequency interconnects either used highly restricted interconnect topolo-

gies or introduced new placement problems. Yet simply taking a conventional FPGA and pipelining

the switchpoints would prove intractable, as there are hundreds of possible paths through a typical

FPGA S-box, the logic unit which routes connections within the interconnect. Additionally, simply

registering a conventional FPGA’s switch points does not improve the routing tools.

Ideally, an FPGA’s S-boxes would be full crossbars, as shown in Figure 1.3(A), as these

structures are easy to route. Unfortunately the number of switches requires is cost-prohibitive.

Traditionally, FPGAs have utilized physically-depopulated crossbars, shown in Figure 1.3(B). Such

depopulated crossbars will usually (but not always) remain the ability to route all signals through

the crossbar while limiting the connectivity. Unfortunately, conventional physically-depopulated
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Figure 1.3: (A) A crossbar switch-box. (B) A physically-depopulated crossbar. (C) A capacity-
depopulated crossbar.
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Figure 1.4: A corner-turn FPGA interconnect. The C-boxes are implemented as full crossbars,
while the S-boxes use capacity-depopulated crossbars to create corner turns, marked as T-boxes on
this illustration.

crossbars are difficult to route, while registering the switchpoints would prove excessively costly.

An alternate approach, illustrated in Figure 1.3(C), is a capacity-depopulated crossbar.

Such crossbars maintain the any-to-any connectivity of a full crossbar, but limit the number of

signals (the capacity) which can be connected.

Using capacity-depopulated crossbars, it is possible to create an alternate FPGA inter-

connect, illustrated in Figure 1.4. In a “corner-turn” network, the C-boxes remain as full cross-

bars. Additionally, all inputs and outputs to a logic element are connected to both the horizontal

and vertical channels through the C-boxes.3 Instead of using conventional S-boxes, the corner-

turn interconnect uses capacity-depopulated crossbars. The capacity-depopulated switches give the

“corner-turn” network its name, as only a limited number of signals can be routed between channels

at these switchpoints. This topology offers several advantages.

Manhattan Placement: Although the placement cost-functions should be changed, a

3Many FPGAs will connect some I/Os to only the horizontal or vertical channels.
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corner-turn array utilizes the same placement models, tools, and techniques of a conventional FPGA.

Thus a corner-turn network, which uses a compatible logic cell, can utilize conventional FPGA

synthesis, mapping, and placement tools.

Fast Routing: Unlike a conventional FPGA interconnect, a corner-turn interconnect sup-

ports fast polynomial time routing algorithms for both global and detail routing. These algorithms

areO(n2) in the worst case, with most operations requiring onlyO(n lg n) time. Reasonably large

designs can be routed in seconds.

Pipelineable Switchpoints: Since a corner-turn network will only route a few signals

through each switchpoint, it is possible to efficiently pipeline the switchpoints with only a single

register in each direction.

Fine-grained Defect Tolerance: With some modifications of the interconnect structure,

it is possible to route around a wide variety of stuck-on and stuck-off faults in the interconnect.

Coarse-grained FPGAs: The significant area cost of a corner-turn topology, the fully

populated C-boxes, is substantially reduced for coarser-grained interconnects. Thus reconfigurable

arrays which use 8, 16, or 32 bit words can use a corner-turn network with a much lower area

penalty.

The SFRA uses this interconnect style, with regular pipelining and pipelined switches,

combined with a Xilinx Virtex derived logic element. Since the logic elements are largely compati-

ble, the Virtex synthesis, mapping, and placement tools are used to target both FPGA architectures.

Likewise, custom retiming tools created for this thesis can target both the Virtex and the SFRA.

Unlike the Virtex, the SFRA’s pipelined, fixed-frequency interconnect allows the SFRA to operate

at a much higher clock frequency, while the SFRA router is an order-of-magnitude faster than the

Virtex router.

1.4.2 WhyC-slow Retiming?

Simply adding pipelined interconnect is only half the problem, as designs must be auto-

matically modified to accommodate the additional pipeline stages. AlthoughC-slowing and retim-

ing are a well-known optimization, first proposed by Leiserson et al [41], it has not been completely

explored.

This transformation, which can be applied to arbitrary synchronous circuits, enables fine

pipelining even in the presence of feedback loops. It is based on replacing every register with a

series ofC registers and then moving the resulting registers through the design to balance delays.
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Figure 1.5: The complete toolflow created for this research. HDL designs are synthesized with
Synplify, then mapped and placed using the Xilinx placement tool. At this point, one of three flows
can take place. Either the default Xilinx flow can be invoked to route and perform a timing analysis.
Or the designs can be passed through the researchC-slow tool (described in Chapter 13) to improve
the Xilinx designs. The final option is toC-slow and route for the SFRA. The tools in bold were
created for this thesis.

The resulting design now requires a factor ofC more clock cycles to complete each calculation, but

can executeC independent calculations in a parallel, round-robin fashion.

This process is generic, and can even be automatically or manually applied to such so-

phisticated structures as a microprocessor core. When applied to a processor core, a multithreaded

architecture, capable of higher throughput operation, is automatically created.

Since this process inserts pipeline stages throughout a design,C-slow retiming can meet a

fixed-frequency FPGA’s architectural constraints by determining the minimumC-factor necessary

to insure that all connections are properly pipelined.C-slowing can also be applied to designs

targeting a conventional FPGA. When applied to the benchmarks in this thesis, the automaticC-

slow tool can effectively double the throughput of Xilinx designs.

1.4.3 The Complete Research Toolflow

Figure 1.5 illustrates the complete research flow created for this project, which enables

the direct comparisons between the SFRA and the Xilinx Virtex. It is this research toolflow, with
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components created specifically for this thesis, which enables the SFRA architecture to map designs.

Designs are first created using schematic capture or synthesis. Schematic capture was

used for the three benchmarks created specifically for this work, while synthesis was used for the

Leon SPARC benchmark. The synthesized design required a minor amount of post-synthesis editing

to accommodate minor usage restrictions needed forC-slowing.

The resulting design is first mapped, using the Xilinx mapper, and then placed on the

target FPGA. After placement, three options are possible: Unoptimized Xilinx,C-slowed Xilinx,

and the SFRA. The unoptimized Xilinx simply passes the design on to the Xilinx routing and timing

analysis tools, providing a baseline case for the Xilinx designs.

An alternate flow passes the Xilinx design through a customC-slow retiming tool, before

being passed back to the Xilinx routing and timing analysis tools. This tool, described in Chapter 13,

enables the automatic optimization of Xilinx designs throughC-slowing and retiming, and can

effectively double the throughput on the benchmarks. This flow provides an enhanced case for

Xilinx designs, allowing the effects ofC-slowing to be separated from the benefits of pipelined

interconnect.

The final toolflow accepts the Xilinx designs as input to the SFRA flow. This flow firstC-

slow retimes the design, to serve as a guide to the routing process. Then the SFRA design is routed,

before a finalC-slow retiming pass creates the final implementation. Combined with an area and

timing model, the SFRA architecture is directly comparable with both optimized and unoptimized

Xilinx toolflows. Where the SFRA tools differ from the Xilinx tools, the SFRA tools run an order

of magnitude faster than their Xilinx counterparts.

1.4.4 This Work’s Contributions

The major contributions of this work are:

• A new interconnect topology, the corner-turn interconnect, which supports much faster

routing algorithms and pipelined interconnect while maintaining syntheses and placement tool com-

patibility with previous FPGAs.

• The SFRA, a fixed-frequency FPGA architecture based on the corner-turn interconnect

topology. The SFRA is largely placement and design compatible with the commercial Xilinx Virtex

FPGA, while supporting fixed-frequency operation and substantially faster routing and retiming

tools.

• A more detailed understanding of theC-slow transformation and its general applicabil-
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ity, including the ability toC-slow a microprocessor core to automatically produce a multithreaded

processor.

• A hand-mapped AES implementation which is one of the best cost/performance designs

available.

• An automatic tool which canC-slow designs targeting the Xilinx Virtex FPGA as well

as the SFRA. In many cases, throughput on Xilinx designs can be automatically doubled.

• A complete toolflow for the SFRA, including routing andC-slow retiming, and an

interface to the Xilinx tools for syntheses and placement. For the components where the SFRA

toolflow differs from the Xilinx toolflow, the SFRA toolflow is an order of magnitude faster.

• A direct comparison of the SFRA, a fixed-frequency architecture, with a successful

commercial FPGA, the Xilinx Virtex, using four application-based benchmarks.

1.5 Overview of Thesis

This thesis begins with a survey of previous FPGAs, both conventional and fixed-frequency,

and their strengths and weaknesses (Chapter 2). Then it provides an overview of the four application-

based benchmarks used for various experiments (Chapter 3). Three of the benchmarks were hand-

created specifically for this work, while the fourth was an acquired, synthesized design.

The first major part, Part I, details the development of the SFRA architecture and its major

motivations. This begins with an introduction to the corner-turn topology (Chapter 4). Using this

topology, the SFRA architecture is defined (Chapter 5). Then the notion of retiming registers is

introduced (Chapter 6) and the critical circuits for the interconnect are constructed (Chapter 7).

Following the architecture definition, the routing algorithms are described (Chapter 8).

These routing algorithms use heuristics which areO(n2) in the worst case, enabling routing to be

performed substantially faster when compared with a conventional FPGA. Experiments are con-

ducted with the routing tool on the four benchmarks, to determine an optimal number of turns and

other interconnect features. After routing, other implications of the corner turn topology are dis-

cussed, including defect tolerance and applicability to wider bitwidths (Chapter 9).

The thesis continues in Part II with an evaluation of retiming andC-slow retiming, which

are necessary for a fixed-frequency array to meet the target clock cycle. This part begins with a dis-

cussion ofC-slowing and retiming, first reviewing the transformation (Chapter 10), then analyzing

how it can be either automatically or manually applied to a microprocessor core to create a higher
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performance, multithreaded architecture (Chapter 11). Given this framework, the first study evalu-

ates the effects of hand-C-slowing on the three benchmarks developed for this thesis (Chapter 12).

This study also evaluates the placement sensitivity of the Xilinx, showing how tool quality degrades

both throughput and latency.

The automatic tool toC-slow Xilinx designs is discussed and evaluated (Chapter 13).

This tool, which shares the same framework with the rest of the SFRA toolflow, can automatically

boost designs targeting the Xilinx Virtex family of FPGAs. In many cases, throughput can be

automatically doubled. This tool was evaluated on the four computational benchmarks, and the

results were also compared with the handC-slowing employed on the three hand-mapped designs.

The last part of the thesis, Part III, offers comparisons, reflections, and conclusions. Given

the SFRA architecture and a complete toolflow includingC-slow retiming and routing, the thesis di-

rectly compares the SFRA with the Xilinx Virtex (Chapter 14). The SFRA routing algorithms are an

order of magnitude faster, as are the SFRA retiming algorithms. Likewise, because of its pipelined,

fixed-frequency nature, designs would run at significantly higher throughput on the SFRA. This

thesis then concludes with an analysis of the tradeoffs between latency and throughput, and how

this is affected by FPGA architectures (Chapter 15), an examination of remaining open questions

(Chapter 16), and a final conclusions (Chapter 17).

Two appendixes appear in this thesis. The first, Appendix A provides a detailed discussion

of the AES implementation created for use as a benchmark. This design represents one of the

best cost/performance AES designs reported, and demonstrates clearly the design effort required

for high performance on current FPGAs. The second, Appendix B, surveys other multithreaded

architectures, the potential interference effects, and discusses how the architecture produced by

C-slowing relates to previous multithreaded designs.
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Chapter 2

Related Work

2.1 FPGAs

FPGAs, Field Programmable Gate Arrays, are important computational devices. Most

FPGAs consist of a reasonably simple logic element consisting of a few lookup tables or an ALU,

with associated registers, embedded in a general purpose circuit-switched interconnect.

Since FPGAs consist of replicated computational elements, they are considerably easier

to design and fabricate when compared with other devices.1 As a result, the major commercial

FPGA vendors, Xilinx and Altera, have become process leaders [85], even when both are “fabless”

companies with no fabrication facilities of their own.

This replicated nature also leads to the impressive performance FPGAs display on a va-

riety of tasks. Each logic cell can be configured to perform a different part of the same operation

which leads to an immense amount of “spatial parallelism”, as the entire array is utilized to com-

pute a result in parallel. Additionally, since these cells include registers, the design can be pipelined,

enabling a great degree of “pipeline parallelism”.

Furthermore, since FPGAs are replicated structures, the available computation seems to

grows linearly with area. This doesn’t happen in practice, as Rent’s Rule [39] observes that larger

designs require comparatively more interconnect. Thus, more recent (and therefore larger) FPGA

families tend to utilize richer interconnect fabrics.

Yet, although silicon area is increasing, so are interconnect layers, an observation FPGA

designers have utilized. There have been proposed architectures [55] which require more metal

layers in order to scale linearly with area while matching a rents-rule growth pattern. Likewise,

1This also provides easy to test structures for process characterization.
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Figure 2.1: A Virtex CLB, and the details of a single CLB-slice, from the Xilinx Datasheet [82].

commercial FPGA vendors have utilized increasing interconnect layers to meet these interconnect

requirements without substantially inflating silicon area. Thus the general observation of 1 Mλ2

per 4-LUT (with associated register and interconnect) has remained relatively consistent [22], as

the Xilinx Virtex-E series (a modern architecture with a much richer interconnect) is still only 1.25

Mλ2 per 4-LUT.2

2.1.1 Unpipelined interconnect, variable frequency

Xilinx and Altera are the primary commercial designers of FPGAs, both designing con-

ventional FPGAs without pipelined interconnect. In all these FPGAs, a design is initially mapped,

placed, and routed to the target architecture. Xilinx utilizes a Manhattan-style interconnect, while

Altera uses a cluster-based interconnect.3 Then a static timing analysis is conducted to determine

the maximum operating frequency of the resulting design.

The Xilinx Virtex series [82] is a typical example of a modern FPGA which uses a Man-

hattan style interconnect. It consists of a tiled array of logic blocks, or CLBs (Combinational Logic

Blocks). Each CLB (Figure 2.1) contains two CLB-slices, with each slice containing two 4 input

lookup tables (4-LUTs), dedicated carry logic, specialized muxes, and two registers. This structure

has been used for four FPGA families: the Virtex, the Virtex E, the Spartan II, and the Spartan IIE.

Each 4-LUT can implement an arbitrary logic function, or can act as a single port 16x1b

synchronous SRAM or a 1-16 clock, programmable delay shift-register. This shift register mode,

SRL16, is useful not only for constructing delay lines but also for specialization. Since the shift

input is separate from the address lines, a new set of LUT contents can be shifted into the LUT.

2This figure of 1.25 Mλ2 per 4-lut was calculated by directly measuring the die of a delidded Virtex-E 2000.
3Although initially different, these interconnect styles are beginning to converge.
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Additionally, the two LUTs in a slice can be combined to form a 32x1b RAM, a dual ported 16x1b

RAM, a single 5-LUT, any nine input function which can be composed with two 4-LUTs and a

mux, or two bits of an adder with the associated carry logic.

The register associated with each LUT can either be driven by the associated LUT or from

the external interconnect.4 The register has a selectable reset (either synchronous or asynchronous),

set, and clock enable, with dedicated inputs and control bits shared between the two registers in

each CLB slice.

The CLBs are embedded in a programmable interconnect fabric. Each CLB contains an

adjacent Generalized Routing Matrix (GRM) which connects the CLB to the interconnect. In both

the horizontal and vertical channels, there are 24 single-length lines which connect adjacent GRMs,

12 buffered hex lines in each direction which are connected to the GRMs 6 CLBs away in each of

the 4 directions, and 12 buffered longlines for high fanout, long distance signals. Thus the Virtex’s

routing channel can contain up to 108 signals in addition to dedicated connections between CLBs.

Although there are considerable amount of wires per logic element, this number is fairly

typical. As FPGAs have grown larger, the relative amount of interconnect has also increased. This

is largely due to larger designs following Rent’s Rule [39], and therefore require more interconnect

to successfully map larger designs.

Also included in the fabric are columns of BlockRAMs, dual ported 4 Kb SRAMs. Each

of the ports can be independently configured to be 1, 2, 4, 8, or 16 bit wide. They are arranged

in vertical columns, with a pitch of 1 BlockRAM per 4 CLBs. The Virtex E and EM series parts

contain multiple BlockRAM columns spaced throughout the chip, while the other members only

contain 2 columns, one on each side of the chip.

The Virtex 2 [83], a successor to the Virtex family, uses a larger CLB containing eight

4-LUTs and flip-flops, an even richer interconnect, and larger BlockRAMs. The basic intercon-

nect structures are similar, but there are considerably more wires in the channels. The Virtex 2

BlockRAMs also contain associated 18x18→36 bit pipelined multipliers which share I/O and rout-

ing resources, in order to provide embedded pipelined multipliers without adding to interconnect

requirements.

A previous limitation of the Virtex’s Manhattan structure was a limited ability to integrate

larger fixed blocks. With the Virtex, the only integrated blocks were the BlockRAMs in regular

vertical stripes. The Virtex II, by using more layers of interconnect and reserving the upper inter-

4The only exception is that the register can not be used independently of the LUT at the lowest bit of the carry chain
or when the F5 or F6 muxes are utilized.
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Figure 2.2: The Stratix Logic Element (LE), from the Stratix datasheet[4]

connect layers, can have more distinct blocks embedded in the routing architecture. Thus the Virtex

II Pro [84] includes PowerPC cores and high speed SERDESes (Serializer/Deserializers) embedded

in the interconnect fabric and future devices may include other substantial cores replacing large

blocks of CLBs.

The Altera Stratix [4, 44] represents the other major evolutionary structure of FPGA de-

sign: a larger logic block cluster with its own local interconnect embedded in a hierarchical network.

The Stratix design consists of Logic Array Blocks (LABs) embedded in the network, with each LAB

containing ten Logic Elements (LEs) and local communication. Other large logic blocks, such as

memories and DSP blocks, are also embedded in this network.

These logic elements contain a 4-LUT, carry chain, and flip-flop. The LE’s inputs can

only be sourced from the local network, not the general interconnect. The LE outputs connect to

the local network and the horizontal and vertical routing channels. The carry chain runs through the

entire LAB, so the LAB represents ten bits of arithmetic datapath.
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Unlike the Xilinx CLB, there are more restrictions involving packing flip-flops with un-

related logic as seen in Figure 2.2. Each LE has three outputs: local (for within LAB routing),

horizontal, and vertical routing. These outputs can either be driven by the Flip-Flop or LUT, but not

both. Similarly, the Flip-Flop’s independent input is shared with one LUT input, further restrict-

ing the cases where the Flip-Flop can be used independently. This would restrict the retiming tool

described in Chapter 13.

The interconnect in the Stratix is based on horizontal and vertical channels, with various

segment lengths within each channel. These wires can be driven by the LE outputs as well as

sourced from the other channel to enable routing. LE inputs are only drivable from the LAB local

routing, requiring that all signals in the main routing channels be routed onto the local connections

before driving the LEs. In previous Altera parts [2], this local interconnect was a full crossbar, but

the Stratix depopulates the input crossbars.

This routing structure is well suited for less structured designs, but poses some prob-

lems for high performance signal processing and similar arithmetic-heavy tasks. In most FPGAs,

dataflow is arranged with the data moving horizontally, perpendicular to vertical carry-chains. Yet

in the Stratix and similar cluster-based architectures, the bits need to be routed onto the horizontal

channel and then onto the local interconnect before they can be used in the next stage of compu-

tation. Since datapaths are often bit-aligned when either hand or automatically constructed, this

can add significant routing delays. This problem is reduced, but not eliminated, through the use of

additional direct LAB to LAB paths.

The Stratix architecture embeds significantly larger memory blocks in the design as well.

Only some of the interconnect wires (the longer horizontal and vertical connections) are routed over

the largest of the blocks. The Stratix GX [5] also embeds high speed SERDESes similar to those in

the Virtex 2 Pro.

2.1.2 Unpipelined Interconnect Studies

There have been numerous published studies of various interconnect topologies for use

within conventional FPGAs. One such study, by Xilinx [52], developed the concept of “Octlines”,

length 8 interconnect segments with restricted outputs, designed to provide a reasonably fast-path

for signals which travel a moderate distance. This structure evolved into the Hexlines used in the

Virtex and Virtex II FPGAs.

Likewise, Altera has published several studies, including enhancements used to create the
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Mercury architecture [34] and the Stratix architecture [44]. For the Mercury architecture, most of the

improvements were achieved by providing different wire types which, with the same connectivity,

offered faster performance. Thus the router could prioritize critial paths, routing them onto faster

nets. This allowed for substantial reductions in the critical path.

The Stratix architecture used a comprehensive approach to define the interconnect, by first

developing a model of the various resources and then evaluating for an optimal position on various

benchmarks. One major contribution was depopulating the LAB (Local Area Block) connections

from full crossbars to partial crossbars, a technique first described in Lemieux and Lewis [43] as an

extention to the related work [42] on depopulating switchpoints.

Schmidt and Chandra [58] attempted to analyze the benefits of different switchbox strate-

gies and their resulting impact on area, while Lemieux et al [43] was concerned with depopulating

switchboxes while maintaining routability.

2.1.3 Pipelined Interconnect, Variable Frequency

There have been two proposed architectures which contain pipeline interconnect without

maintaining a fixed-frequency property. In both cases, tools must utilize the interconnect pipelining

to improve performance.

The first, by Singh and Brown[62], has interconnect switches which include optional

registers to pipeline longer connections. Their design began with a simplified FPGA consisting of 4-

LUTs and associated flip-flops, and then performs retiming during the routing process to determine

whether to use a registered switch.

The significant contributions involve the architecturally constrained retiming and retim-

ing aware routing in order to utilize the new registered interconnect pieces. Unfortunately, their

basic logic cell does not have an independently-utilizable flip-flop, which limits the quality of their

baseline retiming which was used in the comparisons. This work also did not includeC-slowing or

repipelining in order to exploit the greater degree of potential pipelining, but such a transformation

could be easily added to their toolflow.

Singh et al’s wave-pipelined FPGA [61] is a high-frequency FPGA using pipelined inter-

connect. This architecture utilizes a pipelined LUT as well as interconnect, targeting high frequency

operations. This array uses registered switchpoints, with each interconnect segment only able to

traverse 4 LUTs before being registered. This array lacks retiming facilities, as well as tools to

automatically repipeline the design.
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2.1.4 Pipelined, fixed frequency

There have been numerous fixed-frequency architectures, however they have all suffered

from various limitations.

The Garp [30, 31] was a design for a reconfigurable co-processor meshed with a micropro-

cessor. In order to allow integration, it was designed to always operate at the same clock frequency

as the processor. In order to support fixed-frequency operation, all LUT outputs were registered and

there was no routing resources on the interconnect.

Garp’s interconnect consisted of dedicated horizontal and vertical connections, with the

data flowing vertically. The horizontal lines were single-driver, multiple sink, and used to institute

fixed and variable shifts. The vertical lines were broken at regular intervals to facilitate routing.

Any routing between horizontal and vertical interconnect occurred through a logic cell. This lack

of switching enabled Garp to operate at a defined frequency, as no signal could ever traverse more

interconnect than the allotted cycle. Garp’s tool flow did not support automatic repipelining, but

as it was intended primarily for datapaths, the retiming problem was fairly simple and left to either

human designers or upstream tools such as Gama [15].

A logical successor to Garp’s array is the PiCoGa [46], a fixed-frequency architecture

designed to be more tightly coupled in a microprocessor pipeline. This system utilizes a VLIW

processor with a reconfigurable coprocessor. A novel feature of the reconfigurable array is that

every row’s registers are only active when the row is being used for a computation as a power-

saving mechanism. The interconnect is switched but not pipelined, and there are undoubtedly limits

on how far signals can travel within a clock cycle, but these aren’t stated in the current publications.

RaPiD [24] also used a fixed-frequency design. RaPiD consisted of heterogeneous logic

units connected by a 1-D interconnect channel. Any connection which would have exceeded the

architecture’s delay was routed to a register and then back onto the interconnect, through special

register units. Although RaPiD is fixed-frequency, the fixed-frequency property is enforced by the

tools [60], not the interconnect architecture. Long delays must pass through dedicated register-block

resources to match the timing constraints.

PipeRench [57] is another fixed-frequency array designed for computational use. In order

to operate at a fixed frequency and to enable virtualization, only feed forward designs can be mapped

to this interconnect. At each stripe, all data is registered, with some being computed on and others

simply being forwarded to the next stripe. Since the array is designed to map only feed-forward

designs, the interconnect flexibility is deliberately limited.
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HSRA [74] was the first attempt to produce a general purpose fixed-frequency FPGA

designed to map all designs where pipeline or task level parallelism is available. HSRA used a

conventional 5-LUT embedded in an H-tree with shortcuts. At the branches of the H-tree, the

switches were diagonally populated. Some levels used pipeline registers, to ensure that every path

was properly registered.

In order to balance these delays, post-placementC-slow retiming was employed by call-

ing out tosis [23] and retiming the resulting design. Since the H-tree design produces determin-

istic routing delays, only a singleC-slowing pass is required. All LUT inputs contain retiming

registers to balance out the delays.

The greatest limitations of the HSRA arise from the toolflow requirements. The H-tree

interconnect introduced a new placement problem, and it is especially unclear how to place datap-

aths onto this structure. Additionally, the HSRA presented a new and challenging routing problem,

which appears to be of comparable difficulty when compared with a conventional FPGA.5 This

array also did not have support for a synthesis pathway or an optimized retiming tool.

2.2 FPGA Tools

Quality FPGAs do not simply require good architectures, but also require high quality

tools for placement, routing and possibly retiming. Without tools, an FPGA architecture cannot

be effectively utilized. In general, tools first map the design to the target’s components, place the

mapped design on the array, and then route the connections. Following the complete placement and

routing process, a conventional FPGA toolflow performs a static timing analysis to determine the

design’s maximum clock frequency.

2.2.1 General Placement

Conventional placement has often relied on simulated annealing or other heuristics. A

good example is the VPR [11] academic placement and routing tool. VPR uses simulated anneal-

ing placement, a probabilistic approximation to pack related logic units close together. Simulated

annealing is generally highly effective for placing theses sorts of designs.

These heuristics are commonly deployed in commercial placement tools by Xilinx and

Altera, as they work reasonably well on most designs. The general limitation, as discussed in

5In practice, the best HSRA routing results use the Pathfinder [47] FPGA routing algorithm.
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Chapter 3, arises when high performance datapaths are desired.

Simulated annealing operates by assigning a cost function for each connection, usually

as a function of distance with priority given for critical links. During each iteration, many moves

are contemplated. If the move will result in a cost reduction, it is taken. If the move would result

in an increase in cost, a probabilistic decision is conducted based on the cost of the move and the

temperature, a measure of how likely unfavorable moves will be taken. The temperature begins at a

high level, enabling most bad moves to be accepted, before it is slowly lowered to zero.

2.2.2 Datapath Placement

Datapaths benefit substantially from datapath oriented placement. Koch’s system [38]

composed a datapath by placing bit-slices in order, then tiling the slices to create the full datapath

width. Heuristics were used for the one dimensional placement of the elements in the datapath, in

an attempt to maintain a mostly feed-forward dataflow.

Similarly, Gama [15], the mapping portion of the Garp/CC C compiler targeting the

GARP reconfigurable processor, used bottom-up rewrite grammars [27] to map and place designs

into an aligned datapath. This process selects the proper operators (including combining associ-

ated objects) and places them in an aligned datapath, attempting to minimize both the number of

operators and minimizing the distance between operators.

Finally, there have been many generator systems [79, 19, 48, 80, 9, 64] which have in-

cluded placement ability. These systems are used by programmers to create procedures to construct

design instances. As a result, most systems encourage bottom-up construction techniques where

adjacent operators are aligned and placed next to each other. When generators include the ability to

specify placement directives, clean datapath layouts tend to be produced as programmers logically

construct a hierarchical structure.

Datapath placement is generally effective because the problem is considerably simpler.

For a datapath, a one-dimensional placement is usually very effective, as there is a natural vertical

alignment for all components. This is specifically observed in Chapter 12, where the synthetic dat-

apath (consisting of discrete but pre-placed elements) can be successfully laid out by the automatic

tools as it is a one-dimensional, not a two-dimensional placement problem.
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2.2.3 Routing

Routing is the other significant piece of the FPGA mapping process. Just as there are many

heuristics for placement, there are similar heuristics for routing. The most popular is Pathfinder [47]

and other routers using Pathfinder’s technique.

Pathfinder is a heuristic router based on “negotiated congestion”. During each iteration,

signals can share resources with each route selected based on minimizing the cost as a function of

both the critical path and the previous congestion seen on that point. The relative cost factor for the

history is increased until all nets can be successfully routed.

It is this maintinence and consideration of congestion history between iterations that con-

tributes to Pathfinder’s success. Initially, all nets will ignore congestion. As the cost increases, the

nets not on the critical path are the first to shift away from congested resources. Eventually, as the

cost for congested resources increases, all nets will occupy uncontested resources and the routing

process is complete.

2.2.4 Retiming

Retiming, first proposed by Leiserson and Sax [41], is a procedure for automatically op-

timizing synchronous circuits by discovering an optimal placement for registers in a design. There

have been several FPGA related retiming implementations.

Cong and Wu [20] implemented retiming in concert with technology mapping. By us-

ing only forward retiming, this system could efficiently compute initial values in polynomial time.

By combining retiming with mapping, the system could more effectively decide where to place

registers. The disadvantage of mapping-combined retiming is that interconnect delays can only be

estimated, not measured.

Singh and Brown [63] performed retiming integrated into the placement process. Their

technique showed improvements over post-placement retiming, however their target architecture’s

flip-flops can’t be used independently of the LUT, limiting opportunities to utilize otherwise unused

flip-flops when retiming. Likewise, this tool was employed for their pipelined interconnect proposal

[62], albeit without the placement modifications.

Many synthesis tools, such as Synplify [71] and Synopsys [72], support retiming. The

quality in practice appears limited as retiming occurs before mapping and placement, forcing in-

terconnect delays to be only crudely estimated. Additionally, theses tools attempt to maintain the

FPGA model of initial conditions, which both limits flexibility and adds control logic overhead.
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The initial condition problem for FPGA retiming is more complex than that solved by

Cong and Wu, as FPGAs generally posess a global set-reset functionality with dedicated intercon-

nect. Thus conventional retiming tools need to include additional logic in the datapath to handle

startup, as some registers can’t be allowed to transition for several cycles after the reset to ensure

proper order. These control structures often add delay onto the critical path, and require more FPGA

resources, generally ofsetting many of the benefits of retiming.



25

Chapter 3

Benchmarks

For evaluating the SFRA architecture, high performance tools, and the effects of datapath

placement, four benchmark designs were utilized: AES Encryption [50], Smith/Waterman [67]

sequence matching, a synthetic microprocessor datapath, and the LEON I synthesized SPARC core

[54].

The first three designs, created as part of this thesis, were all hand-mapped to the Virtex

family of FPGAs and implemented using schematic capture, with both hand placement and au-

tomatic placement, as well as handC-slowed implementations. Thus, these applications can be

directly used to evaluate the quality of placement and retiming tools. The final benchmark, Leon,

was a synthesized, publically available design1 acquired from the Internet site of Gassier Research.

Schematic capture was used on the hand-mapped benchmarks for two reasons: familiarity

and precision. Natural familiarity makes high-performance designs easier as there is less time spent

manipulating tools. More importantly, high performance FPGA designs tend to be directly mapping

to the target architecture, specifying the LUT logic and placement for all of the datapath and even

some of the control logic. Thus, many of the higher level transformations of a synthesis tool are

unnecessary.

3.1 AES Encryption

The recently adopted AES (Advanced Encryption Standard) block cipher [50], based on

the Rijndael encryption algorithm, offers solid performance in both software and hardware, with

hand-coded assembly implementations able to encrypt at over 1 Gbps on a 3 GHz Pentium 4 [45] and

1The Leon core is released under the LGPL liscence which allows free derivitive works
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published FPGA implementations which, with suitable area, achieve multigigabit encryption rates.2

Because of the expected widespread adoption, both within the federal government and private sector,

AES is expected to be the most commonly implemented block cipher over the next twenty years.3

Because of its growing ubiquity and versatility as a block cipher, it is an excellent candidate for

implementations in hardware.

For benchmarking, an aggressive AES core was implemented. This core is a single en-

cryption round, with 5 stages of pipelining to create aC-slowed design. This design is “key-agile”,

as it accepts both a 128 bits of key and 128 bits of data simultaneously. The 5-slow version can be

encrypting 5 data blocks simultaneously, with each block able to use a different key. The design

was also hand-placed, with almost every element specified to match the general dataflow.

AES was selected as a benchmark for several reasons: it consists of mostly bit and word

oriented operations, the interconnect requirements are fairly complex, and AES is at the core of most

security applications. The bit and word mixing doesn’t exercise arithmetic operations, but they do

exercise most other FPGA features including pipelining, LUTs, small delay-chains, and larger em-

bedded memories. Although there is a large degree of high-level structure, this structure generally

dissapears when the application is viewed at the bit-level, due to the various permutations required.

This lack of structure on the micro-level makes AES more difficult to route when compared with

other datapaths.

Performance for the throughput optimized version with a 128 bit key ranges from a 115

MHz clock rate with 1.3 Gbps throughput4 for non-feedback modes on a Spartan 2 100-5 (a∼$10

part in large quantities5) to 155 MHz clock with 1.75 Gbps throughput for a Virtex E-600-8. This

design requires 10 BlockRAMs and 800 CLB slices for a fully key-agile encryption core, which

is less than 1/2 the area of a comparable HDL synthesis implementation.6 This design also offers

superior performance when compared with published commercial implementations.

The latency optimized version (withC-slowing removed) with a 128 bit key runs at 45

MHz in the same Spartan 2 100-5, giving a throughput of 520 Mbps regardless of the feedback

mode, using 10 BlockRAMs and 460 CLB slices. More details on this design, including compar-

isons with other commercial and academic implementations, are available in Appendix A.

2This contrasts sharply with DES who’s bit-oriented, permutation based design is significantly faster in hardware
when compared with software.

3Although 3DES [76] may remain in use for a considerable period of time, most new implementations are expected
to select AES.

4It requires a 3 GHz Pentium 4, with hand-coded assembly, to match this performance in software [45]
5The even faster Spartan 2E of the same size is available for $25 in single unit quantities from Digikey.
6This core is freely available at http://www.cs.berkeley.edu/∼nweaver/rijndael
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Figure 3.1: Layout of an individual systolic cell for the Smith/Waterman sequence matching
computation

3.2 Smith Waterman

The Smith/Waterman edit distance calculation as used for biological sequence matching

[67] is a well-known application for reconfigurable computing [14]. It is a systolic computation

which compares a source string with destination strings in a database and computes an edit distance

needed to convert the source string to the destination string. It is a staple algorithm in bioinformatics,

where one wishes to search for similar DNA sequences or proteins in a large database. Several

custom machines have been built for the purpose of accelerating this and similar algorithms [14, 73,

53]. Since the general usage requires comparing a single entry against a large database, this matches

well with C-slowed semantics discussed in detail later in this thesis.

Smith/Waterman, when implemented in FPGA logic, consists of table lookups, arithmetic

comparisons, multiplexing, and additions in a systolic cell, to calculate two values,Ii,j andMi,j

for two strings, and to determine the maximum value ofM . The parametersi,j is based on the

related nature of the corresponding characters7 in the string whiled ande are the cost of creating or

extending a gap between the two strings. The result calculates a highly accurate approximation of

the similarity of two sequences.

7This reflects that some protein substitutions will result in very minor deformations (costs), while other changes will
significantly deform the resulting structure.
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Ii,j = MAX



Ii,j−1 − d

Ii−1,j − d

Mi,j−1 − e

Mi−1,j − e

(3.1)

Mi,j = MAX

 Ii−1,j−1 + si,j

Mi−1,j−1 + si,j

(3.2)

The algorithm itself can be highly parameterized, as some error in hardware accelerated

versions can be tolerated as the normal usage is to discover the most likely matches between a gives

string and a large database. In these cases, the hardware is designed to compare a single source string

against a large database, returning the highest scoring matches. Then a software version compares

the source with the highest matching strings to produce the final results and definitive comparisons,

enabling the hardware implementation to introduce some errors without affecting the final results.

This also suggests that overflow can be tolerated as the resulting score will be the highest just before

the overflow.

There are also several variations for handling gap costs and substring matches. Although

each cell contains a tight feedback loop, the normal operating mode of comparing a single string

against a large database naturally lends itself toC-slow operation, as a single string is compared

with a large database.

For purposes of this benchmark, the implementation used a 16-bit, approximate affine

gap calculation. The matching score was a specialized, signed, 5-bit result for comparing a 5-bit

(protein) alphabet. To turn this into an application, the resulting bitfile would be specialized to

change the string being matched when a new search is required, or the string matching replaced

with an SRL16 programmable element.8 Specialization removes the need to store the string being

compared (5 bits of storage per cell) and reduces the table size from 5 kb (10 address lines, 5 bits of

output), which would require a minimum of 320 4-LUTs if implemented with logic,9 to 10 4-LUTs,

a massive savings in area.

The 16-bit adders were composed using the built in carry chain, with no additional logic.

Although a carry-save or carry-select adder is asymptotically faster, the Virtex carry chain is suffi-

ciently fast. For shorter adders, an unpipelined ripple-carry is optimal.

8Xilinx SRL16s can be used to implement reprogrammable LUTs by shifting in a new set of constant values without
affecting the operation [8].

9or one port of a BlockRAM.
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Each systolic cell matches a single character to the database, and is connected only to its

nearest neighbors in a 1-D arrangement. The layout of the cell itself is straightforward, with a simple

left-to-right dataflow within the cell and all operations aligned. The value forsi,j is generated below

the cell. The cells are then arranged in a serpentine pattern to fill up the chip, while minimizing the

communication distance between cells.

The C-slowed version used 4 stages per cell, representing a 4-slow design. This was

determined by experimentation. A 3-slowed version did not have quite the performance desired,

while adding a 5th stage could not reduce the critical path.

3.3 Synthetic microprocessor datapath

Although with the advent of commercial microprocessor/FPGA hybrids [1, 84], as well

as highly specialized commercial FPGA soft cores [86, 3], there is less call to implement a micro-

processor using FPGA logic, portions of microprocessors are an excellent test of an FPGA’s ability

to perform arithmetic, multiplexing, memory, and control logic.

The datapath portion of a microprocessor is highly regular, requiring fast arithmetic op-

erations, fast multiplexing operations, and considerable pipeline registers. The register file needs

small, very fast memories, while the instruction and data caches need larger memories. The datapath

is laid out in a regular fashion, matching the classic viewpoint.

For the purposes of this benchmark, the datapath targeted a conventional 5-stage pipeline

for a 32-bit simplified MIPS like instruction set with a 2-KB data cache. Arithmetic operations

(addition, subtraction, and bitwise operations) are single cycle latency, with shifts taking 2 cycles

and memory reads requiring 3 cycles of latency. The manditory input register on the BlockRAMs

result in the additional latency for memory operations. Similarly, the latency for the shift operations

is due to the heavy interconnect cost and several levels of logic needed to implement a bidirectional

shifter.

Since this datapath operates on 32-bit quantities, the adder/subtracter uses a 16-bit carry-

select construction. Carry-select was chosen, because it matches well with the target architecture,

allowing the 16 bit subadders to use the carry chain. More importantly, a carry-select adder can be

more easily pipelined when compared to a ripple-carry structure in the Xilinx architecture.

As seen in Chapter 11, aC-slowed microprocessor produces an interleaved-multithreaded

architecture. TheC-slowed version uses 3 streams of execution, or aC-slow factor of 3, as this

matched well with the already finely pipelined microprocessor datapath.



30

Due to the size of the BlockRAMs for the register file when compared with the logical

size of the register file, the memories were not increased in size, as this wasn’t necessary to complete

the transformation. Since this benchmark is designed to evaluate the datapath portion, it does not

include the control logic needed to complete a processor.

3.4 LEON Synthesized SPARC core

Many FPGA designs use HDL synthesis. Such designs rely on automatic translation from

a high level description, usually VHDL or Verilog. These designs also rely on automatic placement

and routing. Traditionally, there is a substantial performance penalty for designs which rely heavily

on synthesis.10

The Leon I [54] microprocessor core is used as a synthesized benchmark for evaluating

theC-slowing tool and SFRA architecture. This design is a fully synthesized SPARC compatible

integer processor requiring roughly 6000 LUTs. In order to create a design suitable for benchmark-

ing, the caching and external interfaces were removed and replaced with dummy connections to

external I/Os. These connections keep the rest of the design from being optimized away.

To enable automaticC-slowing and SFRA mapping, the register file (a synthesized struc-

ture) was replaced with an instanced BlockRAM-based register file. Since the Leon core assumes

that the register file’s memory is asynchronous, the BlockRAM uses a negative-edge clock. This

preserves the register file semantics, although it may have a performance impact, if the BlockRAM

access is not in the middle of the processor cycle.

The design was synthesized with clock-enables suppressed, and the EDIF netlist was

manually edited to convert register resets to explicit logic. This editing simply replaced the primitive

EDIF components with a LUT and register combination before letting the back-end tools map the

design. Both of theses changes are needed to allow automaticC-slowing without modifying the

placement when targeting both the Virtex and the SFRA, as all these features need to be expressed

as LUT logic rather than as register-specific features.

10Although many high performance designs may use VHDL or Verilog, most of these designs use the HDL as a textual
representation of FPGA features creating designs which are very similar to those produced by schematic capture.
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3.5 Summary

Four benchmarks are used throughout this thesis. The first three, AES Encryption, Smith/

0Waterman sequence matching, and the synthetic datapath, were all implemented with hand place-

ment and handC-slowing in order to gauge the sensitivity and quality of both placement and retim-

ing tools. The last benchmark, the Leon processor core, represents a typical design utilizing HDL

synthesis.
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Part I

The SFRA Architecture
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This section of the thesis is focused on the development of the SFRA architecture. This

begins with an introduction to the corner-turn topology in Chapter 4. Unlike conventional FPGA

topologies, this topology can be efficiently pipelined and supports fast routing algorithms.

Using this topology, the SFRA architecture is defined in Chapter 5. Although a new FPGA

architecture, the SFRA is largely placement and design compatible with the Xilinx Virtex, which

facilitates later comparisons.

Then the notion of retiming registers is introduced in Chapter 6. This chapter introduces

a new option, “mixed-retiming”, and compares it with the previously evaluated input and output

retiming. Although the SFRA uses input retiming, it was only after evaluating mixed-retiming that

the decision was finalized.

The critical circuits for the SFRA interconnect are constructed in Chapter 7. Although

only the interconnect is constructed, this defines both the critical path and critical area for the SFRA.

A 300 MHz clock cycle appears easily achievable in a .18µm process.

Following the architecture definition, the routing algorithms are described in Chapter 8.

These routing algorithms use heuristics which areO(n2) in the worst case, enabling routing to be

performed substantially faster when compared with a conventional FPGA. Experiments are con-

ducted with the routing tool on the four benchmarks, to determine an optimal number of turns and

other interconnect features.

After routing, other implications of the corner turn topology are discussed, including de-

fect tolerance and applicability to wider bitwidth in Chapter 9. Although the SFRA doesn’t utilize

these additional benefits, other corner-turning FPGAs might utilize these additional corner-turn re-

lated features.
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Chapter 4

The Corner-Turn FPGA Topology

4.1 The Corner-Turn Interconnect

Manhattan-structured FPGAs, as commonly visualized in Figure 4.1, consist of 3 main

pieces: logic elements (LEs) that perform the actual computation, connection boxes (C-boxes) that

connect the logic elements to the general interconnect, and switch boxes (S-boxes) used to route

signal in the general interconnect. Parameters include the number of signals in each channel (the

channel capacity), and the number of bits in each signal (the bitwidth or granularity).

If routability were the only criterion, the C-boxes and S-boxes would both be full cross-

bars, as in Figure 4.2(A), enabling the C-boxes to use any wire as an input or output and the S-boxes

to connect any input to output. Unfortunately, crossbars, especially for the S-boxes, are usually too

expensive, as they requireO(N2) switches to implement a channel capacity ofN bits.

LEC-Box
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Figure 4.1: The classical components of a Manhattan FPGA: the LE (logic element) performs the
computation, the C-box (connection box) connects the LE to the interconnect, and the S-box (switch
box) provides for connections within the interconnect.
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(A) (B) (C)

Figure 4.2: (A) A crossbar switch-box. (B) A physically depopulated crossbar. (C) A capacity-
depopulated crossbar.

The common solution, as shown in Figure 4.2(B) is to create a physically depopulated

crossbar. Such crossbars are constructed by removing switches, until a desired balance between

cost and routability is achieved. There are several methods for constructing these depopulations,

ranging from the classic diagonal pattern, ad-hoc removal of switches, to analytic techniques based

on multiple routing trials [42]. These depopulations usually enable every wire to be routed between

the two channels,1 but with limited connectivity between the channels. Thus, each particular signal

can only be routed to particular destination wires.

Most conventional FPGAs use physically depopulated crossbars to implement both the

C-boxes and S-boxes. Unfortunately, such structures are not very suitable for creating a fixed-

frequency FPGA. If most or all of the connections in the S-boxes are registered either at the switches

or on the output wires, this would require a prohibitive number of registers. If only a small subset of

the S-box connections were registered, this would complicate an already difficult routing problem.

An alternate approach is to create a capacity-depopulated crossbar, as in Figure 4.2(C).

These switchpoints maintain the any-to-any connectivity of a crossbar, while sacrificing the capacity

that can be routed. Thus instead of attempting to depopulate connectivity, this strategy depopulates

capacity. In this approach, a limited number of total signals can be routed between the two channels.

Table 4.1 shows the relative costs of full crossbars, physically-depopulated crossbars, and at turn

capacity-depopulated crossbar.

By using these capacity-depopulated switchpoints in a Manhattan FPGA, this creates a

“corner-turn” interconnect, as seen in Figure 4.3.2 In this construction, the C-boxes are maintained

1Although the Xilinx Virtex only allows a subset of the Hex Lines to be routed at any given switchpoint.
2Thecorner-turnname comes from the observation that this interconnect form prefers straight lines, with each “turn”

from horizontal to vertical or vertical to horizontal being a very limited resource. Both the name and the topology were
first proposed by John Hauser.
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Parameter Crossbar, Crossbar, k depopulated k depopulated t turn
registered registered Crossbar, Crossbar, switch
switches outputs registered registered

switches outputs
Encoded Configuration
Bits 2n2 (n + 2)n 2kn (k + 2)n 4t lg n

Registers n2 2n kn 2n 2t

Parasitic Capacitance
On A Wire n n k k 2t

Parasitic Capacitance
On A Connection 2n 2n 2k 2k 2n

Table 4.1: Comparing the costs of a full crossbar,k physically-depopulated crossbar, and at turn
capacity-depopulated crossbar for ann by n channel intersection.

LE
T

LE
T

LE
T

LE
T
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T

LE
T

LE
T

LE
T

Figure 4.3: A corner-turn FPGA interconnect. The C-boxes are implemented as full crossbars,
while the S-boxes use capacity-depopulated crossbars to create corner turns, marked as T-boxes on
this illustration.

as full crossbars, with each input and output connected to both the associated horizontal and vertical

channels. The S-boxes are replaced with T-boxes, capacity-depopulated crossbars with the capacity

described as the number of turns supported. Each turn is able to route a signal from the horizontal

to the vertical channel direction and a separate signal from the vertical to the horizontal channel.

For simplicity, it is assumed that the C-boxes are full crossbars. This assumption makes

it easy to perform fast detailed routing and guaranteed detail-routing overhead at the cost of some

efficiency. (As discussed later, it may be possible to depopulate the C-boxes without sacrificing fast

detailed routing, but this issue has been deferred for later research.)

Unlike conventional switchpoints, there are several advantages to a corner-turn topology

that result from the use of reduced-capacity S-boxes instead of physically depopulated S-boxes and

full-crossbar C-boxes:
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Fast Routing: As detailed in Chapter 8, both global and detailed routing use fast, poly-

nomial time heuristics. Detailed routing uses known techniques, while global routing uses new

algorithms. No step is worse thanO(n2) in the worst case, while most steps areO(n lg n) or better.

Fixed Routing Overhead: Given a global channel congestion and a wire break schedule,

there is a maximum overhead which detailed routing may impose. In practice, the overhead is

substantially lower.

Pipelined Switchpoints: If a conventional crossbar or depopulated crossbar were to use

pipelined switchpoints, it would require numerous pipeline registers. A corner-turn switchpoint,

however, requires only two registers for each turn, a substantial savings. This savings is particularly

useful, given the goal to implement a fixed-frequency FPGA.

Potential Defect Tolerance: Any resource that can be exchanged for another offers the

potential for defect tolerance. It is obvious that, with an additional turn and spare wires, breaks in

the T-boxes and routing channels can be overcome by simply remapping the wires in question from

a defective connection to a working connection.

If the interconnect uses a classical braiding pattern, many faults in the C-boxes cannot

be avoided. However, if all wires in a channel have breaks, rebuffering, or registers at the same

places, then a large number of stuck-on and stuck-off faults in the C-boxes can be routed around by

transposing connections.

Asymmetric Routing Channels: In Hallschmid [29] and elsewhere, it has been argued

that asymmetric routing channels, where the horizontal and vertical capacities are significantly dif-

ferent, may have significant advantages.3 The corner-turn structure is highly amenable to asymmet-

ric channel without changing the routing problem. As a related observation, if a design following

Rent’s Rule is mapped to a Manhattan FPGA using common placement techniques, more intercon-

nect will be required near the center of the FPGA.

Because the corner-turn switches maintain any-to-any connectivity, it is easy to construct

and route arrays where the routing channels closer to the periphery utilize fewer wires. Such arrays

do not affect the routability beyond the capacity limits, as each channel is detail-routed indepen-

dently. As the bulk of any FPGA lies in the wiring and switching, this strategy offers potentially

large area savings.

Finally, as seen in Chapter 5, the bit-oriented SFRA based on the corner turn topology

is substantially larger than commercial FPGAs although competitive with previous fixed-frequency

3Although Betz and Rose [10] that asymmetric routing channels are not that effective.
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FPGAs. This disadvantage disappears when the array’s basic operations occur on larger quantities.

Thus for arrays that operate on 8-bit or 16-bit bit quantities such as those used by Chameleon

[16], Matrix [49] and others, a corner-turn interconnect may be desirable even when pipelined

interconnect is not a requirement, as the interconnect still supports fast routing and potential defect

tolerance.

The placement and upstream tool problems are the same for both conventional Manhattan

FPGAs and corner-turn FPGAs, although some minor changes in the placement and synthesis cost

functions are desirable as slight misalignments in datapath elements will have a more significant

effect on routing.

4.2 Summary

This chapter presents the “corner-turn” interconnect topology, based on capacity depopu-

lated crossbars. This topology offers several benefits, which are detailed later in the thesis, including

fast routing, defect tolerance, and easy to pipeline interconnect. The corner-turn topology forms the

basis of the SFRA’s interconnect structure.
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Chapter 5

The SFRA: A Pipelined, Corner-Turn

FPGA

To compare the benefits and costs of a fixed-frequency, corner-turn architecture, and to

take advantage of high quality commercial tools, this thesis defines the SFRA, a corner-turn archi-

tecture with effectively the same CLB as the Xilinx Virtex[82] FPGA.

5.1 The SFRA Architecture

The SFRA architecture is generally compatible with the Virtex, albeit with some design

restrictions. Designs must use a single global clock to permit retiming and the fixed-frequency

model, and all designs are automaticallyC-slowed and retimed to meet the architectural constraints.

Because of the semantic changes required byC-slowing, both resets and clock enables must be

expressed as combinational logic rather than using the built-in primitives. Similarly, the use of

LUTs as RAMs or SRL16s is forbidden.1

The modified capacity and semantics ofC-slowing the BlockRAMs was not fully consid-

ered, as most computational tasks, when an array is a computational coprocessor, will rely on ex-

ternal caches and memory for data storage, not small array-embedded memories.2 Only the LEON

and synthetic datapath benchmarks used BlockRAMs as writable memories.

1In experiments with the LEON synthesized core, these restrictions added less than 10% to the CLB count. This
restriction has no effect on the synthetic datapath and Smith/Waterman benchmarks, and the lack of SRL16s only impacts
the AES benchmark when targeting the Virtex, not the SFRA.

2More details on the semantics ofC-slowing memory are in Chapter 10.
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Figure 5.1: The Slice used by the SFRA

The SFRA CLB contains twoslicesthat are derived from the Xilinx Virtex’s slice. Fig-

ure 5.1 shows the SFRA’s slice. Figure 2.1 shows the original Virtex slice. Due to the semantic

restrictions, there is no longer any support for LUT-as-RAM or register clock enables and resets.

Thus, the CE and SR inputs, and their associated logic, are removed as unnecessary. Any design

desiring a Clock Enable or Synchronous Set/Reset needs to convert these structures to explicit logic

to allow properC-slowing.

The XQ and YQ outputs are also not needed, as the explicit registers in the initial design

are converted to retiming elements during theC-slowing process. As all designs now operate using

a single clock, the dedicated CLK input is removed as well and replaced by a direct connection to

the clock network. To accommodate variable delays, all inputs are assumed to have retiming chains

[74], a feature discussed in more detail in Chapter 6. All outputs are registered, with the carry chain
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Figure 5.2: The CLB embedded in the routing network

registered every 4 CLBs.3

During the experiments, it was observed that although the BX and BY inputs and the

YB and XB outputs are required for design compatibility, they are seldom used in the benchmark

designs. With the SFRA’s semantic restrictions, the BX input is only used for the F5 multiplexer

and to provide an external source for the carry chain, while the BY input is only used for the F6

multiplexer.4 Similarly, the XB and YB outputs are only used for tapping the carry chain as part of a

multiplier. Thus these I/Os are modified to allow their use as turns by the router, creating 4 effective

turns. In addition to the turns formed by the BX/BY inputs of each slice, two additional turns were

provided per CLB. Thus the array contains an effective six turns per CLB, enough to easily route

all benchmarks, as detailed in Chapter 8.

The interconnect itself contains 120 wires in each horizontal and vertical channel. Al-

though significantly more than needed for the benchmarks, the channel capacity is comparable to

the wiring resources in the Virtex5 and is maintained to ensure a fair basis of comparison between

the two architectures. All inputs are sourced from both the horizontal and vertical channel, with

each input able to be sourced from any wire. Similarly, all outputs can drive onto any wire in the

channel, and an output can be directed onto both the horizontal and vertical channels.

The only minor exception is that no two outputs in the same CLB can drive onto the

same group of 3 wires, a minor restriction which offers a significant savings in area for the output

buffers themselves, as there is now only one output buffer per group of three wires, rather than three

3In practice, the carry chain could probably be extended, but the registering interval was selected to be deliberately
conservative.

4On the Virtex, these inputs are also used to drive the flip-flops independently of the associated LUT.
5This represents only 12 more wires than are included in the Virtex channel. These extra wires, although not needed

on the benchmarks, are intended to compensate for the router not optimizing for channel capacity.
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Figure 5.3: The complete toolflow for the SFRA, and the companion flows targeting the Xilinx Vir-
tex. Only design entry and the removal of clock enables (in circles) were done manually. Rounded
rectangles are commercial tools, while rectanges are tools created specifically for this thesis.

outputs. When tested, this restriction only increased maximum channel usage by two signals on the

Leon benchmark.

By having fully connected inputs and nearly fully-connected outputs, the SFRA uses C-

boxes which are effectively full crossbars. There are no restrictions to the allowed fanout in this

interconnect, unlike the HSRA[74]. The total connectivity is illustrated in Figure 5.2.

Every interconnect wire is broken every three CLBs with a bidirectional buffer, and ev-

ery nine CLBs with a bidirectional register. These breaks are staggered evenly in the traditional

braided fashion. The breaks help detailed routing by providing small segments, and they increase

performance by rebuffering and pipelining connections.

Because all registers, switches, and outputs are pipelined, the SFRA is a fixed-frequency

architecture. The critical path is from the output of a LUT or turn register, through the output buffer,

across up to nine CLBs of interconnect, through the input buffer, and into the next register.
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5.2 The SFRA Toolflow

The SFRA architecture includes a complete toolflow, illustrated in Figure 5.3. This flow

uses the Xilinx tools to perform synthesis, mapping, and placement, while custom tools were created

for C-slow retiming and routing. The details of theC-slow tool are described in Chapter 13, while

the SFRA router is described in Chapter 8. The SFRA tools are written in Java.

The overall flow is tied together with a series ofperl scripts which invoke the other

tools in the flow. The initial design, after being converted to an EDIF netlist by either Synplify or

the Xilinx Foundation schematic tool, is used as the input to the toolflow. The Foundation-created

netlists can be used unchanged, while the Synplify netlists require a minor amount of hand-editing

to replace flip-flop clock-enables and resets with explicit logic.

This netlist is first passed through the Xilinx mapping tool, which maps the design to the

Xilinx CLBs. The output of the mapper is then placed using the Xilinx place and route tool. The

design is then exported in.xdl format.

.xdl is a Xilinx defined netlist format which represents the unplaced, placed, or routed

design in terms of CLBs and connections. This textual format is a translation of Xilinx’s internal

.ncd format, and Xilinx provides a tool which can convert back and forth between the formats.

The.xdl file is then read into the SFRA toolflow, which can either target the Xilinx (by

justC-slowing), or the SFRA (where the design isC-slowed and routed). The SFRA tools can also

output.xdl , allowing designs to be reprocessed by the Xilinx tools.

Thus the complete flow has three options. The first uses just the conventional Xilinx

routing and timing analysis, providing a baseline case. The second uses the custom XilinxC-

slow tool, with the results then passed back to the Xilinx tools for routing and timing analysis.

Thus Xilinx designs can be more finely pipelined, improving their performance. The final option,

targeting the SFRA, routes and retimes the design.

Thus the complete toolflow can not only route designs for the SFRA, but supports a com-

prehensive set of comparisons with the Xilinx Virtex. The same design, with identical placement,

can target the Virtex with and without the benefits ofC-slowing, or it can target the SFRA, allowing

direct comparisons between the two architectures in terms of design latency, throughput, through-

put/area, and toolflow time, used in Chapter 14 to provide a comprehensive comparison between the

SFRA and the Xilinx Virtex.
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5.3 Summary

This chapter introduces the SFRA’s detailed architecture and reviews the toolflow. The

SFRA is placement and design compatible with the Virtex while offering faster routing and fixed-

frequency operation.
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Chapter 6

Retiming Registers

When implementing a fixed-frequency FPGA, retiming registers, programmable delay el-

ements on either inputs or outputs, are a nearly essential architectural feature, if the array is designed

to map arbitrary user designs. These chains are used by retiming tools to balance out variable inter-

connect delays, where a short interconnect delay needs to be balanced against a long interconnect

delay.

There are two conventional choices for retiming registers: input retiming, where all inputs

have a configurable 0 to N delay, and output retiming, where different delayed versions of each

output can be driven onto the interconnect. A third option, mixed retiming, combines the two, using

output retiming chains for coarse delay adjustment with input retiming chains for fine adjustment.

Mixed retiming represents a new alternative between input and output retiming.

An important question is which technique should be employed for a fixed-frequency ar-

chitecture: input, output, or mixed retiming. The choice depends on two major factors: whether the

FPGA has deterministic routing delays and whether it is switch, wire, or logic element dominated.

6.1 Input Retiming

Input retiming places programmable delay shift-registers on all inputs to the logic block.

These delays, like those in Figure 6.1(A), consist of a series of shift registers and a preprogrammed

mux to select the proper delay. By placing these retiming blocks on all inputs, now any input can

be properly delayed to accommodate the additional delays created byC-slowing. The HSRA [74]

used input retiming.

Input retiming has several advantages: it is easy to implement, it can be adapted to create
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Figure 6.1: (A) The conceptual structure of input retiming registers. Each input has a programmable
shift register on the input. (B) The typical implementation of such shift-registers. Only a single 2-1
mux delay is added to the critical path driven by the retiming chain.

longer delay chains out of otherwise unused inputs, and it can easily perform retiming after routing.

The major disadvantage is that input retiming requires more retiming registers.

The common implementation of input retiming, as shown in Figure 6.1(B) is straightfor-

ward. Apart from the CLK→Q time, the only additional delay on the inputs is a single 2-1 MUX.1

For K-deep retiming, input retiming requiresO(K) registers, but onlyO(lg(K)) 2-1 muxes and

configuration bits for each retiming chain. If input retiming needs to create even longer delay chains

out of otherwise unused inputs, an additional mux can be used to select whether to source the chain

from the external input or the output of the previous retiming chain.

This allows input retiming to easily chain to produce larger delays, either when a single

LUT input is not used or when an otherwise unused LE is configured to create a long retiming delay.

Output retiming, since there are far fewer outputs to blocks when compared to inputs, can’t create

these long delay chains as easily.

The biggest problem with input retiming is simply the number of registers required. If

there areI inputs andO outputs, and retiming chains areK deep, input retiming requiresKI/O

more registers when compared with output retiming.

6.2 Output Retiming

Output retiming places the retiming resources on the output instead of the input. Instead

of each input having a programmable delay chain, various delayed versions can be routed onto

the interconnect. This uses substantially fewer registers when compared with input retiming, but

1A slight restructuring will place this mux delay on the output.
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Figure 6.2: The conceptual structure of (A) output retiming registers, and (B) Mixed retiming
registers.

requires that more signals be routable, as seen in Figure 6.2(A). The HSRA project [74] considered

using output retiming.

It is essential that most or all of the various delays be driven onto the interconnect. If

only one of the selected outputs can be driven, there are cases where, unless additional resources are

used (by having the retimer route the net through a distinct and separate retiming resource), retiming

can’t find a solution to the problem.

Figure 6.3 shows a simple case where the two destinations for a fanout net require different

numbers of registers afterC-slow retiming to meet architectural constraints. In this example, the

fanout net going from X to Y requires less delay than the net which feeds back directly into X.

Without a retiming tool capable of detecting these conditions (or related cases) and using external

resources to break the dependency, it is impossible for both destinations of this fanout net to have

the same degree of retiming.

Thus, with different fanouts requiring different levels of delay, output retiming will place

more pressure on the interconnect, as now nets which could have shared routing resources require

independent routing tracks. Since interconnect represents most of an FPGA’s resources, this can

add substantially to the cost of output retiming. Additionally, the retiming process is complicated

substantially when the target architecture has nondeterministic routing.

The other cost is incurred in the sheer number of additional outputs, as output retiming

now requiresOK outputs instead ofK outputs driving the net per logic element if every delay

should be simultaneously driveable. Since output buffers represent a significant cost, this intercon-

nect requirement can be substantial. For example, the SFRA has 8 outputs for each CLB, changing

this to just 16 or 32 (the amount needed to drive 2 or 4 different versions of each output) would add

substantially to the area overhead.
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Figure 6.3: A case where the output of X’s two destinations will always have different delays. (A)
shows the initial design beforeC-slowing. (B) marks with an astrerix (*) the two places which
require a register to meet a set of constraints. (C) shows the design afterC-slowing. X’s single
output must have two different delays, a single cycle for the input to Y, and a two cycle delay for
the feedback loop.

6.3 Mixed Retiming

A logical division is to provide for mixed retiming. In this case, each input has a pro-

grammable0 to K/2 delay, with the outputs for both1 and K/2 routed onto the interconnect.

Thus any delay from1 to K can be produced by combining the proper output with the input delay.

Figure 6.2(B) demonstrates the structure of mixed-retiming. This option has not previously been

considered.

Mixed retiming’s goal is to combine the benefits of output retiming (fewer retiming reg-

isters) with the benefits of input retiming (lower interconnect requirements). Unfortunately, as

discussed in the next section, mixed retiming shares many of the limitations of output retiming,

including considerably more output signals which need to be routable and a need for deterministic

routing delays for retiming to work before routing.

6.4 Deterministic Routing Delays

If a fixed-frequency FPGA has deterministic routing delays, it is far easier to utilize mixed

or output retiming. In such FPGAs all delays can be accurately accounted and retiming performed

before routing the design. Thus, in the case of mixed or output retiming, there is no problem

in ensuring that the correctly delayed output is routed, considerably simplifying the routing and

retiming problem.

The situation is significantly more complex in the case where interconnect delays can’t
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be computed ahead of routing. In this case, there appear to be two possible strategies to conduct

successful retiming: either treat all nets as point to point or force retiming to attempt to group fanout

nets together.

The first option is straightforward: treat every net as a point to point net, breaking up

fanout as necessary. Then, after routing the design, perform retiming and then select the proper

output for each delay. This technique allows a nondeterministic array to utilize mixed or output

retiming, because it defers the decision on which particular delayed version to route until after

retiming is complete.

There are two limitations of this approach: all the different delay possibilities must be

interchangeable, and it may require significantly more routing resources for high fanout nets.

The first cost is obvious: in order to postpone the decision on which signal to route until

after retiming, it is necessary that the different possibilities be interchangeable. In practice, this

restriction should not be substantial, as all the possible delays still need to be routed, and there does

not appear to be substantial benefits to utilizing different routing resources for the different delays

on the same output.

The second, the need to route fanout independently, is considerably more costly. Unless

it is known before routing that it is possible to share destinations, the router will need to treat all

possible destinations as separate signals. This greatly increases the number of signals to route and

has the effect of causing fanouts to occur earlier in the network, limiting the ability for multiple

destinations to share wires or turns. Without allowing fanout to share turns, the LEON benchmark

requires 7 turns to route sucesfully, but only requires 5 turns to route when fanouts can share turns.2

The other option requires that retiming treat all fanout nets as requiring the same number

of output delays, in addition to any interconnect delay. But, as seen in the example of Figure 6.3,

there are cases where this strategy obviously fails. Thus the retiming tool must first search for all

feedback loops with internal fanout and ensure that the fanout is treated properly.

Even if the retiming tool completes this transformation and uses it to guide routing, the

resulting design will probably require more latency, as now many nets will have more registers than

are strictly required due to the shared output retiming.

Thus, unless the FPGA has deterministic routing delays, it appears best to use input re-

timing instead of mixed or output retiming, to reduce the complexity and routing pressure and to

2This experiment was accomplished by setting the fanout threshold, the number of fanouts required before a net is
routed using the fanout-technique, to an arbitrarily high amount. This change forces all connections to use their own turns
rather than sharing resources.
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prevent excessive design latency from being introduced during the retiming process. Since the

SFRA architecture does not have deterministic routing, input retiming is the superior solution.

6.5 Area Costs

Even for an FPGA with deterministic routing, the area costs may favor input over mixed

and output retiming. There are several cases of FPGAs: Logic cell dominated, wire dominated,

switch dominated, or interconnect dominated.

In a logic-cell dominated FPGA, such as the Xilinx 6200 [81], most of the resources

are spent on the logic cell instead of the interconnect. Such cases generally occur in routing-poor

FPGAs, which are no longer commercially viable. In these FPGAs, reducing the cost of retiming

registers is essential. Input retiming will requireKI registers, while output retiming only needs

KO registers, but requires an additional(K − 1)O outputs. Output retiming is area favorable only

when the(K − 1)O additional output buffers require less area than theKI input registers.

Mixed retiming is probably best suited, as now there are(K/2)I input registers,(K/2)O

output registers, and onlyO additional output buffers driving onto the interconnect. Thus it is more

likely that the additional output buffers will not increase the cost when compared to the savings on

input retiming resources.

For an interconnect dominated FPGA, either wire, switch, or a balanced cost, output

retiming is clearly not favorable. Even in the ideal case, the additional routing requirements for high

fanout nets are substantial, as some nets will need allK outputs to be routed and many nets will

require two or more outputs to be routed. Even just a 10% increase in overall channel requirements is

substantial if routing resources dominate the FPGA’s cost. Additionally, for such arrays, the output

buffer costs will probably dominate, except in the case of very large values ofK, simply because

every output buffer contains numerous controllable switches that, depending on the architecture,

may not be encodable.

Mixed retiming may still be of benefit, however. In the mixed retiming case, the maximum

interconnect requirement is multiplied by 2 in the worst-case fanout, but in practice it should be

substantially less. Yet it still requires a 2x increase in the output buffers themselves. In this case,

it is necessary to balance the interconnect pressure and output buffer size against the savings in

retiming registers to determine if it is preferable to use mixed retiming.

Currently, mixed retiming or input retiming appears the optimum choice for fixed fre-

quency arrays with deterministic routing, depending on the balance between interconnect pressure
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and area costs. For fixed-frequency arrays with nondeterministic routing, it is best to use input

retiming because of the simpler tool problem.

6.6 Retiming and the SFRA

Since the output buffers are a substantial cost for the SFRA, and the routing delays are

nondeterministic, output retiming is clearly infeasible. Even mixed retiming is unattractive, as

increasing the number of output buffers in each channel from 10 to 18 would seriously impact the

resulting area. This is especially noticeable when the SFRA layout contains a 54,000µm2 gap for

the CLB and retiming registers: a space equal to the entire Virtex CLB and associated interconnect.

Even large input retiming chains can be implemented without impacting the resulting area. Thus

output retiming or mixed retiming are clearly unsuitable for use with the SFRA.

6.7 Summary

This chapter reviewed the architecture of retiming registers, introduced a new option

(mixed retiming) and analyzed where one of the three various alternatives: input, output, or mixed

retiming is most appropriate. For the SFRA, input retiming is the clearly superior choice.
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Chapter 7

The Layout of the SFRA

The layout for the critical circuits of the SFRA was constructed using Cadence, targeting

ST Microelectronic .18µm, 1.8 volt, 6 layer metal process. The process is comparable, but not

identical, to the .18µm TSMC and/or IBM processes used by Xilinx for the Virtex-E family of

FPGAs. The layout includes the interconnect drivers, input, and output buffers for the SFRA, as it

is these circuits which define both the critical path and the silicon cost for the SFRA.

The critical path is from the output register, through the output buffer, onto the general

interconnect, a traversal of 9 CLBs in distance, and through an input buffer and to the input register.

The interconnect registers themselves are not on the critical path, as the resulting signal will travel,

at most, the same 9 CLBs but will not pass through an input or output buffer.

Likewise, the critical area is defined by the input, interconnect, and output buffers and

their associated configuration bits. This is because the SFRA’s C-boxes are effectively full crossbars,

with each CLB containing 22 inputs and 10 outputs connecting to an interconnect channel with 120

wires. This layout is not intended to be a complete design, but to create justified timing and area

estimates for further comparison.1

7.1 Layout Strategy

The layout uses 4 layers of interconnect for the bulk of the communication channel, leav-

ing layers 5 and 6 free to bridge signals over the active switchpoints, provide for clock distribution,

and additional power and ground distribution, as seen in Figure 7.1. Metal 1 is used for local signals

1Although the critical path and area are defined by the interconnect, most of the design complexity would be in the
logic cell and verification.
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M2:	 Power/Gnd
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	 Wordlines

3 Signals
2 Bitlines

Power/Gnd
3.84 µm

Basic
Tile

Figure 7.1: The basic layer assigments. The tiles all are designed to tile along the top and bottom,
so the power and ground connections are all routed along the tile boundries. Likewise, the overall
tiles are designed to tile on the left and right sides as well. To create the vertical channel, the tiles
are rotated 90 degrees. Metal 5 and 6 are reserved for routing independant signals over the tiles.

and to provide power and ground connections parallel to the communication channel. Metal 2 is

used for perpendicular signals, including the SRAM wordlines, and the inputs and outputs to the

I/O buffers. Metal 3 provides local versions of the interconnect signals as well as power and ground,

running parallel and underneath to the communication channel. Metal 4 is used for the main inter-

connect channel, with a power, ground, three signals, and two bitlines. Configurations are loaded

from the bitlines. To create the vertical channel, the design is simply rotated 90 degrees.

It is metal 4 which determines the tile pitch. The pieces tile top-to-top and bottom-to-

bottom, so the power and ground supplies, transistor connections, and well contacts are shared

between the tiles. Each metal 4 tile includes power and ground wires (which are shared along the

tile boundary), two bitlines (a signal and its complement) and three communication wires. Since

there are 120 signals in each communication channel it requires 40 vertical tiles to form the com-

plete channel. The layout is staggered so that communication signals are only adjacent to bitlines

or power/ground connections, not other communication lines, limiting crosstalk. Likewise, the

metal 3 signals underneath the channel are always either floating, nonexistent, or contain a normal

(noninverted) copy of the metal 4 signal. Thus a communication line is never coupled to other

communication lines, only copies of itself.

If the channel did not include the bitlines for the configuration, it could be reduced but
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Figure 7.2: The basic circits of the SFRA’s interconnect. Each output is driven onto a series of 40
tristates, with each tristate driving an output wire. Every output tristate in the same row drives onto
the same output wire. The output wires can then be driven onto one of three different interconnect
wires. The general interconnect wires are broken and rebuffered every 3 CLBs.

only by a limited degree as the minimum vertical pitch for the SRAM cell itself is only slightly

smaller. If the channel pitch instead used four communication wires and one bitline, the resulting

C-boxes would be significantly longer and therefore not able to tile as effectively, even though the

switch area itself could be substantially reduced. Likewise, this would be slower as now there would

be cross-coupling between active signaling lines.

Power and ground wires occur on all of the first four layers of metal. The metal 1, 3, and

4 power and ground lines are vertically stacked, with vias continuously connecting the metal 3 and

4 lines. Every tile has a via stack connecting the metal 1 power and ground connections to their

metal 2 and metal 3 counterparts. Every tile also contains at least one well or body connection.

Figure 7.2 shows the basic strategy used in the SFRA’s channel. Each output drives a

inverter which is used to source an entire column of tristates. At most, only one tristate on each wire

is active, driving a local output wire in metal 3. This output wire can then be driven onto one of

three interconnect wires by an interconnect buffer. Thus the output buffer is not quite a full crossbar,

as no two outputs in the same CLB can drive into the same bundle of three wires. This introduces

two levels of somewhat unbalanced heirarchy, but adding a more balanced heirarchy (so that the

primary driver sees a lower amount of fanout) would have added significant area.

The interconnect wires themselves are broken and rebuffered with tristates every 3 CLBs
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and registered every 9 CLBs. This uses the conventional braiding pattern, where 1/3rd of the wires

are broken at each CLB. The interconnect buffers are noninverting, as this balances the critical path.

For inputs, another buffer is used to drive the signal onto a local interconnect segment.

This is a noninverting buffer, as the output wire is capacitively coupled to the interconnect wire

above it. This isolates the input buffer’s capacitive load from the main communication channel. The

local wire then drives a series of tristate buffers, with each tristate’s output being driven upwards to

a final input mux which selects between one of the six possibilities.

The result is a hierarchical network. The output tristates only drive a local signal, which

is then rebuffered onto the general interconnect. Likewise, the input buffers are similarly isolated

from the interconnect, while the main interconnect only sees a small amount of capacitive load, as

no inputs are directly connected to the interconnect wires. The final input mux adds yet another

level of hierarchy, reducing the load on the input buffer’s tristates.

This hierarchy also enables some natural configuration encoding. Each line of output

buffer needs 40 bits of SRAM, rather than 120 if the wires were directly driven. There are an addi-

tional 120 bits used for the tristates which connect the output wires to the interconnect wires. The

same encoding applies to the input buffers, as only 40 bits need to be stored in the channel. Saving

configuration bits themselves is not very significant: the advantage lies in reducing the number of

SRAM cells needed to control the interconnect. Likewise, further encoding configuration bits is not

generally effective, as decoders would require more area than the SRAM cells they replace.

7.1.1 SRAM Cell

The SRAM cell (shown in Figure 7.3), used to control numerous switches in the channel,

is slightly larger than optimal in order to be more usable. The vertical size could be shrunk slightly,

but the size needs to match the pitch of the communication channel. Additionally, both the state and

the complement need to be accessible to control the adjacent switchpoint, a requirement which adds

substantially to the resulting area.

In order to make the control signals available, the layout is slightly convoluted as the top

half of one cross-coupled inverter is located directly over the other inverters bottom half. This way,

the two poly connections can be used to read both the data and complement out of the SRAM cell

and are used as select lines to control tristates.

The select lines are the only signals routed as polysilicon rather than metal. The actual

configuration seldom changes, thus routing the outputs in polysilicon save area as these link directly
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Figure 7.3: The SRAM cell layout, and the corresponding circuit. Only the active, poly, N-wells,
metal 1, and metal 2 layers are shown. Unlike a normal SRAM cell, the top is twisted to enable the
select lines (in polysilicon) to directly control an associated tristate. The SRAM can be tiled on the
top, left side, and bottom, with appropriately mirrored copies.

to the tristate gates. This SRAM cell tiles on only three sides: top, left, and bottom, as the right side

exports the control signals to the tristates used for the rest of the design. When tiled, the power and

ground connections and well contacts are shared between adjacent cells. The SRAM cell is 3.84

µm high and 3.1µm wide, or 1.5 kλ2 in area.

Although using a bitline/wordline structure (rather than a shift chain) to load configura-

tions requires more interconnect, the actual cost is relatively low. Removing a wire from the metal

4 channel would allow the SRAM cell to be reduced by only about .4 microns, given the twisted-

structure employed to export both the value and the complement to the associated tristate. Similarly,

removing one of the bitlines and replacing it with another interconnect signal, although resulting in

a lower area for the C-boxes, results in a larger total area as the horizontal and vertical channels

can’t be tiled as efficiently.

Similarly, although only a single SRAM in an individual input or output buffer is ever on,

using SRAMs instead of decoders saves considerable circuit area. A 6-bit input decoder requires

at least twelve transistors and twelve wires perpendicular to the channel. Since the SRAM cell

is only 6 transistors, and the width is significantly narrower than twelve metal 2 wires, it is more
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Figure 7.4: The output buffer tristate cell layout (with associated SRAM), and the corresponding
circuit. Only the active, poly, N-well, metal 1, and metal 2 layers are shown. The tristate input is
routed vertically in metal 2, while the output is routed through horizontal metal 3 (not shown).

area-effective to use SRAM cells rather than decoders.

7.1.2 Output Buffers

The output buffer consists of three pieces: a single inverter for each output which drives

a column of tristates, the tristates in the output buffer themselves which drive output wires, and a

final set of three interconnect buffers (described in Section 7.1.4) which can drive the contents of

the output wire onto any one of three interconnect wires.

The primary area for the output buffers are the tristate cells and the interconnect buffers.

There are 10 outputs from the CLB (8 data outputs and two dedicated turn outputs), with each

output driving 40 tristate buffers (which drive output wires). Thus there are 400 output tristates in

the complete output buffer, arranged in a 10 by 40 tile.

This design routes the input in on a vertical metal 2 wire, with the output driving a metal

three wire (not shown). It is this metal three wire which is used by the three interconnect buffers

to drive onto the three final interconnect wires. This design can tile on all four sides, with the

right-hand side sharing a metal 2 ground connection.

There is a minor limitation which prevents this from being a full 10 to 120 crossbar:
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Figure 7.5: The input buffer’s tristate layout. Only the active, poly, N-wells, metal 1, and metal 2
layers are shown. The left side contains three tristates. The inputs arrive horizontally in metal 3 (not
shown) and the outputs are processed vertically in metal 2. The other metal 2 connections are from
the other group of tristates for the same input.

no two outputs can drive onto the same output wire. Thus no two outputs can drive to the same

group of three interconnect wires. This output restriction has almost no impact on routability2 but

offers a huge area savings. Without this restriction, there would need to be 1200 output tristates to

implement a full 10 to 120 bit-oriented crossbar. Even if the output tristates are controlled by both

a horizontal and vertical signal (thus requiring only 430 SRAM cells), the number of additional

tristates would be substantial. The tristate-tile would also be larger, as two more signals (a select

and complement) would need to be routed vertically in each tile.

7.1.3 Input Buffers

The input buffer tristates (shown in Figure 7.5) consist of three tristates driven by a single

SRAM cell. The inputs to the tristates are on three metal 3 copies (not shown) of the metal 4 siganls.

The outputs are routed vertically in metal 2. Also in metal 2 are the outputs from the second group

of interconnect tristates. Halfway through the column, the wires are switched over, so that every

tristate only has the output load of 19 other tristates rather than 29.

2In tests, adding this restriction only adds two signals at the point of maximum congestion to the Leon benchmark.
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Figure 7.6: The interconnect buffer layout with associated SRAM cell, and the corresponding circuit
implemented. Only the active, poly, N-wells, metal 1, and metal 2 layers are shown. Both input and
output occur on either metal 3 or metal 4, with the input driving the small inverter used to drives the
large tristate.

At the top of the interconnect buffer is a 6-to-1 mux which selects between one of the six

signals. This structure is used to add an additional layer of hierarchy and to save bits. The bits for

this mux are not located in the interconnect channel, thus the area is not critical as they fit in the

large gap for the CLB. This allows the interconnect buffers themselves to only contain 40 bits per

input, or 880 bits total. It also adds a layer of hierarchy which allows for faster inputs. Otherwise, if

all tristates for an input connected onto a single line, each tristate would see the parasitic output-load

from 119 other tristates.

7.1.4 Interconnect Buffers

The interconnect buffers, shown in Figure 7.6, are used in three separate locations in the

SFRA’s channel: to break and rebuffer the general interconnect, to drive signals from the output-

buffer local interconnect onto the general interconnect, and to drive signals from the general inter-

connect to the ibuf-local interconnect.

These are noninverting tristate buffers rather than inverting tristates. This first serves to

reduce the load on the interconnect, as the inputs are minimum-sized. For the output and input
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Figure 7.7: The SFRA’s CLB tile, and the comparative size of the Xilinx Virtex-E tile and a scaled
HSRA tile containing 4 LUTs. The portions of the SFRA’s tile shown in gray were layed out to de-
termine the critical area and path of the design. The HSRA tile is based on an area of approximately
4 Mλ2 per LUT, scaled to a .18µm process.

buffers, the use of noninverting buffers speeds communication because the input and outputs are

capacitively coupled between the metal 4 and metal 3 signals. On the general interconnect, using

noninverting buffers insures that the slow portion of the output buffer (a low to high transition)

matches the fast portion of the input buffer in all cases.

7.2 Overall Area

The resulting area (shown in Figure 7.7) is approximately 160,000µm2. This is roughly

3.9x larger than the Xilinx Virtex E’s CLB tile (with interconnect), but only 1.5x larger than the

HSRA’s tile. The gap in the tile for the logic cell is sufficient to accomodite the entire Virtex E CLB

tile, suggesting that the SFRA’s CLB plus retiming registers could easily fit in this space.

Although substantial, the area increase is understandable given that the SFRA has much

richer connectivity on the interconnect, as the C-boxes are full crossbars compared to the highly

restrictive topology of the Virtex. Additionally, the SFRA’s pipelined interconnect enables a much

higher throughput operation, which compensates for this increased area cost. This interconnect

structure is also substantially easier to route as Chapter 14 demonstrates.

Although the SFRA is only slightly larger than the HSRA (a comparable fixed-frequency

architecture), the SFRA has a vastly richer interconnect, having vastly more wires and much richer
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connectivity. The HSRA’s base channels were far narrower than the SFRAs and the interconnect

itself is substantially more restricted. At each tree junction, a signal on one branch could only be

routed to the corresponding wire on another branch or up the tree on either one or two wires.

The use of full crossbars for input and output buffers implies that corner-turn networks

are better suited for coarse-grained FPGAs. Crossbars which interconnect 8, 16, or 32 bit words

require substantially fewer switches and configuration bits per wire, leading to wire dominated,

rather than switch dominated structures. As there have been no commercially successful word-

oriented FPGAs with publically-manipulatable toolflows, the SFRA needed to utilize a comparable

bit-oriented structure (the Xilinx Virtex) rather than a word-oriented design.

7.3 Timing Results

Timing was estimated by writing a small C program which created a final netlist with the

appropriate parasitics which was then simulated using the Cadence Spectre circuit simulator. A pro-

gram was used because this allowed for substantially faster experimentation, as different transistor

sizes could be input and immediately evaluated.

The critical path begins at an output register, passes through the output buffer and onto the

general interconnect. Once on the interconnect, the signal passes next to 9 CLBs. At the 9th CLB,

the signal passes through the input buffer and through the final input mux to where it is registered.

All but the registers were directly simulated.

Traversing the output buffer from the register output to the general interconnect requires

approximately.8 ns. The 9 CLBs of general interconnect only require about.4 ns, as the capacitive

load on the wires is very low (only 5 input loads and 5 output loads ever 3 CLBs). Finally, the input

buffer requires another1.1 ns. The total path requires approximately2.3 ns for a signal to traverse.

Budgeting an additional.5 ns for flip-flop setup and clock→Q and another.5 ns for clock

skew, variation, and general margin, a clock period of3.3 ns appears more than reasonable. Thus

the SFRA appears capable of 300 MHz operation.

7.4 Summary

This chapter presents he critical circuits of the SFRA, which define both the critical path

and area (input, output, and interconnect rebuffers). These circuits were constructed in a .18µm

process. The resulting design is approximatly 3.9 times larger than the Xilinx Virtex-E, but able to
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run at a substantially higher (300 MHz) clock rate on all designs. This layout is only slightly larger

than the HSRA’s layout, but offers a much richer and more plentiful interconnect structure. Unlike

the HSRA, the SFRA’s interconnect supports fast routing algorithms.
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Chapter 8

Routing a Corner-Turn Interconnect

Any proposed FPGA architecture requires a toolflow to automatically map designs. Al-

though the SFRA is placement compatible with conventional FPGA designs, it presents novel rout-

ing problems.

The global routing for a corner-turn interconnect requires several passes, all of which are

polynomial time. Before routing, any connection which requires no turns is routed directly. Then

there is an approximation designed to route high-fanout nets in an efficient manner. The next step

is a comprehensive search designed to route all nets using the minimum number of turns. The next

step attempts to route designs using two turns. Finally, a last ripup-and-reroute step is employed.

Detailed routing uses channel-independent packing.

These routing algorithms are designed to minimize the number of turns required to route

a design as the turns, not the wires in the channel, are the critical resource when targeting the SFRA.

A secondary objective is to minimize the additional delays introduced by routing. No concern is

applied to minimizing channel congestion, although additional passes could be applied to reduce

the congestion in hotspots.

When actually routing for the SFRA architecture (described in Chapter 5), the process

first begins with a fixed frequency retiming pass, then a routing pass, and a final retiming pass.

The initial retiming provides priority to the critical path in an attempt to minimize the number of

additional delays required. This is accomplished in a single Java-based tool which reads designs as

.xdl .
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8.1 Interaction with Retiming

Retiming, discussed in detail in Chapter 10, automatically balances interconnect delays

to achieve higher performance. If any given path is not on the critical path, there is no problem if

additional routing delays are incurred. But for logic on the critical path, any delays added by the

router will degrade the latency of the final design.

There are two cases where routing can add additional delays beyond the minimum. During

global routing, each additional taken turn will add one additional cycle of pipelining. The router

itself will only add at most one extra turn. Detailed routing can add delays for each channel, if the

resulting connection goes through an additional segment. Thus, the worst case: an additional turn

and 3 additional segments, will add 4 cycles of delay to a signal.

Although some signals will not be affected by these additional delays, signals on the

critical path require prioritization to prevent additional delays from accruing. Unlike a conventional

array, a bad route will not affect the clock cycle. Instead, a greater level ofC-slow retiming will

be needed to meet the array’s requirements. Thus, the penalty for a bad routing decision is lower.

However it is still of concern, if the application does not have sufficient parallelism, requiring that

some of the issue slots go unused.

In order to prioritize the critical path, an initial retiming is performed. This retiming uses

the best-case delay model, where every net is routed with a single turn, and the detailed routing

never adds unnecessary segment breaks. Thus, it serves two purposes: a measure of routing quality

and a guide for routing decisions.

This forms a mostry-reliable guide for routing decisions: any net on the critical path can

have no delay added, while any net which requires several added delays is not on the critical path.

It is possible for some noncritical nets to have no delays added during the retiming process, but

otherwise the retiming provides an accurate guide for routing decisions.

8.2 The Routing Process

The routing process requires several steps of global routing, followed by a detailed routing

pass. Global routing assigns each net to use a series of turns and channels, while detailed routing

assigns the nets to the actual wires in the channel.

Direct routing, described in Section 8.2.1, first routes all connections which can be routed

directly, without using any turns. After that, fanout routing, described in Section 8.2.2, routes all
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Figure 8.1: The two options considered by fanout routing, (A): starting horizontally and branching
vertically and (B), starting vertically and branching horizontally.

high fanout nets, enabling multiple destinations to share the same turn. The third step, pushrouting,

is described in Section 8.2.3. This attempts to route all connections using a single turn. The fourth

step, zig-zag routing, is summarized in Section 8.2.4. This attempts to route remaining connections

using two turns. The final step, ripup and reroute (Section 8.2.5) attempts to route any remaining

connections.

Once the global routing is complete, a final detailed routing pass (Section 8.2.6) is used

to assign each signal to wires in the channels using channel independant packing.

8.2.1 Direct Routing

Some connections require no global routing as they can go directly from source to desti-

nation without passing through any switches. These connections are marked and excluded from the

rest of the routing process.

Since the corner-turns themselves are the limited resource, it is obvious that any direct

connection should be routed without requiring any turns. For a net with fanout, where some con-

nections may be routed directly, the direct nets are routed and removed from further consideration.

This step is linear in the number of nets.

8.2.2 Fanout Routing

The later pushrouting step represents a comprehensive search and if a solution exists, it

will be discovered. However it is inefficient, because every point-to-point connection is routed
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Figure 8.2: (A): The two possible single-turn routes. (B): An initial configuration before pushrout-
ing the connection between the gray boxes. (C): The configuration after pushrouting. In this exam-
ple, each switchpoint supports only a single turn.

independently. Thus, to improve the efficiency of later routing, an initial attempt is made to route

all fanout nets, in order to share turn resources between destinations.

Fanout routing begins by sorting all nets in the order of highest to lowest degree of fanout.

The algorithm attempts to route all nets above a minimum degree1, by first sorting all the nets

(O(n lg n) in the number of nets) and then evaluating two possibilities: starting horizontally, with

turns onto the vertical tracks, or starting vertically with horizontal turns, as seen in Figure 8.1.

The two possible candidates are evaluated (linear in the number of nets), and the available

candidate which utilizes the least number of turns is selected. Since these choices are locked down,

some turns are reserved for later steps, limiting the number which can be allocated during this phase.

Any net not routed is left for the later steps.

Due to the initial sort required, this step requiresO(n lg n) time.

8.2.3 Pushrouting

Pushrouting attempts to route all remaining nets using only a single turn. The goal of

pushrouting is to minimize the number of turns required, without concern towards wire conges-

tion.2. Since pushrouting ensures that each net is only routed using a single turn, pushrouting will

provide an optimal route in terms of resource usage, if one exists, and if only point-to-point nets are

1In tests, four
2In practice, the final SFRA architecture is extremely wire rich and therefore congestion is not a significant issue on

the benchmarks.
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considered.3

Pushrouting begins by sorting the remaining nets in terms of distance and priority. Short

nets are routed first, as there is less freedom to zig-zag route these nets later. Nets on the critical

path are preferentially routed to ensure that the minimum amount of delay is added by the router.

This sort requiresO(n lg n) time to complete.

After sorting, each net is routed by considering the two possible one-turn routes. If one

of the routes is available, it is selected for the net. If both are available, one is selected. As will be

seen in the search phase, it does not matter which choice is selected.

If neither route is free, pushrouting begins a depth-first search to determine if there exists

a series of moves which can free one of the two possible turn locations, as seen in Figure 8.2. Since

there are only two options for any given net, the one currently employed and the one it can move to,

this search is comprehensive. In the worst case, it will examine all already routed nets which may

be moved to create a route for this net. Thus, to route thekth net, it may require examining allk−1

nets which were previously routed. Thus, the worst-case running time isO(n2) for pushrouting.

If there is no fanout, and there exists a solution where all nets are routed using a single

turn, ignoring channel congestion, pushrouting will discover this route. This is due to the compre-

hensive nature of the pushroute search. Attempting to route theN th net will succeed only if either

the net can be directly routed, or if there exists a configuration of the previousN − 1 nets which

allows theN th to be routed, a configuration which is discovered by the depth first search.

8.2.4 Zig-zag (2 turn) routing

After pushrouting, all remaining unrouted nets are “zig-zag” routed. For each net, all

possible two-turn routes are examined, as seen in Figure 8.3. These routes represent minimum

distance and minimum plus one number of turns. Each net is examined to determine which possible

route is available. If one or more is available, a random route is selected and used for routing.

This phase is obviously better adapted for routing longer nets, as there is significantly

more freedom making it more likely that an available route will be discovered. Thus the preference

during pushrouting to route short nets first. It is also linear in the number of nets and proportional

to the average length of the unrouted net. Since, for a given array, there is a maximum possible

distance that any net may traverse, this step can be consideredO(n).
3Pushrouting does not create an optimal route when fanout is considered, as pushrouted destinations do not share

switchpoints.
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Figure 8.3: (A) The possible zig-zag routes which start horizontally and (B) The possible zig-zag
routes which start vertically.

8.2.5 Randomized Ripup and Reroute

After zig-zag routing, there may be a few routes left unrouted. The solution is an iterative

ripup and reroute process. For each net, the possible pushroutes and zig-zag routes are examined,

and, if free, selected. Otherwise, a search begins at the two possible pushroute locations. A random

net is selected along the pushroute search path and ripped-up, allowing the original net to be routed.

The random selection attempts to select longer nets, as these nets are more amenable to zig-zag

routing. This process iterates for several passes, but is designed to halt after a fixed amount of

effort.

8.2.6 Detailed Routing

After global routing is completed, detailed routing proceeds. Since the C-boxes are full

crossbars, detailed routing is simply channel independent packing, a well known algorithm with

O(n lg n) performance. The detailed router is slightly sub-optimal as it selects the first available

channel for a given wire. This allocation routine is optimal if all wires are broken using the same

schedule (no braiding), but as the target is braided this reduces efficiency slightly.

This detailed routing has a fixed overhead based on the wire-break schedule. If the wires

have breaks every CLB, then detailed routing will not impose any channel overhead. If the breaks

are everyx CLBs, then detailed routing might require a factor ofx more additional wires in the

worst case, where every connection is a single CLB long. In practice, the detailed routing overhead

is considerably lower, as is seen in the following section.
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8.3 Routing Quality & Analysis

The router for the SFRA architecture was parameterized to support a various number of

turns, channel capacity, wire-break schedule, and whether or not to use the additional Xilinx BX/BY

inputs4 as turns. In order to gauge the effects on the number of turns, the router was selected to target

the SFRA architecture, including the break schedule (breaks every 3 CLBs, registers every 9 CLBs,

carry-chain registered every 4 CLBs) and the BX/BY inputs as turns. When the number of turns are

reported, this includes the use of BX/BY inputs which provide an effective minimum of 4 turns.

In general, the router’s primary goal is to minimize turn usage. The SFRA’s channel

capacity is very large, but the turns represent a critical resource. The next objective is to minimize

additional delay, as measured by the finalC-slow factor (a lowerC-slow factor represents a better

result).

In effectively all cases, the pushrouting proves to be the most effective pass, with zig-zag

and the randomized cleanup routing being far less successful. If the global routing fails, detailed

routing and final retiming are aborted. Additionally, a minor bug prevents final retiming for nets

which utilize zig-zag routing.

The router itself is very fast, requiring less than 20 seconds on the worst-case benchmark

with the most difficult parameters. Most of the toolflow time is dominated by the retiming operations

and file input, not routing. This router and associated retiming tool is written in java and accepts

post-placement.xdl files from the Xilinx toolflow.

The router in the following experiments ignores the minor restriction on outputs (no two

outputs in the same CLB can drive onto the same group of three wires), as the minor restriction was

added later. For the Leon benchmark, the additional restriction increases the resulting congestion

by only 3 wires in both channels, so the effect of this restriction is very minor.

8.3.1 AES

The global routing results for the AES benchmark are summarized in Tables 8.1 and 8.2.

Both versions of the AES benchmark can route easily with just the turns provided by the BX/BY

inputs. In this benchmark, none of the BX/BY inputs are used for actual data, allowing the router

complete freedom.

As expected, the hand-placed benchmark has a higher level of congestion resulting from

the layout. The horizontal congestion results from the subkey generation squeezing half the dataflow

4These are the inputs to the F5/F6 mux and the carry-chain in the Virtex architecture.
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# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 988 119 544 0 0 0 42 50
6 988 119 544 0 0 0 42 50
5 988 119 544 0 0 0 42 50
4 988 119 544 0 0 0 42 48

Table 8.1: Global Routing the hand-placed AES benchmark. The number of turns include the use
of 4 BX/BY inputs to implement 4 turns.

# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 824 134 575 0 0 0 31 43
6 824 133 579 0 0 0 31 40
5 824 125 611 0 0 0 32 38
4 824 100 714 0 0 0 32 33

Table 8.2: Global Routing the automatically-placed AES benchmark. The number of turns include
the use of the 4 BX/BY inputs to implement 4 turns.

into 1/5th the chip, with the vertical congestion resulting from the subkeys being delivered from the

subkey generation to the encryption datapath.

An interesting observation is that the Xilinx placement tool does a reasonable job of align-

ing various components: although the hand-placed benchmark has more items aligned horizontally

or vertically, the Xilinx router is competitive as, viewed on the LUT level, the AES benchmark has

relatively little structure.

Likewise, Tables 8.3 and 8.4 demonstrate the final results. The hand-layout is slightly

superior, needing less aggressive retiming to meet the performance goals, at the cost of higher

Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 15 42,50 45,54 24
6 15 42,50 45,54 24
5 15 42,50 45,53 24
4 15 42,48 46,51 24

Table 8.3: Detailed Routing the hand-placed AES benchmark
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Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 19 31,43 37,48 26
6 19 31,40 36,42 27
5 19 32,38 35,41 27
4 19 32,33 37,36 27

Table 8.4: Detailed Routing the automatically-placed AES benchmark

# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 3520 54 77 0 0 0 18 18
6 3520 54 77 0 0 0 19 19
5 3520 54 77 0 0 0 20 20
4 3520 53 105 16 0 0 21 21

Table 8.5: Global Routing for the hand-placed Smith/Waterman benchmark. The number of turns
include the use of BX/BY inputs.

congestion in the heart of the routing channel.

8.3.2 Smith/Waterman

Global routing of the Smith/Waterman benchmark is summarized in Tables 8.5 and 8.6.

The hand-placed version shows a great deal of aligned structure which the Xilinx placement tool is

unable to fully capture, as viewed by the greater number of signals which can’t be routed directly.

Only 48 XB/YB inputs were utilized, allowing most every XB/YB input to realize a turn.

# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 1600 234 927 0 0 0 42 28
6 1600 233 932 0 0 0 42 27
5 1600 218 1005 0 0 0 41 26
4 1600 181 1227 65 0 10 39 27

Table 8.6: Global Routing for the automatically placed Smith/Waterman benchmark. The number
of turns include the use of BX/BY inputs.
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Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 19 18,18 18,18 31
6 19 19,19 19,19 31
5 19 20,20 20,20 31
4 19 21,21 21,21 failed

Table 8.7: Detailed Routing the hand-placed Smith/Waterman benchmark.

Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 25 42,28 43,32 37
6 25 42,27 44,34 37
5 25 41,26 42,32 37
4 25 39,27 40,29 failed

Table 8.8: Detailed Routing the automatically-placed Smith/Waterman benchmark.

The failure of the ripup-and-reroute on the automatically-placed version for 4 turns is

probably due to small “locking” structures where several signals all compete for the same minimum-

cost routes. Future work could investigate selecting non-minimum-length routes in these cases, to

enable designs to route when there are a restricted number of turns.

Detail routing is summarized in Tables 8.7 and 8.8. The detailed router adds very little

overhead on channel capacity, and a minor increase in theC-slowing required. As expected, the

hand-placed version’s better alignment translates to lower latency, as a significantly lesser degree of

C-slowing is required to meet the array’s constraints.

8.3.3 Synthetic Microprocessor Datapath

The global routing results for the synthetic datapath are summarized in Tables 8.9 and

8.10. As expected, some of the alignment in the hand-placed version is lost during the automatic

placement process. Additionally, the auto-placed benchmark is the hardest for the router to com-

plete, requiring an effective 6 turns per CLB (although 138 turns are unusable because of the use of

XB/YB inputs, as the rotator uses the F5 and F6 muxes to save area).

Detailed routing, summarized in Tables 8.11 and 8.12, demonstrates a very low overhead
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# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 1050 61 279 0 0 0 24 51
6 1050 61 279 0 0 0 24 51
5 1050 61 279 0 0 0 23 51
4 1050 60 309 0 0 0 24 51

Table 8.9: Global Routing for the hand-placed synthetic datapath. The number of turns include the
use of BX/BY inputs.

# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 802 77 456 0 0 0 37 49
6 802 76 484 0 0 0 38 48
5 802 73 539 6 0 26 37 45
4 802 65 581 7 1 110 30 41

Table 8.10: Global Routing for the automatically-placed synthetic datapath. The number of turns
include the use of BX/BY inputs.

Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 13 24,51 27,51 21
6 13 24,51 27,51 21
5 13 23,51 25,51 21
4 13 24,51 26,51 20

Table 8.11: Detailed Routing for the hand-placed synthetic datapath

Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 16 37,49 38,54 24
6 16 38,48 39,50 23
5 16 37,45 38,49 failed
4 16 30,41 32,45 failed

Table 8.12: Detailed Routing for the automatically-placed synthetic datapath
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# of Direct Fanout Pushroute Zigzag Ripup Failed Horizontal Vertical
Turns Routed Routed Routed Routed Routed to route Congestion

7 8480 696 3436 0 0 0 70 81
6 8480 691 3492 0 0 0 65 75
5 8480 645 3825 1 0 0 63 67
4 8480 496 5241 62 7 6 66 59

Table 8.13: Global Routing for the LEON SPARC core. The number of turns include the use of
BX/BY inputs.

Number of Initial Global Detail Final
Turns Retiming Congestion Congestion Retiming

7 45 70,81 77,87 65
6 45 65,75 72,81 67
5 45 63,67 67,74 failed
4 45 66,59 68,65 failed

Table 8.14: Detailed Routing the Leon SPARC Core.

and reasonably low congestion. Likewise, the hand-placed results are lower latency, as the hand-

placement gives a design which the router can map more effectively.

8.3.4 Leon 1

Leon represents the most difficult case for the SFRA router, both in time and complexity,

due to its large, unstructured, and synthesized nature. Yet even for a 5 turn array, consisting of the 4

BX/BY inputs forming 4 effective turns, and an additional turn, the design routes almost exclusively

with pushrouting. Likewise, the detailed router doesn’t occupy the entire 120 wire channel, even

when given complete freedom. Using the BX/BY inputs as turns restricts 522 turns from being

utilized. Half of the “direct” routed signals are feedback loops where a CLB output is routed back

to another input on the same CLB. This benchmark requires 20 seconds to route with 4 turns, 12

seconds to route with 6 turns.

It’s also important to observe that the probabilistic ripup-and-reroute phase is relatively

ineffective. This is largey due to the existence of small structures where a small number of routes

can only be mapped to the same turn resource. As such, there are no minimum distance routes

which can satisfy all the constraints.
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8.4 Summary

This chapter describes the new routing algorithms needed for a corner-turn architecture.

Routing for the corner-turn architecture is very fast, utilizing polynomial time heuristics for global

routing and channel-packing for detailed routing. The multiple phases of global routing are less

thanO(n2) in the worst case, with most steps requiringO(n lg n) time. These steps also require

only linear memory usage. Even the largest benchmark requires less than 20 seconds to route in the

worst case, 12 seconds when targeting the final SFRA’s parameters.

The final routing quality, when targeting the SFRA architecture, The results when target-

ing the basic SFRA architecture are good, enabling all benchmarks to be routed with the SFRA’s

final parameters of 6 turns and 120 wire channels.
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Chapter 9

Other Implications of the Corner-Turn

Interconnect

In addition to fast routing algorithms and pipelined interconnect, the corner-turn intercon-

nect offers several other advantages, including defect tolerance, fixed routing overhead, and asym-

metric routing channels. Additionally, it is reasonably straightforward to embed memory blocks

and to provide hardware-assisted detailed routing.

9.1 Defect Tolerance

Any defective resource can be trivially mapped around, if an identical but unused resource

is available to replace it and if the defect does not otherwise cause operational side-effects.

Since the C-boxes in a corner-turn FPGA remain active as full crossbars, if there is a

spare bundle of connections, any breaks in the interconnect can be routed around by transposing

connections. If the bundle is located on the innermost routing track, most breaks and stuck-off de-

fects in the C-boxes themselves can also be routed around, by ensuring that any affected connection

is rerouted onto the innermost bundle. Figure 9.1 shows how a connection, which would utilize a

broken interconnect point, can be routed around. This same technique can route around stuck-on

and stuck-off connections from the local hierarchy to the general interconnect as well as problems

with the general interconnect’s rebuffering.

Of greater interest is whether stuck-on faults in the C-boxes can be avoided. The ability

to transpose connections depends on the nature of the fault. If the fault would cause no other side

effect if maintained, such as a stuck-on buffer driving an otherwise unused line, than the affected
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(A) (B)

Figure 9.1: (A) The gray signal is affected by the interconnect break marked with an X. (B) The
gray signal is now rerouted to avoid the break.

(A) (B)

Figure 9.2: (A) The gray signal is affected by the stuck-on interconnect point marked with an X.
(B) The gray signal is now rerouted to use the stuck-on point.

connection can still be transposed onto the spare bundle.

If all wires break in the same locations in a channel, then the stuck-on fault can be coun-

tered by transposing any affected connections, so that the stuck-on fault becomes part of the normal

routing. This requires uniform breaking, as repairing such defects requires that arbitrary connections

be transposed onto the flawed resource instead of from the flawed resource onto unused resources.

This is shown in Figure 9.2.

The actual logic required to manipulate a design for a particular defective array is rel-

atively small, although it might be best performed in software. All affected wires can simply be

transposed to the spare channels, before the configuration is loaded, or a small piece of logic for

each channel could pattern-match configurations, which match defective connections and transpose
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them onto spare channels.

As interconnect represents at least 3/4 of the resources in the SFRA architecture, and this

scheme allows one defect to occur in each independent routing channel, the actual number of defects

tolerated is substantial when considered over the entire die.

9.2 Memory Blocks

Semantically,C-slowed RAM behaves somewhat differently from conventional RAMs,

as the high address bits are derived from aC index counter to isolate each thread’s memory. More

details of these semantics are included in Chapter 10.

When embedding memory blocks in a fixed-frequency FPGA, there are two options: ex-

pose all the address bits and require that the counter be externally generated, or hide the upper

address bits and use an internal counter.

Exposing all the address bits gains maximum flexibility, but requires more interconnect

resources, as now more address bits need to be routed to each memory block. One useful possibility

is to provide a dedicated counter for each column of memory blocks, which drives onto vertical

wires. Since most memories will operate on the sameC-factor, all memory block can safely share

the same counter, even though the counter is out of phase with respect to the different blocks.

This also reduces the general interconnect load, as the high bits are now primarily driven

by the vertical column, with no switches being used to route the connections. Especially in a corner-

turn network, where switches are a limited resource, sharing the switch capacity among all memory

blocks offers substantial savings.

Even without a dedicated counter in each column, the interconnect costs will, in practice,

be relatively low. Due to the high fanout of such counters, the router will preferentially route the

tread count using a single switch per bit, onto the vertical channel associated with each stripe of

memory.

Thus although exposing all address wires for the memories may result in additional inter-

connect cost, the total cost will be reasonable as the router will tend to insure that each bit in the

counter only uses one switch per column of memories, due to the high-fanout nature of these counter

bits. This suggests that large memory blocks should expose all address bits rather than hiding the

upper bits through the use of internal counters.
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9.3 Hardware Assisted Routing

Although there is less clear benefit for hardware-assisted routing, given that the corner-

turn structure has fast global and detailed routing algorithms, a version with depopulated C-boxes

might benefit from hardware assisted routing.

The scheme, proposed in Huang et al [33], relies on the observation of limited crossover

points and parallel searching of a large search space. Since global routing has very limited freedom,

and it is unclear how to transpose (rather than rip-up) connections in hardware, this scheme is not

easily adapted to global routing.

Detailed routing, however, is probably adaptable to the Huang scheme, albeit with a mod-

ification. The basic concept of the scheme is to search all possible routes in parallel with a signal

broadcast from the source and to randomly remove an existing set of signals when conflicts arise.

If each rebuffering connection in the interconnect has an additional bit to record when

a connection is used, as well as an additional bit for each connection between an output and the

general interconnect, the Huang scheme can be employed to perform detailed routing.

In this scheme, an output which wishes to be routed broadcasts a search signal, which

is then propagated on all connections where no signal is currently active. If this signal reaches the

destination, this is used to guide allocation of the signal. Otherwise, a random channel is victimized.

This may be useful if depopulated C-boxes are utilized, but as the current intercon-

nect uses fully populated C-boxes, enabling fastO(n lg n) software routing, it is unclear whether

hardware-assisted routing is desirable when using a corner-turn interconnect.

It may also be possible to perform hardware-assisted global routing during the pushroute

phase, although it will clearly be less efficient than pushrouting. For hardware-assisted routing, the

two possible global routes are examined. If both are free, one is randomly allocated. If neither

global route is free, a random route is selected for victimization.

This random victimization will act as a random walk along the possible pushroute search

path. Thus if there is only a minor amount of routing pressure, it should be possible to find a

solution. If routing pressure is more significant, this mechanism will generally fail as it is far less

effective than a comprehensive search.
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9.4 Heterogeneous channels

It is commonly observed that most FPGA designs follow Rent’s Rule[39, 21]. In this for-

mulation, the bisection bandwidth of the design is relatively reduced the farther up in the hierarchy.

Yet as designs get larger, the overall interconnect requirement increases.

When such designs are placed with conventional placement tools, the center of the array

may be more congested than the periphery. This becomes more prevelant when an FPGA, as part

of a larger system-on-a-chip, uses a non-rectangular layout. Thus it has been suggested that FPGAs

might have heterogeneous channels [29], where the X and Y channels are of significantly different

capacity. Additionally, it has been considered (although Betz and Rose argue against this in [10])

that an FPGA could contain more routing resources near the center.

A corner-turn interconnect can easily support such channels. As the C-boxes remain as

full crossbars, reducing the capacity of a given channel has no effect on the other channels in the

array or the routing problem. Thus the outside channels can be reduced in capacity without a

significant effect on the rest of the design.

Additionally, the layout used by the SFRA is highly adaptable to a variable channel-width,

as the channel itself consists of a replicated series of tiles. By removing the tiles in the middle which

represent a bundle of wires, the channel can be reduced in capacity without permuting any other

portion of the layout. Thus unlike previous architectures, a corner-turn network can easily support

this style without serious impacting either the toolflows or the layout complexity.

9.5 Summary

Beyond fast-routing and pipelinable interconnect, a corner-turn architecture has some

other implications. This style of interconnect can tolerate numerous defects in the channel by sim-

ply transposing around faults. Memory blocks can easily be integrated into this structure, without a

significant concern for the extra address bits required for aC-slowed memory block. There is some

potential for hardware-assisted routing if this feature is desirable. Finally, this style of interconnect

can easily support heterogeneous channels.
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Part II

Retiming
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The second part of this thesis deals with the issues involved in retiming, repipelining, and

C-slow retiming. In order for a fixed-frequency array to meet the timing requirements, there must

be mechanisms to pipeline designs. Likewise, this pipelining can also be used to improve designs

targeting conventional FPGAs.

This part begins, in Chapter 10, with a discussion of retiming andC-slowing, by review-

ing the necessary transformations. Retiming can only improve performance by finding an optimal

location for every register, whileC-slowing adds additional registers which retiming can then place.

Chapter 11 then demonstrates the power ofC-slowing and retiming, by applying it to

a microprocessor architecture. This transformation, whether manually or automatically applied,

results in a multithreaded microarchitecture capable of higher performance operation.

Given the semantic framework, Chapter 12 evaluates the effects of hand-C-slowing on

the three benchmarks developed for this thesis when targeting the Xilinx Virtex. This study also

evaluates the placement sensitivity of the Xilinx, showing how tool quality degrades both throughput

and latency. BothC-slowing and hand placement offer substantial performance gains.

Finally, Chapter 13 introduces and evaluates an automatic tool toC-slow Xilinx designs.

This tool, which shares the same framework with the rest of the SFRA toolflow, can automatically

boost designs targeting the Xilinx Virtex family of FPGAs. Only a minor modification was needed

to allow this tool to target the SFRA. In many cases, throughput can be automatically doubled when

targeting the Virtex. This tool was evaluated on the four computational benchmarks, and the results

were also compared with the handC-slowing employed on the three hand-mapped designs.
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Chapter 10

Retiming, C-slow Retiming, and

Repipelining

Retiming, a process originally developed by Leiserson et al [41], is a process which can

automatically increase the clock rate of a circuit by finding an optimal placement for all registers

to minimize the critical path. Two variants, repipelining andC-slow retiming, offer the ability to

reduce the critical path still further by adding additional registers before retiming proceeds.

Although an important optimization for conventional FPGAs, retiming is a critical frame-

work for developing fixed-frequency architectures. In order to meet the array’s fixed-frequency, a

design must ensure that every path is properly registered. Repipelining orC-slow retiming enables

a design to be transformed to meet these constraints. Without automated repipelining orC-slow

retiming, the designer must manually ensure that these constraints are met by the design.

Thus, for a complicated design targeting a fixed-frequency architecture, automatedC-

slowing or repipelining is essential. Without this transformation, designers are restricted to using

tools or creating designs which meet the architectural constraints without modification. Such a

restriction is obviously unacceptable.

AlthoughC-slow retiming can be applied to both conventional FPGAs and fixed-frequency

architectures, the process is considerably faster (O(n2) rather thanO(n2 lg n)) and requires less

memory (O(n) rather thanO(n2)) when targeting a fixed-frequency architecture like the SFRA

instead of a conventional architecture like the Virtex.



84

Condition Constraint

normal edge fromu → v r(u)− r(v) ≤ w(e)
edge fromu → v r(u)− r(v) ≤ w(e)− 1
must be registered
edge fromu → v r(u)− r(v) ≤ 0 and
can never be registered r(v)− r(u) ≤ 0
Critical Paths r(u)− r(v) ≤ W (u, v)− 1
must be registered for all u, v such thatD(u, v) > P

Table 10.1: The constraint system used by the retiming process.r(u) is the lag computed for each
node,w(e) is the initial number of registers on an edge,W (u, v) is the minimum number of registers
betweenu andv, andD(u, v) is the critical path betweenu andv

10.1 Retiming

Leiserson’s retiming treats a synchronous circuit as a directed graph, with delays on the

nodes representing combination delays and weights on the edges representing registers in the design.

An additional node represents the external world, with appropriate edges added to account for all

the I/Os. Two matrices are calculated,W andD, that represent the number of registers and critical

path between every pair of nodes in the graph. Each node also has a lag valuer that is calculated by

the algorithm and used to change the number of registers which will be placed on any given edge.

Conventional retiming does not change the design semantics: all input and output timings remain

unchanged, while minor design constraints are imposed on the use of FPGA features. More details

and formal proofs of correctness can be found in Leiserson’s original paper [41].

A graphical example of the results is shown in Figure 10.1. The initial graph has a critical

path of 5, which is clearly non-optimal. After retiming, the graph now has a critical path of 4. Yet

the I/O semantics have not changed, as any input will still require 3 cycles to affect the output.

In order to determine whether a critical pathP can be achieved, the retiming algorithm

creates a series of constraints to calculate the lag on each node. All these constraints are of the form

x − y ≤ k that can be solved inO(n2) time by using the Bellman/Ford shortest path algorithm.

The primary constraints ensure correctness: no edge will have a negative number of registers, while

every cycle will always contain the original number of registers. All IO passes through an interme-

diate node insuring that input and output timings do not change. These constraints can be modified

to ensure that a particular line will contain no registers or a mandatory minimum number of registers

to meet architectural constraints without changing the complexity of the equations.
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Figure 10.1: (A): A small graph before retiming. The nodes represent logic delays, with the inputs
and outputs passing through mandatory, fixed registers. The critical path is 5. The input and output
registers can not be moved. (B): The same graph after retiming. The critical path is reduced from 5
to 4. Yet the I/O semantics have not changed, as it still requires three cycles for a datum to proceed
from input to output.

A second set of constraints attempts to ensure that every path longer than the critical

path will contain at least one register, by creating an additional constraint for every path longer

than the critical path. Calculating theses constraints requires solving the “all-pairs shortest-path”

problem to determine the critical path from every node to every other node. The actual constraints

are summarized in Table 10.1.

This process is iterated to find the minimum critical path that meets all the constraints.

The lag calculated by these constraints can then be used to change the design to meet this critical

path. For each edge, a new register weightw′ is calculated, withw′(e) = w(e)− r(u) + r(v).

In practice, the Bellman/Ford process can be radically shortcutted. If the solution exists,

the constraint solver tends to converge very quickly. Thus, if an iteration does not change any of the

edge weights, a solution has been discovered and the process halts. Thus without a practical loss in

quality, The process can arbitrarily halt after a few dozen or hundred iterations.

A second optimization is to utilize the last computed set as a starting point.1 In conven-

tional retiming, the Bellman/Ford process is invoked multiple times to find the lowest satisfiable

critical path, while fixed-frequency repipelining orC-slow retiming uses the Bellman/Ford algo-

rithm to discover the minimum amount of additional registers needed to satisfy the constraint. In

both cases keeping the last failed or successful solution in the data structure provides a starting point

which can significantly speed the process if a solution exists.

The biggest problem with the Leiserson approach is the computation of theW andD

1This optimization was discovered by accident, when the previous solution was not erased from the data structure.
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matrices for general retiming.2 The simplistic approach, using Dijkstra’s algorithm, requiresO(n3)

time andO(n2) space. Solving the all-pairs shortest-path problem, which needs a matrix represen-

tation, still requiresO(n2lg(n)) time andO(n2) space.

Retiming in this form imposes only minimal design limitations: there can be no asyn-

chronous resets or similar elements, as it only applies to synchronous circuits. A synchronous

global reset imposes too many constraints to allow effective retiming. Local synchronous resets and

enables just produce small, self loops that have no effect on the correct operation of the algorithm.

Most other design features can be accommodated simply by adding appropriate con-

straints. As an example, all tristated lines can not have registers applied to them, while mandatory

elements, such as those seen in synchronous memories or mandated I/O registers, can be easily

accommodated by mandating registers on the appropriate nets.

Memories themselves can be retimed like any other element in the design, with dual

ported memories treated as a single node for retiming purposes. Memories that are synthesized

with a negative clock edge (to create the design illusion of asynchronous memories) can either be

unchanged or switched to operate on the positive edge with constraints to mandate the placement of

registers.3

Initial register conditions can also be calculated if desired, but this process is NP hard in

the general case. Cong and Wu [20] have an algorithm that computes initial states by restricting the

design to forward retiming only, so it propagates the information and registers forward throughout

the computation. This is because solving initial states for all registers moved forward is straightfor-

ward, but backward movement is NP hard,4 as it reduces to satisfiability.

Likewise, the computing of initial conditions proves very costly in practice. In the ASIC

model, all flip-flops start in an undefined state, and the designer must create a small state machine

in order to reset the design. FPGAs, however, have all flip-flops start in a known, user defined state.

When a dedicated global reset is applied, all theses flip-flops are reset into this known state. This has

serious implications in retiming. If the decision is made to utilize the ASIC model, then retiming is

free to safely ignore initial conditions because explicit reset logic in state machines will still operate

correctly as this is reflected in the I/O semantics. However without the ability to violate the initial

conditions with an ASIC-style model, retiming quality often suffers, as additional logic is required

or limits are placed on where flip-flops may be moved in a design.

2Fortunately, as discussed later, this step is not required for fixed-frequency retiming.
3For some cases, this may produce a set of unsolvable constraints, thus requiring that the memory remain a negative

edge device.
4And may not posses a valid solution for nonsensical cases.
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An important question is how to deal with multiple clocks. If the interfaces between the

clock domains are registered by clocks from both domains, it is a simple process to retime the

domains separately, with mandatory registers on the domain crossings, as the constraints placed on

the I/Os ensure correct and consistent timing through the interface.

10.2 Repipelining

Repipelining is a minor addition to retiming which can increase the clock frequency for

feed forward computations at the cost of additional latency through the addition of pipeline stages.

Unlike retiming orC-slow retiming, repipelining is only beneficial when a computation’s critical

path contains no feedback loops.

Feed forward computations, ones which contain no feedback loops, are commonly seen

in DSP kernels and other tasks. As an example, the Discrete Cosine Transform (DCT), Fast Fourier

Transform (FFT), and Finite Impulse Response filters (FIR) can all be constructed as a feed-forward

pipeline. Although the entire application may contain feedback, if the retimed is only used to supply

feed-forward kernels which are coupled with a microprocessor or other logic, the design can still be

repipelined to improve throughput at the cost of additional pipeline stages.

Repipelining is derived from retiming in one of two manners, both of which create se-

mantically equivalent results. The first technique involves adding additional pipeline stages to the

start of the computation and letting retiming rebalance the delays and creates an absolute number of

additional stages.

If the designer wishes to addP pipeline stages to a design, all inputs simply haveP delays

added before retiming proceeds. Since retiming will develop an optimum placement for the resulting

design, the new design containsP additional pipeline stages which are scattered throughout the

computation.

Another option is to simply remove the cycle between all outputs and inputs, with con-

straints to insure that all outputs share an output lag and all inputs share the same input lag. This

way, the inputs and outputs are all synchronized but retiming can add an arbitrary number of addi-

tional pipeline registers between the inputs and outputs. In order to place a limit on these registers,

an additional constraint must be added to ensure than, for a single input/output pair, no more thanP

pipeline registers are added. Depending on the other constraints used in the retiming process, this

may add fewer thanP additional pipeline stages, but will never add more thanP stages.



88

FPGA Feature Effect on Effect on Effect on
Retiming Repipelining C-slowing

Asynchronous Global
Set/Reset Forbidden Forbidden Forbidden
Synchronous Global Effectively Effectively
Set/Reset Forbidden Forbidden Forbidden
Asynchronous
Reset Forbidden Forbidden Forbidden
Synchronous Express as
Reset Allowed Allowed logic
Clock Express as
Enables Allowed Allowed logic
Tri-state
Buffers Allowed Allowed Allowed
Memories Allowed Allowed Increase Size
SRL16 Express as

Allowed Allowed logic
Multiple Clock Design Design Design
Domains Restrictions Restrictions Restrictions

Table 10.2: The effects of various FPGA and design features on retiming andC-slow retiming

10.3 C-slow Retiming

Unlike repipelining,C-slow retiming can be applied to designs which contain feedback

loops. C-slowing enhances retiming by simply replacing every register with a sequence ofC sep-

arate registers before retiming occurs. The resulting design operates onC distinct execution tasks.

Since all registers are duplicated, the computation proceeds in a round-robin fashion. Figure 10.3

illustrates this transformation.

The easiest way to utilize aC-slowed block is to simply multiplex and demultiplexC

separate data streams. However a more sophisticated interface may be desired depending on the

application.

One possible interface is to register all inputs and outputs of aC-slowed block. Because of

the additional edges retiming creates to track I/Os and to ensure a consistent interface, every stream

of execution presents all outputs at the same time, with all inputs registered on the next cycle. If part

of the design isC-slowed, but all operate on the same clock, the resulting design can be retimed as a

complete whole while preserving all other semantics. These observations are utilized in Chapter 11
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Figure 10.2: (A): The example from Figure 10.1 which is converted to2-slow operation. The critical
path remains unchanged, but now the design will operate on two independant streams in a round-
robin fashion. (B): The design is now retimed. By taking advantage of the extra flip-flops, the
critical path has been reduced from 5 to 2.

when discussing the effects ofC-slowing on a microprocessor core.

However,C-slowing imposes some more significant FPGA design constraints, as sum-

marized in Table 10.2. Register clock enables and resets must be expressed as logic features, since

each independent thread must see a different view of the reset or enable. Thus, they can remain

features in the design but can not be implemented by current FPGAs using the native enables and

resets. Other specialized features, such as Xilinx SRL16s,5 can not be utilized in aC-slow design

for the same reasons.

One important challenge is how to properlyC-slow memory blocks. In most cases, one

desires the complete illusion that each stream of execution is completely independent and un-

changed. To create this illusion, the memory capacity must be increased by a factor ofC, with

additional address lines driven by a counter. This ensures that each stream of execution enjoys a

completely separate memory space.

For dual-ported memories, this potentially enables a greater freedom in retiming: the two

ports can have different lags, as long as the difference in lag isC − 1 or less. After retiming, the

difference in lag is added to the appropriate port’s thread counter. This modification ensures that

each stream of execution will read and write to both ports in order, while enabling slightly more

freedom for retiming to proceed. However, this optimization is not used in the tools targeting either

the SFRA or the Xilinx.

C-slowing normally guarantees that all streams view independent memories. However a

designer may desire shared memory common to all streams. Such memories could be embedded in

a design but the designer would need to consider how multiple streams would affect the semantics

5A mode where the LUT can act as a 16 bit shift register
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and would need to notify any automatic tool to treat the memory in a special manner. Otherwise,

there are no other semantic effects imposed byC-slow retiming.

10.4 Retiming for Conventional FPGAs

Most FPGA architectures are especially amenable to repipelining orC-slow retiming,

as the FPGAs are generally register-rich when compared with most designs. Thus increasing the

number of registers will not necessarily create a larger design, if the registers are well-allocated.

An additional benefit for many architectures is the ability to separately use the logic cells

and registers under a wide variety of conditions. This enables registers to be used that would other-

wise go completely unused in a design without impacting the logic utilization.

When retiming for FPGAs, the location of retiming in the toolflow is an important con-

sideration: it can occur before, during, or after the placement process. There are advantages and

disadvantages for all three approaches.

Before-placement is often the simplest but may encounter some limitations. Such retiming

simply estimates interconnect delay, performs retiming, and then lets the packing and placement

tools proceed.

If the placement tool only places complete cells, rather than district elements, the retiming

tool can’t effectively scavenge unused flip-flops without distorting the placement process. This is

because packing unrelated logic will cause the placement tool to perform poorly, as the compromise

position for the unrelated logic is often significantly unoptimal.

Another disadvantage with pre-placement retiming is the significant factor that intercon-

nect delays play in FPGA timing. Thus, any retiming tools gains substantial benefits from a detailed

understanding of the interconnect delays in a design, information which can only be crudely esti-

mated before placement occurs.

Yet preplacement retiming offers the potential ability to combine logic by moving regis-

ters. As an example, assume that a design contains a 2 input logic function, a register, and then

another two input logic function. If the retiming tool moves the register in either direction, the re-

sulting design can be packed into a single 4-LUT instead of two independent 4-LUTs, saving both

area and reducing the critical path.

Post-placement retiming is also convenient, as the delays are now all completely known

and flip flops can be safely scavenged without affecting the placement process. The main difficulties

occur when attempting a large degree ofC-slowing, because allocating large numbers of flip-flops
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can prove problematic unless placements are modified.

A combined placement and retiming tool is the ideal solution, except that it may require

a partial or complete restructuring of the placement process. Such a tool, such as Singh’s [63], can

even perform effective retiming when a large number of registers need to be allocated, as it can then

permute the design’s placement during the allocation process.

The need for mixed placement and retiming depends heavily on the target architecture.

Singh’s target, the academic Toronto model [11], has the flip-flop only driveable from the LUT

output. Thus to scavenge an unused flip-flop, the LUT can’t be used either. Thus post-placement

retiming would often have to use a flip-flop a greater distance away, even when a closer, unused flip-

flop was available, simply because the associated LUT was used. Thus this tool benefited greatly

from combined placement and retiming, even for retiming withoutC-slowing.

This contrasts sharply with the commercial FPGAs. The Xilinx Virtex’s [82] Flip Flop

can be used independently except when the carry chain is driven or initiated, the F5 or F6 muxes

utilized, or the BX/BY inputs are used for routing. Similarly, the Altera Stratix [4] can use a flip-

flop as a LUT input instead of an output or use the flip-flop independently when the LUT is only

used as a 3-LUT instead of a 4-LUT.

When the Flip-Flop can be used independently of the associated LUT, the advantages

of mixed placement/retiming become less significant, as the tool can more easily obtain new flip-

flops from unused logic. Similarly, when long-delay chains are required, an intelligent heuristic

could create a chain of long-delay paths which would scavenge most of the flip-flops from the low-

congestion areas outside the critical regions. Thus, although combined placement/retiming offers

some advantages, these advantages are diminished on modern FPGAs.

It is for this reason that the tool created to retime Virtex designs (described in Chapter 13)

uses post-placement retiming, as the Virtex is very ameniable to post-placement flip-flop scaveng-

ing.

10.5 Retiming for Fixed Frequency FPGAs

Unlike conventional FPGAs, retiming for fixed frequency FPGAs does not require the

creation of a global critical-path constraint, as simply insuring all local requirements will guarentee

that the final design meets the architecture’s critical path. Instead, retiming attempts to solve these

local constraints: ensuring that every path through the interconnect meets the delay model inherent

in the FPGA. Once these local constraints are met, the final design will operate at the array’s clock
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frequency.

Because there are no longer global constraints, theW andD matrixes are not created.

This results in substantial savings as theO(n3) Dijkstra’s step or theO(n2 lg n) optimal solution

for the all-pairs shortest-path problem dominates execution time, while theW and D matrixes

requireO(n2) memory.

Since a fixed-frequency FPGA doesn’t require the global constraints, having to just solve

a set of local constraints requires linear, not quadratic memory andO(n2) rather thanO(n2lg(n))

execution time. This speeds up the retiming process considerably.

Additionally, only a single invocation of the constraint solver is necessary to determine

whether the current level of pipelining can meet the constraints imposed by the target architecture.

Unfortunately, most designs do not possess sufficient pipelining to meet these constraints, instead

requiring a significant level of repipelining orC-slow retiming to meet the constraints. This level

can be discovered in two ways.

The first solution is simply to allow the user to specify a desired level of repipelining or

C-slowing. The retiming system then adds the specified number of delays and attempts to solve the

system. If a solution is discovered, it is used. Otherwise the user is notified that the design can’t be

repipelined or retimed to meet the desired constraints for the given level ofC-slowing.

The second requires searching to find the minimal level of repipelining orC-slowing

necessary to meet the constraints. Although this requires multiple iterations of the constraint solver,

fixed-frequency retiming only requires local constraints. Without the task of developing the global

constraints, this process proceeds quickly. Due to this searching and the lack of global constraints

in fixed frequency retiming, it is probably best to use a series of additional registers on the input

to perform repipelining, as this creates a design with the minimum number of additional pipeline

stages. The tool developed for the SFRA uses the latter approach: finding the minimumC-slow

retiming required to meet the fixed-frequency constraints.

Unlike conventional FPGAs, fixed-frequency FPGAs require retiming considerably later

in the toolflow. Until routing delays are known, it is impossible to create a valid retiming. Since

invariably the constraints required depend on placement, the final retiming process must occur after-

wards. Some arrays, such as the HSRA [74] have deterministic routing structures, enabling retiming

to be performed either before or after routing. Other interconnect structures, such as the SFRA, lack

deterministic routing and require retiming to be performed after routing. Thus the SFRA retiming

tool, although it performs an initial retiming before routing, can only create a final retiming after

routing completes.
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Finally, as fixed-frequency arrays may use considerably more pipelining than conven-

tional arrays, retiming registers are a significant architectural feature. These programmable delay

chains (discussed in more detail in Chapter 6), either on inputs or outputs, allow the array to imple-

ment longer delay chains. A common occurrence after aggressiveC-slow retiming is a design with

several signals requiring considerable delay. Therefore, dedicated resources to implement these

features are effectively required to create a viable fixed-frequency FPGA.

10.6 Previous Retiming Tools

There have been no published commercial or academicC-slow retiming or repipelining

tool-flows apart from flow developed by DeHon et al for the HSRA [74]. The retiming process was

accomplished by modifying the design and callingsis , havingsis retime the resulting design.6

Since the HSRA contained a deterministic network, only placement information was required for

retiming to proceed.

Conventional retiming is far more common. There have been two previously significant

academic retiming tools targeted towards FPGAs. The first, by Cong and Wu [20] combined retim-

ing with technology mapping. This approach enables retiming to occur before placement without

adding undue constraints on the placer, since the retimed registers are packed only with their asso-

ciated logic. The disadvantage is lack of precision, as delays can only be crudely estimated before

placement. It is unsuitable for significantC-slowing asC-slowing creates significantly more regis-

ters which can pose problems with logic packing and placement.

The second, by Singh and Brown [63], combined retiming with placement. This operated

by modifying the placement algorithm to be aware that retiming was occurring and then modifying

the retiming portion to enable permutation of the placement as retiming proceeds. They demon-

strated how combining placement and retiming performs significantly better than retiming either

before or after placement.

The simplified FPGA model used has a logic block where the flip-flop cannot be used

independently of the LUT, constraining the ability of post-placement retiming to allocate new reg-

isters. Thus, the need to permute the placement to allocate registers is significantly exacerbated in

their target architecture.

Some commercial HDL synthesis tools, notably Synopsys FPGA Compiler [72] and Syn-

6Chameleon Systems was developing a retiming andC-slowing system for their architecture but public information
is not available and the company is currently defunct.
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plify [71] also support retiming. Because this retiming occurs fairly early in the mapping and

optimization processes, it suffers from a lack of precision about placement and routing delays. The

Amplify tool [70] can produce a higher quality retiming because it contains placement informa-

tion. Likewise, since these tools attempt to maintain the FPGA model of initial conditions, both on

startup and in the face of a global-reset signal, this adds considerable logic to the design.

10.7 Summary

This section reviewed the semantics of the retiming process, repipelining, andC-slow

retiming, and how these processes interact with both conventional and fixed-frequency FPGAs. On

a conventional FPGA, retiming andC-slow retiming offer improved performance with only mild

semantic restrictions, albeit requiringO(n2) memory andO(n2lg(n)) time. On a fixed-frequency

FPGA,C-slow retiming is an essential transformation, requiringO(n) memory andO(n2) time.
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Chapter 11

Applying C-Slow Retiming to

Microprocessor Architectures

C-slow retiming applies to all designs which are capable of using the task level parallelism

provided, regardless of the design’s complexity. Since it represents an automatic transformation, it

can be applied to a diverse number of applications and designs.

One of the more fascinating observations is that the core of a microprocessor can be

C-slow retimed. The resulting core has multithreaded semantics identical to an “Interleaved Multi-

threaded” [40] architecture operating at a higher clock rate. Each individual thread runs slower, but

the aggregate throughput is increased as now multiple tasks can be completed in parallel, sharing

the hardware.

Although the created architecture is semantically an interleaved-multithreaded architec-

ture, this is a unique and novel approach for two reasons: it represents an automatically applied

transformation and offers higher throughput, not simply memory-utilization advantages.

11.1 Introduction

There have been numerous multithreaded architectures, but they all share a common

theme: increase system throughput by enabling multiple streams of execution, or threads, to op-

erate simultaneously. These architectures generally fall into four classes: context-switching always

without bypassing (HEP [66] and Tera [6]), context-switching on event (Intel IXP [35]), interleaved-

multithreaded, and Symmetric Multithreaded (SMT) [75].

The ideal goal of all these architectures is to increase system throughput by operating
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on multiple streams of execution. Ideally, every stream is unaffected by other running streams,

but some interference effects may occur. Appendix B includes a more detailed survey of previous

multithreaded architectures and where interference and synergistic effects happen.

The general concept ofC-slow retiming [41] (discussed in more detail in Chapter 10) can

be applied to highly complex designs, including microprocessors. Unlike a filterbank or encryp-

tion algorithm, it is not simply a matter of inserting registers and balancing delays. Nevertheless,

the changes necessary are comparatively small and the benefits substantial: producing a simple,

statically scheduled, higher clock rate, multithreaded architecture which is semantically equivalent

to an interleaved-multithreaded architecture: alternating between a fixed number of threads in a

round-robin fashion, to create the illusion of a multiprocessor system.

Unlike the interleaved-multithreaded architecture, theC-slowed core offers two advan-

tages: it can be largely constructed through an automatic transformation, and the resulting design

operates at a higher clock rate, improving throughput as well as memory behavior.

C-slowing requires three minor architectural changes: enlarging and modifying the regis-

ter file and TLB, slightly modifying the interrupt semantics, and replacing the caches and memory

interface. Beyond that, it is simply a matter of replacing every pipeline register in both the control

logic and datapath withC registers, then moving the registers to balance the delays, as is traditional

in theC-slow retiming transformation and which can be performed by an automatic tool. The re-

sulting design, as expected, has full multithreaded semantics and improved throughput through a

significantly higher clock rate.

If the core itself isC-slowed, and the cache and I/O logic restructured to accommodate

the changes, the resulting design can operate at a significantly higher throughput as now there is

significantly finer pipelining. The automaticC-slow tool, discussed in Chapter 13, shows that it

is possible to effectively double the throughput on a design consisting of a conventional 5-stage

pipeline, at a reasonable cost in area, when creating a 2-thread processor.

11.2 C-slowing a Microprocessor

An alternative approach to both interleaved-multithreading (which doesn’t take advantage

of finer pipelining opportunities) and SMT designs is to start with a conventional core andC-slow

the design: inserting additional register stages and thereby increasing the clock rate through finer

pipelining. This can obviously be applied to microarchitectures where the clock period used is

significantly longer than that supported by the process and where the applications would benefit
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Figure 11.1: A classic 5 stage microprocessor pipeline
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Figure 11.2: A conceptual view of the classic 5 stage microprocessor afterC-slowing by a factor
of 3. The resulting core now is a 15 stage pipeline, and operates on 3 independent streams in a
round-robin fashion. The actual register placements will not be so even, as automatic retiming will
place registers in the most appropriate positions on each individual path.
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from thread level parallelism. The resulting core will behave like an interleaved multithreaded

architecture, but will have a greater aggregate throughput achieved through the fine pipelining.

In order to avoid the complexities of deep pipelines or dynamic thread dispatch, theC-

slowed design simply switches betweenC threads on every clock cycle. The register file and trans-

lation buffers need to be increased to create an independent architectural state for each thread, while

the interrupt semantics needs minor changes to accommodate the separate threaded nature. Beyond

that, the remaining changes in the core are almost exclusively limited to those resulting from adding

and retiming the pipeline stages, which can be conducted automatically. Outside the core, including

the cache, logic must be modified to account for the new multithreaded semantics.

The biggest complications whenC-slowing a microprocessor are selecting the implemen-

tation semantics for the various memories through the design. The first type keeps the traditional

C-slow semantics of complete independence, where each thread sees a completely independent

view, usually by duplication. This applies to the register file and most of the state registers in the

system. This will occur automatically ifC-slowing is performed by a tool, as this is the normal

semantics forC-slowed memory.

The second is completely shared memory, where every thread sees the same memory,

such as the caches and main memory of the system. Most such memories exist in the non-C-slowed

portion, so are unaffected by an automatic tool.

The third is dynamically shared, where a hardware thread ID or a software thread con-

text ID is tagged to each entry, with only the valid tags being used. This is best used for branch

predictors and similar caches, and breaks the automaticC-slow semantics. Such memories need to

be constructed manually, but offer potential efficiency advantages as they don’t need to increase in

size, but can’t be constructed automatically and may be subject to interference or synergistic effects.

11.2.1 Register File

The biggest architectural changes are to the register file: it needs to be increased by a fac-

tor of C, with a hardware thread counter to select which group of registers are being accessed. Now

each thread will see an independent set of registers, with all reads and writes for the different threads

going to separate memory locations. Apart from the thread selection and natural enlargement, the

only piece remaining is to pipeline the register access. If necessary, theC independently accessed

sections can be banked, in order to allow the register file to operate at a higher clock frequency.

Naturally, this linearly increases the size of the register file, but pipelining the new larger



99

file isn’t difficult since each thread accesses a disjoint register set, allowing staggered access to the

banks if desired. This matches the automatic memory transformations whichC-slowing creates:

increasing the size and insuring that each task has an independent view of memory.

For FPGA implementations, such as the Virtex, where there already exist pipelined mem-

ory structures, no changes beyond the increase in size are required as the memories generally support

very fast, pipelined access.

11.2.2 TLB

In order to maintain the illusion that the different threads are running on completely dif-

ferent processors, it is important that each thread have an independent translation of memory. The

easiest solution is to apply the same transformations to the TLB that were applied to the register

file: increasing the size byC, with each thread accessing its own set, and pipelining access. Again,

this is the natural result of applying theC-slow semantics from an automatic tool.

The other option is to tag each TLB entry. The interference effect may be significant if the

associativity or size of the TLB is low. In such a case, and considering the generally small nature

of most TLBs, increasing the size (although perhaps by less than a factor ofC) would be advisable.

Software thread ID tags, rather than hardware ID tags, are preferable because this reduces the cost

of context switching if a shared TLB is utilized and may also provide some synergistic effects. In

either case, a shared TLB will require interlocking between TLB writes to prevent synchronization

bugs.

11.2.3 Caches and Memory

If the caches are physically addressed, it is simply a matter of pipelining access to improve

throughput without splitting the memory. Because of the interlocked execution of the threads and the

pipelined nature of the modified caches, no additional coherency mechanisms are required except

to interlock any existing test-and-set or atomic read/write instructions between the threads to insure

that each instruction has time to be completed.

Such cache modifications occur outside theC-slow semantics, suggesting that the cache

needs to be changed manually. Thus the cache and memory controller must be manually updated to

support pipelined access from the distinct threads, and exist outside of theC-slowed core itself.

Unfortunately, virtually addressed caches are significantly more complicated: they re-

quire that each tag include thread ownership (to prevent one thread from viewing another’s version
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of memory) and that a record of virtual-to-physical mappings be maintained to insure coherency

between threads. These complications suggest that a physically addressed cache would be superior

whenC-slowing a microprocessor to produce a simple multithreaded design. A virtually addressed

cache is one of the few structures that doesn’t have a naturalC-slow representation or can easily

exist outside of aC-slowed core.

One other concern, for all multithreaded architectures, is the increased cache misses

caused by differences between the working sets for the different threads. If the threads have overlap-

ping working sets, the cache miss rate may even be reduced, a synergistic improvement. Otherwise,

the miss rate may be increased if the threads have disjoint working sets, creating an interference ef-

fect. This cache behavior is extremely different from traditional shared memory SMP architectures,

which work best when each processor has an independent working set.

Even a larger cache is insufficient to eliminate such interference effects, as one could

write a worst case program which, running on one context, would continually access new cache

lines, causing thrashing in the other thread. This suggests that, for each of theC threads, a line in

each set would benefit from being reserved, if one wishes to limit the interference effects.

11.2.4 Branch Prediction

Just as modifications are needed for an SMT [75], minor modifications are required in

history based branch predictors to avoid interthread interference. The branch prediction buffers need

to be either statically split among theC separate threads of execution (the result of automaticC-

slowing) or dynamically shared with each entry marked with the corresponding thread, in the same

manner as the TLB. Fortunately, for the dynamically shared solution, no interlocking is required, as

long as all writes and reads to the buffer are atomic. Once again, the dynamically shared solution

may increase the miss rate due to thread interference, or benefit from overlapping working sets.

Likewise, the dynamically-shared version requires a specific design, while the statically shared

version represents the results of automaticC-slowing.

11.2.5 Control Registers and Machine State

The rest of the machine state registers, being both loaded and read, are automatically

separated by theC-slow transformation. This ensures that each thread will have a completely in-

dependent set of machine registers. Combined with the distinct registers and TLB tagging, each

thread will see an independent processor.
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11.2.6 Interrupts

Just as the rest of the control logic is pipelined, with control registers duplicated, the

same transformations need to be applied to the interrupt logic. Thus, every external interrupt will

be interpreted by the rules corresponding to every virtual processor running in the pipeline. Yet

since the control registers are duplicated, the OS can enforce policies where different interrupts

are handled by different execution streams. Similarly, internally driven interrupts (such as traps or

watchdog timers), whenC-slowed, will be independent between threads, asC-slowing will insure

that each thread only sees its own interrupts.

Thus the OS could insure that one virtual thread receives one set of externally sourced

interrupts, while another receives a different set. This also suggests that interrupts be presented to

all threads of execution, enabling each thread (or even multiple threads) to service the appropriate

interrupt.

11.2.7 Interthread Synchronization

If the underlying microarchitectures contains instructions for synchronization, they may

require some minor modifications to the core’s external memory controller to ensure that syn-

chronous operations, such as test-and-set or atomic read-write, are updated properly when the cache

is highly pipelined. As the controller and caches already exist outside the normalC-slow semantics,

and require manual changes, these additional modifications are not severe.

Two options can be employed: Either the memory controller stalls competing operations

or the controller can check addresses and only stall conflicting requests. In either case, the controller

must know that a request is part of an atomic operation, not a normal memory read or write.

If the microarchitectures does not contain any synchronization instructions, it is still pos-

sible to build synchronization primitives which rely on the in-order memory semantics. To build

such primitives, an interrupts-off read-check-write-wait-read cycle is sufficient to build locks, as

long as the wait is sufficiently long to cover the check time and pipeline latency.

11.2.8 Power Consumption

Unfortunately, one of the significant disadvantages ofC-slowing is increased power con-

sumption. The primary reason is the increase in both the number of pipeline stages (byC), the

increased load on the clock distribution (again by a factor ofC), and the increased clock rate (by

nearlyC). This is an unavoidable consequence of increasing performance in this manner, but the
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Technology Area Timing

UMC 0.25 CMOS std-cell 35K gates + RAM 130 MHz
Atmel 0.25 CMOS std-cell 33K gates + RAM 140 MHz
Atmel 0.35 CMOS std-cell 2 mm2 + RAM 65 MHz
Xilinx XCV300E-8, .18µM FPGA 4,800 LUT + RAM 45 MHz
Xilinx XCV800-6, .22µM FPGA 4,800 LUT + RAM 35 MHz
Altera 20K200C-7 FPGA 5,700 LCELLs + RAM 49 MHz
Altera 20K200E-1X FPGA 6,700 LCELLs + RAM 37 MHz

Table 11.1: Published Implementation Technologies and Performance for the LEON processor core
[54].

increased throughput can result in lower worst-case power consumption by reducing the clock rate

and then scaling the voltage.

But the average case may not improve, even with clock and voltage scaling, due to the

lack of coordination between the threads. Since the different computations, on a fine scale, have

no correlation, this ensures that very few techniques, such as clock gating or history effects, may

reduce the power consumption of aC-slowed microprocessor. Thus although the worst case power

can be improved by voltage scaling, this may not translate to improved expected-case power.

This is an important unanswered question: will adding uncorrelated threads substantially

increase the energy required per operation in practice? If the added energy cost is low, then aC-

slowed microprocessor will result in power savings due to voltage scaling, but if not, even voltage

scaling will not rescue the extra power consumption resulting from uncorrelated threads.

11.3 C-slowing LEON

The LEON [54] is a SPARC [68] v8 compatible integer processor written in synthesize-

able VHDL. This core uses a classic 5 stage pipeline with parameterizable direct mapped caches

and a parameterizable number of register windows. This core has been synthesized to a wide variety

of targets, including various FPGAs and ASIC processes, which are summarized in Table 11.1.

This core consists of a single pipeline integer unit with a 5 stage pipeline and separate

direct-mapped instruction and data caches. The core can be parameterized with respect to the num-

ber of register windows (2-32), the size of the caches (1-64 kB), the cache linesize (8-32 bytes), and

the type of integer multiplier (iterative, 16x16, 32x8, 32x16, or 32x32). The core is interconnected

through an AMBA AHB bus to an SRAM memory controller, timers, a UART, and an AHB/APB
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Instruction Cycles
JMPL 2
Double load 2
Single store 2
Double store 3
SMUL/UMUL 1/2/4/35*
SDIV/UDIV 35
Taken Trap 4
Atomic load/store 3
All other instructions 1

Table 11.2: The latency for various instructions in the LEON pipeline [54].

bridge.

The Leon core used for benchmarking was modified to exclude the caches and external

logic. The register file was not manually increased, but had sufficient resources to hold teh additional

logic. Then the resulting design was passed through the automaticC-slow retiming tool described in

Chapter 13,1 with the resulting core nearly doubling in throughput for a2-slow version: increasing

in performance from 23 MHz without retiming to 46 MHz after 2-slowing and retiming. Since this

core excluded the caches and other logic, the costs of changing the external logic were not measured,

but only the effects on the core itself.

11.4 Summary

This chapter demonstrated the generality of theC-slow transformation and how it can

be applied to a highly complex design. If applied to a microprocessor core, an “Interleaved Mul-

tithreaded” architecture is created: offering higher throughput on multithreaded workloads by in-

creasing the pipelining. Only very minor architectural changes are required outside the changes

introduced by theC-slow transformation.

1More details on this process are described in Chapter 13.
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Chapter 12

The Effects of Placement and Hand

C-slowing

The hand-mapped benchmarks: AES, Smith/Waterman, and the synthetic datapath, were

all implemented with hand placement and handC-slowing. Hand-placement enables later compar-

isons in Chapter 14 to exclude artifacts introduced by automatic placement, while handC-slowing

is used to calibrate the automatic tool described in Chapter 13.

Beyond providing designs for future study and comparisons, this can also be used to

evaluate the importance of both transformations and the quality of the Xilinx placement tools, by

removing the placement and additional retiming from the designs and comparing the resulting qual-

ity. Combining handC-slowing with hand-placement can more than double the throughput on some

designs.

Likewise, removing the placement from a design often degrades performace, illustrating

the tool sensitivity of designs targeting conventional FPGAs. This sensitivity is far less significant

with fixed-frequency arrays such as the SFRA, as will be seen in Chapter 14.

12.1 The Effects of Hand Placement andC-slow Retiming

Since hand-placement creates high quality datapaths and systolic structures appropriate

to both the design and target architecture, hand placements can be used to evaluate the placement

quality of automatic tools. In general, a good hand placement offers superior performance when

compared with current automatic placement tools which don’t exploit datapath regularity. It is

possible to create datapath placement tools [38, 15], but these techniques are currently not included
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AES Version C-slow Clock Rate P&R Time

Hand Placed, HandC-slowed 5-slow 115 MHz 2m,30s
Macros, HandC-slowed 5-slow 80 MHz 4m,6s
Unplaced, HandC-slowed 5-slow 105 MHz 8m,55s
Hand Placed, Unretimed 1-slow 45 MHz 8m,5s
Unplaced, Unretimed 1-slow 45 MHz 10m,50s

Table 12.1: Parameters, Clock Rate, and Place and Route (P&R) time for the AES benchmark,
targeting a Spartan II 100-5.

as part of conventional FPGA toolflows.

All three hand-mapped benchmarks were input as schematics using Xilinx Foundation 4.1

with RLOCs1 used to place almost every block (except for a few control signals which are easily

handled by simulated annealing). All compilation was performed on a Pentium III 550 with 256

MB of memory running Windows 2000. Timing results are from the static timing analysis, worst

case process corner for the -5 speed grade part. The place and route effort was set to maximum for

all runs, but no other constraints were imposed on the toolflow.2

The “macro” versions maintained the low-level hierarchy, including custom designed

macro-blocks, while removing the high-level hierarchy used to place these blocks together. Since

the hand-placed designs relied on hierarchy to manage the placement, this provides a useful inter-

mediate, as the results are similar to those produced by generator systems such as Xilinx’s Simulink-

based toolflow [78], where the designer composes larger, preplaced macros which are composed as

part of the final design.

The handC-slowing attempted to balance the delays manually by adding sufficient flip-

flops and balancing the resulting delays. The actual designs were constructed withC-slowing as an

eventual goal, thus the pre-C-slowed designs were actually incomplete. Instead, the final designs

had the additional registers removed as a means of evaluating the performance improvement that

C-slowing provides.
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AES Version C-slow Latency Bandwidth Area

Hand Placed, HandC-slowed 5-slow 480 ns 1.3 Gb/s 773 slices, 10 BlockRAMs
Macros, HandC-slowed 5-slow 690 ns .930 Gb/s 805 slices, 10 BlockRAMs
Unplaced, HandC-slowed 5-slow 520 ns 1.2 Gb/s 945 slices, 10 BlockRAMs
Hand Placed, Unretimed 1-slow 240 ns .520 Gb/s 461 slices, 10 BlockRAMs
Unplaced, Unretimed 1-slow 240 ns .520 Gb/s 477 slices, 10 BlockRAMs

Table 12.2: Latency, Throughput, and area values for the AES benchmark, targeting a Spartan II
100-5

12.2 AES Results

As can be seen in Table 12.1, the effect of C-slow retiming on AES performance is quite

significant. Even without datapath placement, it offers over 100 MHz performance and 1.2 Gbps

throughput, a 130% improvement in throughput at the cost of a 100% increase in area on the Spartan

II series of parts. The area cost needed for this additional throughput, although seemingly high, is

not really prohibitive as the initial design is limited by the availability of BlockRAMs to implement

the S-boxes, not the FPGA logic itself. Thus the additional resources represent otherwise unused

logic in this design.

This good showing for simulated annealing is to be expected, because although AES has a

large amount of structure when seen at the macro-level, the mixing nature of ciphers means that this

structure does not appear at the bit level, enabling conventional automatic placement to be effective.

Even so, datapath placement when added to C-slow retiming offers further increases in

performance (10%) and a significant reduction in area (20%). This is due to the more efficient pack-

ing which the datapath-placed version employs, with closely related (but seemingly independent)

logic packed together as well as guaranteeing that all registers were packed with associated LUT

outputs.3

In general, the heavily retimed versions for AES impose a significantly greater area over-

head than seen in the other benchmarks. This is largely because the design is BlockRAM limited,

1An RLOC is a placement directive, telling the Xilinx placement tool where a particular feature should be placed in
the FPGA.

2There exist well-known and directly observed deficiencies in the Xilinx ISE 4.1 router which require maximum effort
to overcome, even when the router is provided with a high-quality, hand-placed datapath.

3The Xilinx mapping/packing tool, when the density is low, is very conservative about packing logic as the placement
tool only operates on packed slices. If the mapper makes a bad decision and inappropriately packs unrelated logic, this
will substantially degrade performance. Thus, when there are sufficient resources, the Xilinx packing tool tends to err on
the side of caution and avoids combining logic.
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Smith/Waterman
Version C-slow Clock Rate P&R Time String Clock Area

Hand Placed,
HandC-slowed 4-slow 100 MHz 3m,55s 25 MHz 1497 slices
Unplaced,
HandC-slowed 4-slow 90 MHz 5m,20s 22.5 MHz 1530 slices
Hand Placed,
Unretimed 1-slow 45 MHz 2m,20s 45 MHz 1170 slices
Unplaced,
Unretimed 1-slow 40 MHz 2m,50s 40 MHz 1112 slices

Table 12.3: Parameters, clock rate, and place and route time for the Smith/Waterman benchmark, 8
cells, targeting a Spartan II-200-5

implying that LUTS are not the critical resource and therefore allowing more resources to be used

for retiming. Additionally, in order to minimize the critical path, both the BlockRAM inputs and

outputs are registered, adding 256 registers to the encryption core. A similar cost is needed for

the subkey generation, where 64 bits of registers are required to pipeline the memory access and

128 SRL16s are needed to balance out the delays in subkey generation. The placement distributes

the computation across the long cross-chip communications present in this design, with associated

pipelining to insure high clock rate.

Of greater concern is the poor performance shown when the toolflow is given a design

containing preplaced word-oriented macros but no higher level structure. Simulated annealing often

makes small mistakes when given a fairly highly utilized design, but these mistakes are considerably

magnified when given the 8-bit preplaced, primitive blocks used to compose the Rijndael implemen-

tation as minor vertical offsets are now magnified due to the larger blocks involved. A 20% decrease

in throughput is the result when compared to the version withall placement constraints removed!

12.3 Smith/Waterman results

Smith/Waterman (Table 12.3) shows a similar, impressive speedup between the retimed

and unretimed versions of 120%, but a much lower 30% penalty in area. The significantly lower

area overhead, when compared to the AES benchmark, is due to less aggressiveC-slowing which

is designed to match the structure of the computation.

If the design wasC-slowed more aggressively, the resulting design would have signifi-
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Datapath
Version C-slow Clock Rate P&R Time Thread Clock Area

Hand Placed,
HandC-slowed 3-slow 105 MHz 5m40s 35 MHz 415 slices
Macros,
HandC-slowed 3-slow 105 MHz 7m40s 35 MHz 415 slices
Unplaced,
HandC-slowed 3-slow 105 MHz 7m0s 35 MHz 404 slices
Hand Placed,
Unretimed 1-slow 55 MHz 5m50s 55 MHz 364 slices
Unplaced,
Unretimed 1-slow 50 MHz 6m0s 50 MHz 365 slices

Table 12.4: Parameters, clock rate, and place and route time for the synthetic datapath, targeting a
Spartan II-150-5

cantly higher area overhead, as most of the additional registers could not be packed into the existing

logic blocks. Since the design is a systolic computation and does not use any BlockRAMs, it is

critically important that the increased area not overtake the increased performance.

Similarly, the best clock cycle is close to the limit for a 16-bit adder. Without breaking the

carry chain and using a carry-select or pipelined-carry adder, it is effectively impossible to generate

a substantial increase in clock rate over the aggressivelyC-slowed version. Additionally, the Virtex

architecture can’t pipeline the carry-chain without crossing onto the more general interconnect,

which limits the benefit of pipelining small (< 16 bit) adders.

As before, removing the datapath placement constraints has a significant (10%-15%) per-

formance impact on the final design, as well as increasing place and route time, when compared

to the preplaced versions. There is no separate “macro” version, as the bulk of the design is com-

posed of adders which always retain relative placement information to comply with the constraints

imposed by the carry chain.

12.4 Synthetic Datapath Results

As in Smith/Waterman, the more limitedC-slowing of the synthetic datapath produced

significant performance benefits (90% improvement) while limiting the area impact (15% penalty)

and the latency penalty (35% penalty), as seen in Table??. Again, this is due to the limited nature

of theC-slowing, attempting to match the available resources in the design.
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Of interest, however, is the limited effect of removing the datapath constraints on the

retimed version. In the case of the macroblock-based retimed version, simulated annealing appears

to have worked well because the placement problem becomes a 1-D packing problem rather than

a conventional 2-D placement problem due to the height of the macros compared with the size of

the chip. As a result, simulated annealing creates a mostly aligned datapath, and there are no severe

misalignments due to vertical stacking of components.

The pure simulated-annealing placement for the retimed datapath worked surprisingly

well due to the very fine nature of the placement problem, the comparatively low device utilization,

and the butterfly network effects (first noted by Singh in [65]), which apply to the layout of the

shifter representing a large portion of this design. Although simulated annealing does produce good

results for this benchmark, there is a natural increase in place and route time.

12.5 Summary

This chapter shows the significant effects of datapath placement andC-slow retiming on

the three hand-placed benchmarks. These transformations, when implemented by hand, can more

than double throughput, at a reasonable cost in area and latency. These benchmark implementations

will be used again in Chapter 13 to gauge the effectiveness of the automaticC-slow retiming tool

and in Chapter 14 to enable comparisons between the SFRA and the Xilinx Virtex.
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Chapter 13

Automatically Applying C-Slow

Retiming to Xilinx FPGAs

Fixed Frequency FPGAs offer substantial improvements in throughput over conventional

FPGAs through fine-grained pipelining. In order to utilize the pipeline registers, repipelining or

C-slow retiming is essential. Yet as these transformations are applicable to conventional FPGAs, it

is important to separate the architectural benefits of Fixed Frequency operation from the throughput

gains fromC-slow retiming.

To quantify the effects ofC-slow retiming on real designs and to facilitate a direct compar-

ison between a proposed fixed-frequency architecture and a commercial FPGA, this thesis develops

a prototypeC-slow retiming tool that operates after placement, targeting the Xilinx Virtex [82] fam-

ily of FPGAs.1 This tool is deliberately simplistic, as it is designed simply to assess the costs and

benefits ofC-slow retiming when applied with minimal disruption to a commercial FPGA toolflow.

13.1 Retiming and the Xilinx Toolflow

The Xilinx toolflow operates in several stages: Synthesis or schematic capture, translation,

mapping, placement, routing, and static timing analysis. During synthesis, the design is converted

from an HDL representation to an output netlist. This netlist is translated to Xilinx.ngd format

for use by the remaining tools use. Mapping takes the logical elements (gates, flip-flops, and other

features), combining them into Xilinx slices. Once packed into slices, the packing is not modified

in the normal flow. Thus, when there are suitable resources available, the packing is deliberately
1This line includes the Xilinx Virtex, Virtex E, Spartan II and Spartan II-E lines.
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conservative, choosing to underutilize the array resources to avoid packing unrelated items in the

same slice. At high utilization, the packing tool will have no choice but to pack potentially unrelated

items.

After mapping, the placement tool places these slices in the array. Since the placement

tool operates on slices and larger macros, the presence of unrelated logic packed into a slice can

seriously disturb the results. Following placement, mapping attempts to minimize delays. Although

the process is formally complete after routing, several steps are still employed. Bit-generation

converts the design into a bitfile, which can be loaded into the array. Static timing analysis computes

the critical path, while back-annotation enables timing-accurate simulation.

Between mapping, placement, routing, and static timing analysis, designs are carried in an

.ncd binary format. In order to facilitate additional tools, Xilinx defines a text-based.xdl format

and a translator to convert between.xdl and.ncd . A minor limitation is that the.ncd format

does not include some user-imposed placement constraints, such asrloc origin 2 constraints.

By operating on the.xdl file format, it is possible to modify designs at any point in the

mapping, placement, routing, and timing analysis pathway. Arbitrary design modifications, as long

as they don’t create an invalid design, can be introduced into the design flow. The only limitations

are that significant changes will prevent backannotation from operating correctly, as backannotation

tracks design modifications through undocumented auxiliary files.

An important question is when to integrate the modifications into the toolflow: pre-

placement, post-placement, or post-routing. A decision was made to abandon the notion of modi-

fying the placement itself, as this introduces severe complications, while post-routing offers effec-

tively no benefits and would require either rerunning or replacing the routing process.

Because of the lack of designer placed constraints in the.xdl file, the placement tool

only operating on slices rather than elements, and the lack of good timing information before place-

ment, it was decided to perform all transformations after placement. If a tool desired pre-placement

retiming, the effects of packing flip-flops with unrelated logic would significantly skew the place-

ment and routing process.

This is especially important because the flip-flops in the Virtex slice can be used inde-

pendently of the logic through the BX and BY inputs under almost all cases. The only exceptions

are when the F5 or F6 muxes are used, when the LUT is used for routing, the LUTs are used as

memory devices, or when the carry-in is driven by external logic or a fixed constant. Yet because

2A means of specifying the absolute placement of design components.
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Figure 13.1: The complete toolflow created for this research. This section focuses on the Xilinx
retiming tool, with its comparisons to the unoptimized Xilinx designs.

the placement tool operates on slices, flip-flops that are packed with unrelated logic will severely

impact placement quality.

13.2 An Automated C-Slow Tool for Virtex FPGAs

A modified toolflow was created as a series of perl scripts, used to invoke the Xilinx

synthesis, mapping, and placement tools, before converting the design to.xdl . This .xdl file is

loaded into a Java tool that performs the actualC-slowing and retiming. After retiming, the design

is converted back to.ncd before the Xilinx router and static timing analyzer are invoked. An

additional option allows the sameC-slow tool to target the SFRA, in conjunction with the SFRA

router. This toolflow uses maximum effort for the Xilinx tools, and is illustrated in Figure 13.1.

The tool first loads the design and ensures that it contains no features that would inhibit

C-slow retiming, such as clock enables, LUTs as RAM, SRL16s, or set/reset connections. Once

the design is verified, it is converted to a directed graph that represents the retiming problem. All

registers in the design are removed and replaced with edge weights, allowing them to be freely

moved. BlockRAMs and I/O pad registers are likewise removed and replaced with mandatory

constraints. Any negative-edge clocked memories are changed to operate on a positive clock, with
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constraints to insure that registers will be placed on the outputs.

The tool creates estimates of logic and interconnect delay. Logic delays are based on

the published datasheet numbers for LUT evaluation, BlockRAM evaluation, carry chain costs, and

other architectural features. For estimating interconnect delay, the tool uses a simple Manhattan

distance metric that abstracts out the different interconnect types, using a linear cost model based

on an initial cost and then an extension cost. This cost-model was derived from a combination of

Xilinx datasheet timings and empirical experimentation. Once the tool creates a final cost estimate

for all components in a design, the design can then beC-slowed by simply multiplying the number

of registers on any given edge by the specifiedC. If only retiming is desired,C is simply set to 1.

Now having loaded the design and estimated all delays, the tool performs classical re-

timing with no regard to limiting the number of resulting registers or other constraints. This first

requires aO(V 3) operation3 to enumerate all possible critical paths in the design and the number of

registers currently along each such path, creating theW andD matrices which hold these values.

This also requiresO(n2) memory to store these matrices.

The next step involves determining the shortest critical path that the design can be retimed

to meet. This process uses a binary search to find the lowest critical path possible. Determining

whether a particular critical path can be achieved, the local constraints global constraints to ensure

that all longer paths are registered. The local constraints will ensure that there are no “negative”

registers on any link and that the number of registers around every path in the design remains

unchanged. Since all constraints are inequalities, the Bellman/Ford shortest-path algorithm is used,

anO(V 2) operation. The binary search iterates 10 times in order to find the best solution.

There are several minor techniques that speed up this process. If a solution exists, the

Bellman/Ford algorithm quickly converges, allowing us to perform far fewer iterations than are

required to guarantee convergence. Instead of performing theV iterations,V/20 appears highly

effective as even on the larger benchmarks. If a solution exists, it is discovered in few iterations even

on the most complex benchmark used. Additionally, if a solution is discovered, future iterations will

not change. Thus the tool detects if a solution is found and stop the process after a single additional

iteration where no changes occur. This offers a huge performance boost, reducing the overall cost

of the constraint solver by nearly50%.

An additional tweak involves carrying over the attempted solution from the last run. Since

this is either a correct solution for slightly more relaxed constraints or a mostly-correct solution for

3This could be replaced with anO(V 2 lg V ) step, but would necessitate changing the representations used
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a more rigid constraint, it is often sufficient to meet the changed constraints with only one or two

minor changes.

Once the best solution is found, the edge weights are converted back into design flip-

flops. A first pass allocates any output registers with the appropriate logic, as this represents the best

placement for such registers. Beyond that, all other registers are allocated by a simple heuristic. A

search for an unused register begins at the central point between the source and all destinations and

spirals outward. When a register is found, it is then allocated. This process iterates until all registers

are instantiated in the final design.

The register allocation heuristic, although simplistic, works well if theC slowing is not

overly aggressive. Since most designs use considerably more logic, it takes a significant degree of

C-slowing to shift the balance in the other direction. Furthermore, when designs are placed using

simulated annealing, the logic tends to be spread more uniformly, aiding this heuristic. Once the

registers are allocated, the resulting design is exported as.xld , which is then read back in through

the Xilinx router and timing analysis tools.

The retiming process requires a few minutes to perform on a Pentium III 550 for the

smaller designs, due to theO(V 3) all-pairs shortest path implementation and the numerous Bell-

man/Ford processing steps. For the larger Leon benchmark, the initialV 3 step is substantial, requir-

ing a few hours to perform on a 2 GHz Pentium 4 system.

For large designs, it would be possible to partition the design before retiming. This would

cost some precision, as the algorithm would be unable to consider delays which cross the partition

boundary while reducing running time considerably. An attempt was made to crudely partition

designs but this was unsuccessful due to the simplistic partition techniques employed.4

Another significant unperformed optimization would be to impose a global limit on the

number of flip-flops allocated by the process. Reducing the number of flip-flops allocated by im-

posing a global constraint would significantly aid in the ability to perform effective retiming for a

highC factor, where the poor placement of flip-flops may overwhelm the benefits of retiming.

This tool does have some other limitations. It onlyC-slows the entire design, only works

with a single clock domain, and can’t automatically increase the size of memories. This last limi-

tation is accommodated by modifying the memories at the design level before proceeding. Yet it is

suitable to evaluate the benefits of applyingC-slow retiming to realistic designs targeting commer-

4In an attempt to reduce running time, a breadth-first greedy partitioning was used. Unfortuntaly, this proved gener-
ally ineffective as the global constraints on the critical path would often cut across the partition boundries. Since each
individual partition had no estimate on the other partition’s behavior, this severely limited the quality of results.
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Figure 13.2:C-slowing and retiming all the benchmarks and the effects on throughput and latency.
A C-slow factor of 1 just performs retiming. Throughput is substantially improved, roughly dou-
bling the throughput in the best case. As expected,C-slowing does increase the latency for a single
computation.

cial FPGAs, and demonstrates that throughputs can be substantially increased by using automated

C-slow retiming tools.

13.3 Results

In order to evaluate the quality of results, this tool was applied to all four application-based

benchmarks described in Chapter 3 targeting various members of the Xilinx Virtex [82] family of

FPGAs. All were placed and routed using Xilinx Foundation 4.1i with maximum effort. All timings

are reported by the Xilinx static timing analysis tool. For the hand-placed benchmarks, the results

of the automatic tool are compared with the careful hand-constructed retimings to verify the quality

of this tool.

Figure 13.2 graphically depicts the effects on all benchmarks. Just retiming (aC-slow

factor of one) offers only a small amount of benefit, while more agressiveC-slowing can increase the

throughput substantially. In most cases, the optimumC-slow factor for a given benchmark nearly

doubles the throughput. For all benchmarks, there comes a point where additionalC-slowing offers

little or no benefit. Naturally, this increase in throughput also degrades latency, with the equivelent

clock rate for a single stream of execution substantially worsened.

More details and the results for the individual benchmarks are presented in the following
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Version LUT Associated LUT Unassociated Clock Stream Clock
Flip Flops Flip Flops MHz MHz

None 48 MHz 48 MHz
5-slow by hand 105 MHz 21 MHz

Retimed automatically 150 0 47 MHz 47 MHz
2-slow automatically 302 289 64 MHz 32 MHz
3-slow automatically 348 668 75 MHz 25 MHz
4-slow automatically 447 899 87 MHz 21 MHz
5-slow automatically 462 1324 88 MHz 18 MHz

Table 13.1: The effects of C-slow retiming the AES encryption core placed with simulated anneal-
ing on a Spartan II 100. This tool produces highly competitive results, able to nearly double the
throughput using automated transformations.

Version LUT Associated LUT Independent Clock Stream Clock
Flip Flops Flip Flops MHz MHz

None 48 MHz 48 MHz
5-slow by hand 115 MHz 23 MHz

Retimed automatically 132 37 50 MHz 50 MHz
2-slow automatically 332 110 74 MHz 37 MHz
3-slow automatically 404 515 95 MHz 32 MHz
4-slow automatically 660 459 86 MHz 22 MHz
5-slow automatically 660 885 105 MHz 21 MHz

Table 13.2: The effects of C-slow retiming the hand placed AES encryption core targeting a Spartan
II 100. For 5-slow retiming, the throughput more than doubled when compared with the original,
unretimed version.

subsections.

13.3.1 AES Encryption

For testing purposes, the process began with AES implementation that was hand placed

and hand retimed 5-slow to operate at 115 MHz on a Spartan 2 100, speedgrade 5. Removing the

placement information reduces the clock to 105 MHz, while removing both placement and retiming

information reduces the clock to 48 MHz. This design requires 10 BlockRAMs and about 800

LUTs. Experiments were performed on both the simulated annealing and hand placed versions,

comparing the automated results ofC-slowing with the manual results for both hand-placed and

automatically-placed versions. Table 13.1 shows the effects ofC-slow retiming on the design when
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automated placement is used. Table 13.2 shows the benefits for a hand placed design.

The tool reports both the number of flip-flops that are bundled with associated logic and

the number that have to be scavenged from unused elements of the FPGA for this automatic tool. In

any case, this design is BlockRAM, not LUT limited, so large numbers of registers can be allocated

without an area penalty. The clock rate represents the total throughput of the system, while the

stream clock is the latency for any single task or stream of execution (simply the clock rate divided

by theC-slow factor). AggressiveC-slowing increases overall throughput for multiple execution

streams at the cost of single thread latency.

For both cases, although the results are still somewhat inferior to the hand-crafted imple-

mentations, they are highly competitive, with throughput more than doubling for the hand placed,

5-slow version. As expected, retiming withoutC-slowing provides negligible benefit, as the critical

path is defined by a single cycle feedback loop.

The limitations on the tool for a highC factor are due to an inability to alter the logic

placement in response to the numerous registers that need to be added and the simple heuristic used

to allocate the flip flops. The hand-placed version contains a subkey generation module, expressing

roughly 1/3 of the interconnect in 1/5 of the FPGA area. This poses significant difficulties for the

tool when allocating large numbers of flip-flops. Additionally, the hand-created implementations

used SRL16s to create a compact 128b wide, 3 cycle long delay chain in the subkey generation

core, a technique not employed by this tool. This creates an enormous amount of pressure on the

retiming tool, which has to add approximatly 512 registers (for 5-slow operation) into the subkey

generation module, yet that module is in a region of the chip containing only 480 flip-flops.

There are other factors that affect the resulting quality. The heuristics to calculate in-

terconnect delay are simply linear functions of Manhattan distance and don’t capture the costs of

various interconnect types, and the procedures for allocating flip flops are comparatively crude.

Additionally, theC-slow retiming process needs to allocate a considerable number of registers, be-

cause even at the highest level, there are 256 bits of datapath which requireC-slowing. Even the best

case, using an omnicient tool capable of restructuring the implementation, a5-slow implementation

would require allocating over 1000 registers throughout the design.

One particular point of interest is the 4-slow case for hand placement. WhenC-slowing,

the latency for each thread is always worse, with the hope that the total throughput increases. It

is not fully understood why the change from 3-slow to 4-slow reduces the throughput, while the

transition from 4-slow to 5-slow increases it. This probably involves poor heuristics used to allocate

new flip-flops that do not occur in the 5-slow case but are apparent in the 4-slow version, as these
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C-slow LUT Associated LUT Unassociated Clock Stream Clock
Factor Flip Flops Flip Flops MHz MHz

None 43 MHz 43 MHz
4-slow by hand 90 MHz 22 MHz

Retimed automatically 628 287 40 MHz 40 MHz
2-slow automatically 762 1010 69 MHz 34 MHz
3-slow automatically 811 1723 84 MHz 28 MHz
4-slow automatically 832 2524 76 MHz 25 MHz

Table 13.3: The effects of C-slow retiming on the Smith/Waterman Implementation, for simulated
annealing placement on a Spartan II 200. The 3 slow version almost doubles the throughput, while
the automatic 4 slow version has passed the point of diminishing returns due to the large number of
flip flops that required allocation.

C-slow LUT Associated LUT Unassociated Clock Stream Clock
Factor Flip Flops Flip Flops MHz MHz

Original 45 MHz 45 MHz
4-slow by hand 100 MHz 25 MHz

Retimed automatically 555 321 41 MHz 41 MHz
2-slow automatically 813 972 57 MHz 29 MHz
3-slow automatically 752 1167 86 MHz 28 MHz

Table 13.4: The effects of C-slow retiming on the Smith/Waterman Implementation for hand place-
ment on a Spartan II 200. Again, a highC factor nearly doubles the throughput.

heuristics are designed to place individual flip flops rather than the longer chains of flip-flops which

are needed in the subkey-generation module. The hand-placed version is particularly difficult for

the automated tool, as 1/2 of the dataflow (the subkey generation) is confined to 1/5th of the FPGA,

yet requires nearly as many registers.

13.3.2 Smith/Waterman

A hand mapped, placed, and hand retimed 4-slow Smith/Waterman cell was utilized, able

to operate at 100 MHz on a Spartan II 200. This cell uses a 5 bit alphabet, 5 bit costs, affine gap

distance, and 16 bit arithmetic quantities, with the string being matched against compiled into the

configuration. Removing the placement information reduces the clock to 90 MHz. Removing both

placement and retiming information reduces the clock to 44 MHz. This design requires about 1700

LUTs, of which most are adders.
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C-slow LUT Associated LUT Unassociated Clock Thread Clock
Factor Flip Flops Flip Flops MHz MHz

None 51 MHz 51 MHz
3-slow by hand 105 MHz 35 MHz

Retimed automatically 201 96 54 MHz 54 MHz
2-slow automatically 294 284 86 MHz 43 MHz
3-slow automatically 326 470 91 MHz 30 MHz
4-slow automatically 326 779 82 MHz 20 MHz

Table 13.5: The effects of C-slow retiming on the synthetic microprocessor core targeting a Spartan
II 150-5, placed with simulated annealing.

C-slow LUT Associated LUT Unassociated Clock Thread Clock
Factor Flip Flops Flip Flops MHz MHz

None 55 MHz 55 MHz
3-slow by hand 105 MHz 35 MHz

Retimed automatically 165 37 59 MHz 59 MHz
2-slow automatically 238 281 85 MHz 43 MHz
3-slow automatically 289 501 88 MHz 29 MHz
4-slow automatically 289 830 88 MHz 22 MHz

Table 13.6: The effects of C-slow retiming on the hand placed synthetic microprocessor datapath
targeting a Spartan II 150-5

The results are summarized in Table 13.3 and Table 13.4. The slight performance decrease

for retiming withoutC-slowing is due to imprecision in the delay-modeling that resulted in some

slightly poor decisions. Again, this design is limited by a single-cycle feedback loop, so retiming

without C-slowing was not expected to be beneficial. Beyond that,C-slow retiming shows the

expected performance gains, with not quite double the throughput for the3-slow, automatically

placed version at 84 MHz.

The tool was deliberately conservative: never using an unrelated flip-flop when the carry

chain was used, instead of being slightly more selective by monitoring the carry-in state. This

is a fairly significant restriction on the Smith/Waterman benchmark as the design consists almost

entirely of adders and multiplexors, yet the tool still produces effective results.
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C-slow LUT Associated LUT Unassociated Clock Thread Clock
Factor Flip Flops Flip Flops MHz MHz

None 23 MHz 23 MHz

Retimed automatically 2398 194 25 MHz 25 MHz
2-slow automatically 2150 388 46 MHz 23 MHz
3-slow automatically 2438 3713 47 MHz 16 MHz

Table 13.7: The effects of C-slow retiming on the LEON 1 SPARC microprocessor core targeting
a Virtex 400-6. The 2 slow version doubles the throughput, while maintaining roughly the same
latency, while the 3 slow version allocated too many flip flops to be effective.

13.3.3 Synthetic Datapath

The synthetic datapath also utilized hand placement and handC-slowing, with the best

results of 105 MHz for a hand placed, hand-3-slow design, targeting a Spartan II 150-5. Removing

the C-slowing drops the performance to 55 MHz. The results are summarized in Table 13.5 and

Table 13.6.

Unlike the previous benchmarks, the initial design’s critical is not perfectly balanced,

enabling retiming to offer a small but significant performance benefit. Like the other benchmarks,

automaticC-slowing resulted in substantial speedups, automatically increasing the design from 55

MHz to 91 MHz in the best case.

13.3.4 LEON 1

Table 13.7 shows the results of applying theC-slow tool to the LEON 1 core. Unlike the

other designs, LEON 1 [54] is a fully synthesized design and required some minor modifications

before it could be tested with this tool. The register file was implemented by hand, using negative-

edge clocked BlockRAMs to create the illusion that it was an asynchronous memory—needed to

match the pipeline structure of the processor. The caches and memory controller were removed,

because they would need to be reimplemented for aC-slowed design to account for multiple data

streams and to enable non-blocking behavior between the distinct threads. All other control lines

were registered through I/O pads. Synthesis was performed using Synplify with the inferring of

clock enables suppressed. The resulting design requires 5900 LUTs, 1580 Flip Flops, and 4 Block-

RAMs. It runs at 23 MHz on a Virtex XCV400-6. Hardware sets and resets were then eliminated

by editing the EDIF to enable C-slowing, creating a design requiring 6100 LUTs.

For this design, the critical path was initially limited by a multicycle feedback loop, en-
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abling conventional retiming to offer a limited benefit. Conventional retiming also eliminated the

fragmented cycle from the memory access by converting the BlockRAM to positive-edge clocking

and forcing the design to rebalance itself, offering a potential improvement in clock rate.

2-slow retiming showed a highly significant performance increase. LEON contains a

higher ratio of logic to pipeline registers when compared to the other benchmarks, implying that the

latency penalties for retiming would be comparatively lower. This situation the best possible case,

where the combined benefits of retiming andC-slowing produced a design where single threaded

throughput remains constant but aggregate throughput was doubled.

3-slow retiming attempted to allocate too many registers to create an efficient design,

resulting in such a marginal performance increase as to be negligible. This limitation suggests that

future work on better heuristics to limit flip-flop creating and improving allocation would provide

considerable benefits.

13.4 Architectural Recommendations for the Xilinx

It is possible to improve the Xilinx architecture to allow this tool to operate more ef-

fectively. Most limitations were discovered when aggressiveC-slowing was used, and therefore

many registers were required. It is possible to add 2 registers to the CLB without increasing I/O

requirements, if the registers lack the clock enable and reset functionality.

SinceC-slowing needs to use logic to implement set and clock enable functionality, these

inputs are no longer needed for such designs. By driving two new registers from the CE and SR

inputs, it becomes possible to use 4 registers forC-slowing. Likewise, these new registers can

drive the XB and YB outputs, signals which are only used to tap the carry chain and for occasional

CLB-routing purposes.

This would not improve the mildlyC-slowed designs, where almost no flip-flops need

to be scavanged, but should offer a significant gain on the agressivelyC-slowed designs, when

considerably more flip-flops need to be allocated. The final performance was limited by the flip-

flop allocation, not theC-slowing itself.

13.5 Retiming for the SFRA

In addition to retiming designs targeting the Xilinx Virtex, this tool also provides for the

fixed-frequency retiming used with the SFRA. As detailed in Section 10.5, fixed-frequency retiming
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only requires local constraints, and rather than iterating to find a minimum critical path for a given

C, the process iterates to find the minimumC which meets all constraints.

Since the SFRA operates on the same design, and uses the same CLB layout, the same

retiming tool is used to target both architectures. The only difference is the SFRA retiming tool is

run twice, once before routing (using an approximate delay model) and once after routing (using

the final delays produced by routing).

13.6 Summary

This chapter describes a tool for automatically improving the performance of Xilinx de-

signs throughC-slowing and retiming. This tool was evaluated on the four benchmarks used

throughout this thesis, and directly compared with hand implementations to verify the quality of

the results. In many cases, throughput can be more than doubled using this tool.

This tool was evaluated on four benchmarks, three which contained handC-slowed ver-

sions. Although not quite matching the quality of handC-slowing, the automatic tool provides

significant performance gains. Even a highly complex, synthesized design like the LEON Sparc

core showed large improvements, doubling in throughput!
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Part III

Comparisons, Reflections and

Conclusions
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The final part of this thesis presents a comprehensive comparison between the SFRA and

the Xilinx Virtex, an analysis of the overall suitability of the fixed-frequency approach, the open-

questions remaining with the SFRA and corner-turn architectures, and a final conclusions.

Chapter 14 directly compares the SFRA with the Xilinx Virtex. For the same design, the

SFRA routing algorithms are an order of magnitude faster, as are the SFRA retiming algorithms.

Because of its pipelined, fixed-frequency nature, designs can run at significantly higher throughput

when compared to the Virtex.

Chapter 15 discusses the tradeoff between latency and throughput. In general, fixed-

frequency FPGAs offer higher throughput, but at the cost of substantially increased latency. On

throughput-bound applications, this is an acceptable tradeoff, but significantly degrades perfor-

mance on latency bound applications.

Chapter 16 discusses the remaining open questions. The first is the interaction between

power consumption andC-slowing, as there are complicated second-order effects which haven’t

been analyzed. The second is the interaction between the corner-turn topology and coarser-grained

FPGAs. In this area, corner-turning should be more efficient. The final open-question is the effect on

depopulating the C-boxes in a corner-turn array, and whether this could be done without adversely

affecting routability.

Chapter 17 summarizes this thesis, acting as an overall conclusion. It reviews the major

results, and includes an evaluation of both what was effective and what is less effective in the thesis

results.
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Chapter 14

Comparing the SFRA with the Xilinx

Virtex

In order to provide quantitative comparisons between the Virtex and SFRA architectures,

the benchmarks discussed in Chapter 3 were mapped to both architectures. This chapter compares

the results of mapping the benchmark designs, with a focus on the differences in toolflow time,

design throughput, throughput normalized to area, and latency.

Not only does this chapter compare the SFRA with a commercial FPGA (the Xilinx Vir-

tex), but also compares the SFRA with the Virtex after the Virtex designs are improved through

automatic C-slowing (as described in Chapter 13).

14.1 Benchmark Designs

The benchmarks used for this comparison, AES encryption, Smith/Waterman sequence

matching, the synthetic datapath, and the LEON 1 microprocessor core, are described in detail in

Chapter 3 and Appendix A.

The AES and Smith/Waterman designs are both heavily optimized for the Virtex archi-

tecture. These applications are very appropriate for aggressiveC-slowing, as most usages attempt

to optimize throughput, not latency. Both benchmarks were hand-mapped, with both hand-placed

and automatically placed versions. Thus it is possible to differentiate between placement either by

hand or through simulated annealing and the subsequent effects on the router. The two benchmarks

stress different aspects, as AES uses bitwise operations and table lookups while Smith/Waterman is

almost entirely 16-bit arithmetic operations.
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The synthetic datapath and the LEON 1 microprocessor core represent designs selected

for their datapath nature rather than their appropriateness for aggressiveC-slowing.1 Both designs

stress datapath functionality, although they are generated using different techniques. The synthetic

datapath is a carefully implemented, hand constructed design with both hand and automatically-

placed versions, while LEON 1 is fully synthesized and contains a large mix of control logic as well

as datapath. Being over 6000 LUTs, LEON 1 is a very substantial design.

Although the synthetic datapath and LEON 1 are not generally appropriate candidates

for aggressiveC-slow retiming, the datapath nature is a common construction which appears in

many applications, including image processing and other tasks, which do benefit from aggressive

C-slowing.

All these benchmarks were also accelerated using theC-slow tool discussed in Chap-

ter 13. Thus the comparisons don’t simply include unmodified Xilinx designs but Xilinx designs

which were accelerated using the same technique, fine-grained pipelining throughC-slowing, which

enables the SFRA to achieve high throughput.

14.2 The SFRA Target

The SFRA architecture, described in more detail in Chapter 5, uses a 120 wire routing

channel, fully populated C-boxes, and 2 turns in addition to the BX/BY inputs, for an effectively 6

turn array. All wires are broken every 3 CLBs with a bidirectional buffer, and every 9 CLBs they are

registered. The carry chain is registered every 4 CLBs (8 bits). All BlockRAM access is pipelined,

requiring 3 cycles.

As described in more detail in Chapter 5, the SFRA should be able to operate at at least

300 MHz in a .18 micron process based on simulating the critical path within the interconnect. This

timing estimate is used to specify the SFRA’s performance on this target architecture. Likewise,

the SFRA appears to be about 3.9 times larger than the Virtex, as the interconnect’s connectivity is

significantly richer.

14.3 The Xilinx Target

The Xilinx designs in Chapters 3 and 13 were mapped to the .22µm Spartan II and Virtex

architectures. As the .18µm Virtex E and Spartan IIe architectures have different BlockRAM

1Chapter 11 discusses how a minor degree ofC-slowing can accelerate a microprocessor core.
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locations, this incompatibility prevents theC-slowing tool and the SFRA router from operating

properly. Additionally, upgrading the toolflow from 4.1 to the latest version, necessary to support

the Spartan IIe, would pose compatibility problems as the Foundation 5.1xdl tool will not accept

designs produced by the automaticC-slowing tool.

Instead, the Xilinx clock-rates are scaled to the .18µm process to account for the per-

formance difference. In Appendix A, the AES design was modified to account for the different

placement parameters and targeted at both the Spartan II (implemented in a .22µm process) and

the Virtex-E (implemented in the .18µm process). The resulting design improved from 115 MHz

to 155 MHz, an increase of 35%. To be conservative, a performance improvement of 40% is as-

sumed throughout the rest of this chapter. Table 14.1 summarizes the adjusted clock rates for all the

benchmark designs and parameters.

14.4 Toolflow Comparisons

All these benchmarks were placed using the Xilinx placement tools (version 4.1) with

maximum effort selected. The Xilinx router times are for maximum effort, as there are performance

drawbacks when lower effort is used. To provide an effective comparison, these benchmarks were

also retimed using the retiming tool developed for the Virtex. This tool can effectively double the

throughput on the benchmarks when targeting the Xilinx Virtex, and compares well with hand-

retiming. Thus the comparisons aren’t only with what the Xilinx toolflow currently supports, but

also potential improvements. All tools were run on a 550-MHz Pentium III with 256 MB of memory

running Windows 2000. The same placements are used for both the Virtex and SFRA targets.

The toolflow times for both architectures are summarized in Table 14.2. Thanks to the

polynomial-time heuristics, the SFRA router is one to two orders of magnitude faster than the Xilinx

router. This is despite the considerable effort Xilinx devotes to minimizing router run-time, while

the SFRA router is coded in straightforward Java with little care to optimizing performance.

It is impossible to directly compare router “quality”, as the SFRA and Xilinx routers have

vastly different targets. The SFRA router does minimize turn use and wire length, so the resulting

routes are minimum cost and nearly minimum delay.

Both retiming implementations, the SFRA retiming tool and the Xilinx retiming tool, are

simply two execution options within the same code base. The SFRA retiming is not reported in

isolation, but simply recoded as the combined toolflow time which includes data-loading, routing,

and the two retiming passes. Since most of the time involves retiming, this number reflects the cost
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Benchmark Initial Clock Adjusted Clock
Version (MHz) (MHz)
AES, hand-placed
unoptimized 48 MHz 67 MHz
AES, hand-placed
automatically retimed 105 MHz 147 MHz
AES, autoplaced
unoptimized 48 MHz 67 MHz
AES, autoplaced
automatically retimed 88 MHz 123 MHz
Smith/Waterman, hand-placed
unoptimized 47 MHz 66 MHz
Smith/Waterman, hand-placed
automatically retimed 86 MHz 120 MHz
Smith/Waterman, autoplaced
unoptimized 43 MHz 60 MHz
Smith/Waterman, autoplaced
automatically retimed 84 MHz 117 MHz
Synthetic Datapath, hand-placed
unoptimized 55 MHz 77 MHz
Synthetic Datapath, hand-placed
automatically retimed 91 MHz 127 MHz
Synthetic Datapath, autoplaced
unoptimized 50 MHz 70 MHz
Synthetic Datapath, autoplaced
automatically retimed 88 MHz 123 MHz
LEON 1, autoplaced
unoptimized 27 MHz 38 MHz
LEON 1, autoplaced
automatically retimed 46 MHz 64 MHz

Table 14.1: The initial clock rates for the various benchmarks, targeting the Spartan II/Virtex parts,
and the clock rate adjusted to the .18µm process. This clock rate adjustment is necessary because
although the .18 and .25µm parts are similar, there are minor incompatibilities which restrict the
automaticC-slow retiming tool.
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Benchmark Xilinx Custom Xilinx SFRA SFRA
Routing Time Retiming Time Routing Time Toolflow Time

AES (hand placed) 405 s 73 s 2 s 6 s
AES (autoplaced) 542 s 77 s 2 s 6 s
Smith Waterman
(hand placed) 104 s 178 s 2 s 8 s
Smith Waterman
(autoplaced) 102 s 169 s 2 s 9 s
Synthetic Datapath
(hand placed) 284 s 47 s 2 s 5 s
Synthetic Datapath
(autoplaced) 307 s 50 s 2 s 6 s
LEON (autoplaced) 432 s hours 11 s 62 s

Table 14.2: Time taken by the tools to route and retime the benchmarks, for both Xilinx Virtex and
the SFRA. The SFRA toolflow time includes both routing and retiming, while the Xilinx retiming
time excludes theO(n3) Dijkstra’s step used to calculate theW andD matrixes. The SFRA router
minimizes the number of turns required for each connection and all connections use minimum-
length wires.

of SFRA retiming.

The reported Xilinx retiming performance excludes the Dijkstra’sO(N3) step required to

compute theW andD matrixes. As reducing this time to the optimalO(N2lg(n)) implementation

would require changing the graph representation to a matrix representation, the time required is

simply excluded from the normal runtimes reported. As mentioned in Chapter 10, general retiming

takes considerably longer than fixed-frequency retiming as the constraint system is significantly

more complicated to insure that all potential critical-paths are registered. Due to the large amount

of memory usage, the Leon benchmark could not be retimed using the Pentium III, but was run on

a Pentium 4 with 1 GB of DRAM.

14.5 Throughput Comparisons withoutC-slowing

As expected, an SFRA operating at 300 MHz offers substantially superior throughput

that the Xilinx as seen in Table 14.3. IfC-slowing is not automatically applied, the SFRA offers

substantial improvements in throughput over the Xilinx Virtex: ranging from 3.9 to 7.9 times the

throughput.

However, throughput is an insufficient metric for comparison. Instead, throughput nor-
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Benchmark Adjusted Xilinx SFRA Expected Speedup Area
Clock Rate C-slow for 300 MHz Normalized

(MHz) Factor SFRA Speedup

AES (hand placed) 67 MHz 24 slow 4.4x 1.1x
AES (autoplaced) 67 MHz 27 slow 4.4x 1.1x
Smith/Waterman
(hand placed) 66 MHz 31 slow 4.4x 1.1x
Smith/Waterman
(autoplaced) 60 MHz 37 slow 5.0x 1.3x
Synthetic Datapath
(hand placed) 77 MHz 21 slow 3.9x 1.0x
Synthetic Datapath
(autoplaced) 70 MHz 23 slow 4.2x 1.1x
LEON (autoplaced) 38 MHz 67 slow 7.9x 2.2x

Table 14.3: Throughput and Throughput/Area results for the unoptimized Virtex benchmarks when
compared with an 300 MHz SFRA.

malized to area is a better metric. As the Virtex architecture requires 42000µm2 per CLB, while

the SFRA requires 160000µm2 for the same amount of logic, resulting throughput is divided by

3.9 (the area ratio) to obtain an area normalized throughput.

This normalization is required as any application which can benefit fromC-slowing can

also have its throughput increased through replication, as the prerequisites forC-slowing a design

can also be matched through replication.

Nevertheless, the SFRA is competitive with the Xilinx Virtex, as the increased area is

countered by the greater throughput. On all benchmarks, the SFRA meets or exceeds (by up to a

factor of 2) the Xilinx throughput, even after area normalization. This is considered a highly positive

result, as the SFRA is a single-person effort while the Virtex is a 5th generation commercial product

from a highly successful company.

Additionally, the SFRA’s interconnect style is more appropriate to a coarse-grained archi-

tecture, but as there has been no commercially successful coarse-grained FPGA, this interconnect

topology must be compared at a less efficient point in the design space.

Another area of interest is the slightly greater sensitivity of the SFRA to poor placement,

but only in terms of latency. AES, although regular when viewed at a macro level, is composed

of highly irregular bit-mixing operations, preventing the SFRA from significantly benefiting from

a hand-placed datapath. Thus both versions, hand placed and automatically placed, show similar
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performance.

Smith/Waterman, on the other hand, is composed of aligned arithmetic operations. With

automatic placement, the cumulative effect of small misalignments becomes substantial throughout

the feedback loop, while the hand-placed version insures that all dataflow is carefully aligned. Thus

the latency required is significantly larger for the automatically placed version.

Even so, although the Xilinx placer is not optimized for the SFRA architecture, it does a

respectable although not remarkable job when placing designs for this different interconnect. The

general success of the Xilinx placement tool is probably due to the timing domains which result

from a Hex-line based interconnect structure. Although Xilinx does not provide a great detail on the

timing domains produced, the resulting domains of a Virtex prototype which uses length 8 instead

of length 6 segmented wires is well described in [52].

For the Xilinx Hexline/Octline style of interconnect, the direct horizontal and vertical

alignments are the fastest, followed by the group offset around the point. Thus the cost for a slight

offset is significantly more than direct alignment, but the cost of a larger offset is not substantially

greater. This generally matches the SFRA architecture, although the penalties are different.

However, both automatically placed and manually placed designs targeting the SFRA

have the same throughput if fullC-slowing is acceptable. On a conventional FPGA such as the Vir-

tex, a bad placement will reduce both latency and throughput. Yet on a fixed-frequency architecture,

a bad placement only affects latency, not throughput, as the throughput is an intrinsic property of

the target architecture if suitable parallelism is exploited.

This is a key distinction between a conventional FPGA and a fixed-frequency FPGA. A

poor placement on the Xilinx both reduces throughput and increases latency. Yet the SFRA, like

any other fixed-frequency architecture supportingC-slowing, will only show increased latency. So

although automatically-placed benchmarks are not as effectively mapped to the SFRA, the relative

throughput improvement over the Xilinx is increased when both arrays have designs with suboptimal

placement.

14.6 Throughput Comparisons withC-slowing

Naturally, much of the SFRA’s benefits derive from theC-slowing transformation itself.

By using the tool described in Chapter 13 to improve the quality of Xilinx designs, it is possible to

separate the benefits ofC-slowing from the benefits of fixed-frequency operation. These results are

summarized in Table 14.4.
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Benchmark Adjusted Xilinx SFRA Expected Speedup Area
Clock Rate C-slow for 300 MHz Normalized

(MHz) Factor SFRA Speedup

AES (hand placed) 147 MHz 5-slow 24 slow 2.0x .5x
AES (autoplaced) 123 MHz 5-slow 27 slow 2.4x .6x
Smith/Waterman
(hand placed) 120 MHz 3-slow 31 slow 2.5x .6x
Smith/Waterman
(autoplaced) 117 MHz 3-slow 37 slow 2.5x .6x
Synthetic Datapath
(hand placed) 127 MHz 3-slow 21 slow 2.4x .6x
Synthetic Datapath
(autoplaced) 123 MHz 3-slow 23 slow 2.4x .6x
LEON (autoplaced) 64 MHz 2-slow 67 slow 4.6x 1.2x

Table 14.4: Performance results for automaticallyC-slowed applications when compared with an
300 MHz SFRA.

SinceC-slowing effectively doubles the throughput of the designs targeting the Virtex,

this naturally reduces the SFRA’s advantages in throughput and throughput/area. AfterC-slowing,

the Virtex offers generally superior throughput/area. Additionally, a bit-oriented corner-turn FPGA

is significantly less-efficient than a word-oriented array due to the nature of the fully-populated C-

boxes. Thus it is expected that the Virtex’s structure, which is designed for bit-oriented operations,

would have an efficiency advantage. Yet as there are no successful commercial word-oriented arrays

with public tool interfaces, the SFRA must be architecturally compatible with a bit-oriented array.

It is interesting that on the highly complex Leon benchmark, even afterC-slowing the

Virtex design, the SFRA still maintains superior throughput per area. Also,C-slowing for the

SFRA is an order of magnitude faster than the process required toC-slow designs targeting the

Virtex.

14.7 Latency Comparisons

As expected, the greatest penalty imposed by a fixed-frequency architecture is signifi-

cantly higher computational latency, as seen in Table 14.5. If only a single task can be supported,

the equivalent clock rate is simply the array’s clock rate divided by the requiredC-slow factor. Since

a fixed-frequency array has considerably more registers along each path, the resulting design has
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Benchmark Adjusted Xilinx SFRA Single-Thread Clock
Clock Rate C-slow for 300 MHz

(MHz) Factor SFRA

AES (hand placed) 67 MHz 24 slow 13 MHz
AES (autoplaced) 67 MHz 27 slow 11 MHz
Smith/Waterman
(hand placed) 66 MHz 31 slow 10 MHz
Smith/Waterman
(autoplaced) 60 MHz 37 slow 8 MHz
Synthetic Datapath
(hand placed) 77 MHz 21 slow 14 MHz
Synthetic Datapath
(autoplaced) 70 MHz 23 slow 13 MHz
LEON (autoplaced) 38 MHz 67 slow 4.4 MHz

Table 14.5: Latency results for the Virtex benchmarks when compared with a 300 MHz SFRA.

considerable latency added.

On the various benchmarks, the Virtex is better than the SFRA by anywhere from 5 to 8

times lower latency, as a result of the low latency architecture employed by Xilinx. The implications

of these latency differences will be discussed in Chapter 15.

14.8 Summary

By being largely placement and design compatible with the Xilinx Virtex, it is possible to

compare the SFRA directly with a commercial array. The SFRA supports much faster routing and

retiming: one to two orders of magnitude faster than the Xilinx Virtex tools. Likewise, the SFRA

offers superior throughput on all designs, even when comparing designs which have beenC-slowed

for the Virtex. When normalized for area, the SFRA is throughput competitive with the Virtex,

despite being in a very inefficient portion of the architectural space.

Naturally, the SFRA’s throughput advantages are reduced when Virtex designs are auto-

maticallyC-slowed, while the fixed-frequency nature of the SFRA means that latency for a single

stream of execution is considerably worse.
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Chapter 15

Latency and Throughput: Is

Fixed-Frequency a Superior Approach?

“Never underestimate the bandwidth of a station wagon full of tapes hurling down the highway”

-Andrew S Tannenbaum

Fixed-frequency FPGAs, by virtue of a higher degree of pipelining, offer superiorthrough-

putover conventional FPGAs on a wide variety of tasks. Yet throughput alone is a misleading met-

ric, as any application that can benefit from a high degree of automatic repipelining orC-slowing

and retiming can also easily benefit from replication.

If an application is feed-forward, every datum is independent. Thus, it is possible to start

with a design for a single pipeline and simply replicate that pipeline to increase the throughput.

If an application can beC-slowed, there areC independent tasks. Thus, the initial design can be

replicatedC times instead of beingC-slowed. The application can also benefit from a compromise:

An initial core isC-slowed, and then replicated if even more throughput is desired.

By this observation, throughput is an insufficient metric for comparison, as it is half of an

efficiency metric, throughput/area or throughput/$ that needs to be considered. If greater throughput

is desired, more resources can be acquired to speed the computation. Eventually limits are reached,

but for most applications where fixed-frequency arrays are intended, the throughput limits are often

very high. Thus throughput/area represents a cost, not an intrinsic property, for implementations

that can benefit from aggressive repipelining,C-slowing, or replication.

Throughput’s scalability contrasts sharply withlatency, the time required to complete

the computation for a single element. Initially, the latency for a computation can be improved by
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expending more resources, up to the point where resource limits no longer constrain the design’s

critical path. Beyond this point, adding more resources will not improve a design’s latency.

A good illustration of the relationship between throughput and latency appears in the

network world. Whenever more network bandwidth is required, it is usually possible to aggregate

links. Thus if a single T1 line, at 1.5 Mbps, has insufficient bandwidth, a second line can usually be

added for a linear increase in cost and complexity.

Yet network latency, the time it takes to transmit a single datum, is an intrinsic property

of the network’s implementation. Increasing the amount of resources employed generally cannot

improve network latency. In the ultimate limit, network latency is bounded by the speed of light, as

information can’t be sent any faster.

One of the highest bandwidth networks, described famously by Tannenbaum, involves

simply moving physical media from one location to another. Yet this technique is seldom employed,

as the latency is often unacceptably high despite the outstanding throughput and throughput/$.

The same tradeoffs apply to computational fabrics. Fixed-frequency FPGAs, that provide

high throughput through fine pipelining, increase the latency. The more aggressive the pipelining

involved, the greater the latency penalty. Additionally, a conventional FPGA could be treated as

nearly fixed-frequencythroughC-slowing tools when targeting throughput-limited designs, but a

fixed-frequency FPGA, unless there are architectural changes to bypass registers, can’t behave like

a conventional FPGA for latency bound tasks.

15.1 The Limits of Parallelism

The compiler community has long recognized the limits on parallelism. Anyloop-carried

dependency, a reference to a value computed in a previous iteration of the loop, acts to limit the

amount of parallel computation that can be performed. Even on an infinitely parallel machine, such

as a hypothetical infinite superscalar or VLIW architecture, the computational performance for the

loop will be limited by the time it takes to complete each loop iteration sequentially. In the extreme

case, where everything else can be computed in parallel, the latency of the loop’s iteration will

bound the maximum performance of the system.

Many important applications, including those that work well on FPGAs, include latency-

bound tasks. Cryptography, as discussed in Section 15.2, will often be latency bound. Other tasks,

such as Zero Length Encoding (ZLE) are also inherently sequential.
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15.2 Latency and Cryptography

An effective illustration where computational latency is important arises from cryptogra-

phy. The NIST recommended modes of operation [51] for using block ciphers such as AES [50] are

ECB (Electronic Code Book), CBC (Cipher Block Chaining), CFB (Ciphertext Feedback Mode),

OFB (Output Feedback Mode), and CTR (Counter) modes. Of the five modes, CBC, CFB, and OFB

have inate feedback loops, requiring the complete encryption of one block before the next block can

be processed.

ECB and CTR modes attempt to provide security without creating inter-block feedback

loops, enabling these modes to be fully pipelined. Yet both these modes suffer significant limita-

tions. If an encrypted block is repeated when using ECB mode, the output will be repeated as well,

a serious limitation. Worse, both ECB and CTR mode provide no integrity or authentication. As a

result, these modes are very easy for implementers to misuse.

These limits on authentication and integrity enable an attacker who can replace encrypted

messages to distort communications. As an example, if an attacker knows that CTR mode is being

used, the decrypted block1 is the messageM , and the encrypted block isE, the attacker can sub-

stitute the messageM ′ by replacingE with E xor M xor M ′, because the firstxor will recover

the encrypted counter block and the secondxor will now be equivalent to counter-mode encrypting

M ′.2

The commonly-employed solution is to provide a separate integrity, or authentication

step, in the cryptographic pipeline to detect such manipulations. This is accomplished by either

cryptographically hashing the message and encrypting the result3 or using a message authentication

code (MAC) that is transmitted at the end of the message. Hashes are usually separate algorithms

that contain feedback loops, while MACs are based on block ciphers.

Although there is an explicitly parallel MAC, PMAC [13], most MACs, such as XCBC

MAC [12], RMAC [37] and the classic CBC MAC contain inter-block feedback. Because message

integrity and authentication is critical for real systems, if the hash or MAC requires a feedback

loop, it will be latency, not throughput, that limits the peak performance for encrypting a single

1This could be guessed. A good target would be default values (such as a shipping or billing address) that the attacker
desires to change.

2This attack works because CTR mode encrypts a counter value andxors the counter value with the messageM to
create the encrypted blockE, enabling anyone who knows bothE andM to obtain the encrypted value of the counter.
This is an intrinsic weakness ofall stream ciphers. While AES is a block cipher, CTR mode converts a block cipher into
a stream cipher.

3Note that this method can, when used with Counter mode, still enable an attacker to substitute a message if the
attacker knows the entire message, the hash function, and any salting used.
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communication channel.

Even in the case of PMAC, there is a final step that requires the completion of all previous

encryptions, before the final encryption is performed. For applications such as IPsec, each packet

needs its own authentication. Thus PMAC may still be latency-bound when small packets need to

be encrypted.

15.3 Latency and Fixed-Frequency FPGAs

Fixed-frequency arrays almost invariably add registers to the design to meet the array’s

intrinsic timing requirements. Although such registers, when added through repipelining orC-slow

retiming, do not degrade throughput,4 these registers will produce a serious impact on computational

latency.

The latency is added through three mechanisms: a greater number of setup and clk→Q

times, the irregular addition of additional pipelining, and extra registers before or after the critical

loop if C-slowing is employed. The setup and hold times impose a minimum added latency, while

the irregular pipelining represents the worst-case addition. TheC-slowing registers represent a tool

deficiency that may be addressable to a limited degree, although it would disrupt the cleanC-slow

semantics.

Consider a design where the latency is defined by a computational path withi registers that

is retimed and mapped to a variable frequency array as well as a fixed-frequency array. The design,

after remapping for the fixed-frequency array, now hasj registers on the computational path. Even

if the computational path is perfectly divided for the fixed-frequency FPGA, it now passes through

j− i additional registers. Thus the latency will be increased, at an absolute minimum, byj− i setup

and clk→Q times.

Additionally, if the division is not perfect, additional latency will be added to the design.

Every division whose computation and communication is less than the full array’s cycle-time rep-

resents wasted time that is added to the latency. These failures in division arise from architectural

restrictions, not just tool limitations. As an example, if the cycle-time for a fixed-frequency array

enables a signal to travel through four sections of interconnect before a register is required, a fifth

section of interconnect will always result in a significant latency penalty. Similarly, crossing only

three segments of interconnect may take as long as crossing four segments.

TheC-slowing penalty arises whenC registers are required to meet timing through one

4Indeed, these registers enable high throughput operation.
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cycle of the computation, but the total graph of the computation now has more registers than are

strictly necessary to meet timing. A common case is when an inner loop isC-slowed, but the input

and output paths now also haveC-additional registers applied.

This could be corrected by smarter tools. However the resulting design will lose theC-

slow semantics and may have an awkward timing and interface model. ThusC-slowing, although

finding a solution that guarantees optimal throughput with the minimum number of additional exe-

cution streams, will not find a solution that minimizes latency for a single computation.

The net result is that a fixed-frequency FPGA will have substantially worse latency, when

compared with a conventional FPGA, an observation clearly demonstrated in Chapter 14. The more

aggressively pipelined the fixed-frequency array, the greater the penalty, as there are now even more

registers on the critical path.

15.4 Pseudo-Fixed-Frequency FPGA tools

If a fixed-frequency model is desired but the only FPGA available is a conventional array,

it is possible to modify aC-slowing tool to impose a pseudo-fixed-frequency constraint. In this

case, theC-slow tool would operate like a fixed-frequency tool: generate a set of local constraints

which will insure that any connection exceeding the delay are registered and then iterate to find the

minimumC which meets these constraints.

The constraint generation, however, does not involve just local constraints. It is necessary

to partially solve the shortest-paths problem from each source node to discover the frontier where all

signals will require registering. Thus although it is not the complete all-pairs-shortest-path problem,

the worst-case running time and memory usage is the same. All such links will then need to be

considered in the constraint-solving test, increasing the complexity of the constraint-solver as well.

However, with a conventional array, it may not be possible to meet a given timing con-

straints if too many flip-flops are allocated, as there is no longer an architectural guarantee that

every connection will be appropriately registered. Thus even when utilizing aC-slow tool, the pro-

cess may fail to meet the target clock, suggesting that if a conventional array is to be utilized in a

fixed-frequency mode, there will need to be fallback positions (such as time-multiplexed I/O logic

combined with replication of a slower core) to enable a slower internal clock rate while maintaining

an externally fixed interface.
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15.5 Recommendations & Conclusions

If throughput/area or throughput/$ are the primary requirement a fixed-frequency FPGA’s

advantages outweigh the latency penalty. Traditionally, there have been numerous reconfigurable

arrays designed to perform only limited tasks. For example, feed-forward pipelines as targeted by

PipeRench [57], or pipelined datapaths as targeted by Garp [30], represent subclasses of the general

class of throughput-bound designs which benefit from aggressive pipelining orC-slow retiming.

If an array is designed for general computation, not just the tasks that benefit from high

throughput through fine pipelining, the latency limitations for a fixed-frequency design are substan-

tial. Worse, throughput deficiencies can be largely corrected by expending more resources (only

affecting various system costs), while latency limits are fundamental to the computational fabric

and can’t be corrected without changing the fabric itself. This is especially visible if there are a

family of computational devices of various sizes utilizing the same computational fabric.

This strongly suggests that any fixed-frequency FPGA that is targeted as a general compu-

tational fabric or coprocessor needs to be able to act like a conventional FPGA. Most or all registers

should be bypassable with the resulting array’s clock frequency determined by the mapped design

if low latency operation is desired. Likewise, interconnect should be constructed for low latency

operation when the registers are bypassed.

A compromise, where the array’s clock can be one of several different, prearranged fre-

quencies, will substantially help latency-bound tasks, but the difference between the optimum fre-

quency and the operating frequency may still hurt latency.

Such semi fixed-frequency arrays will still be comparatively area-inefficient, when com-

pared to conventional FPGAs, when the tasks are latency-bound. Due to the fully registered inter-

connect and similar restrictions, the basic logic tile will be substantially larger. As seen in Chap-

ter 13 and discussed earlier in this chapter, it is possible to aggressivelyC-slow conventional FPGA

designs to increase their throughput at a very minor area penalty. However, reducing the latency of

a fixed-frequency array by bypassing registers, does not reduce the area cost of the fixed-frequency

approach.

These observations suggest an alternate approach: a conventional array with several fixed

clock frequencies, using the modified tool techniques to impose a pseudo fixed-frequency constraint,

might serve the same purpose as a fixed-frequency FPGA when throughput is required but offer

superior performance on latency bound tasks.

Chapter 13 demonstrates thatC-slow retiming can substantially increase the throughput
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of designs targeting a conventional FPGA. It would be only a minor modification to select a target

critical path and attempt to discover the minimumC required to meet the desired path, instead of

the tool’s model of finding the minimum critical path for a givenC.

Because there are several high quality, commercial FPGA designs available that are al-

ready optimized for low-latency operation and can achieve high throughput with better tools, in-

cluding being used in a pseudo-fixed-frequency manner, conventional FPGAs should be strongly

considered, even with the additional complications, when implementing reconfigurable coproces-

sors and related elements if latency is a concern.
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Chapter 16

Open Questions

As it is impossible to cover all possible issues in a thesis, there are several issues that may

be considered for future work. There are three major unresolved issues involving the topics in this

thesis: the power implications ofC-slowing, the relative costs of corner-turn based coarse-grained

FPGAs, and proper strategies for depopulating the C-boxes while still maintaining fast-routing.

16.1 Power Consumption andC-slowing

Higher-throughput, achieved through high-speed clocking, naturally increases the power

consumption of a design, just as replicating units for higher throughput also increases power con-

sumption. In both cases, if lower power is desired, the higher throughput design can be modified to

save power by reducing the clock rate and operating voltage.

The common equation for dynamic power,P = CV 2F , suggests that lowering the fre-

quency linearly lowers the voltage and throughput. However, as first observed by Chandrakasan

et al [17], the lowering of the frequency also allows the voltage to be lowered, resulting in power

savings. This works quite effectively when replication is utilized, as replication doesn’t increase the

activity-factor of each node.

Unlike the replicated case, it is highly design and usage-dependent whether aC-slowed

design would offer power savings if both frequency and voltage were reduced. Although the finer

pipelining allows the frequency and the voltage to be scaled back to a significant degree while

maintaining throughput, the activity factor of each signal may now be considerably higher.

As each of theC streams of execution is completely independent, it is safe to assume

that every wire will now have an activity factor of 50%, as the separate streams will probably be
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uncorrelated. Whether the initial design beforeC-slowing has a comparable activity factor is highly

input and design dependent.

If the original design’s activity factor is low then theC-slowed design will consume more

power even after lowering the frequency and voltage, as more signals will switch on each clock

cycle. While if the original design’s activity factor is already high than theC-slowed design will

result in substantial power savings, as the voltage can now be safely lowered while maintaining the

same level of throughput. Thus although theC-slowing transformation may have a minor affect on

worst-case power (and can even result in significant savings through voltage-scaling), the impact on

average-case power may be substantial.

As a concrete example, a block-cipher core, such as the AES core, will effectively have

a 50% activity factor on all lines even for a single stream of execution. Thus, aC-slowed design

won’t increase the activity factor, suggesting thatC-slowing may be appropriate for a low-power

cryptographic core.

Yet the Smith/Waterman core would experience dramatically increased power consump-

tion afterC-slowing. Because the inner loop involves repeatedly adding and subtracting 5 bit quan-

tities from a 16 bit register, the upper bits will experience a much lower activity factor. Thus, after

C-slowing, Smith/Waterman will utilize considerably more power per calculation as the activity

factor will be substantially increased.

A related question involves treating clock-gated circuits whenC-slowing. If the gated-

clock is converted to a clock-enable (and therefore converted into explicit logic), the semantics

should be properly maintained, although this will result in substantially increased power consump-

tion.

A potential alternative observes that many of these gated register-results don’t represent

clock-enabled registers but instead are “don’t-care” values, where the register contents simply won’t

matter. Such registers, instead of using a gated clock, could utilize a feedback loop to preserve the

last value. Although this violates theC-slow semantics, the result doesn’t matter due to the don’t-

care nature of the value will prevent the register and downstream nodes from changing in value.

Unfortunately, this doesn’t offer clock distribution savings, and it is unclear the total level of power

savings which would result.
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16.2 Corner-Turn Interconnect and Coarse-Grained FPGAs

The corner-turn topology’s use of fully-populated C-boxes is considerably less efficient

for bit-oriented arrays when compared with word-oriented arrays. As an example, a corner-turn

interconnect designed for 8 bit words uses only1/8 the number of switches per wire and only1/8

of the configuration storage per wire.

Since the SFRA’s interconnect is switch dominated rather than wire dominated, reducing

the number of switches per wire reduces the cost of the interconnect while still maintaining the fast

routing, defect tolerance, and related properties.

Unfortunately, it is unknown (and currently unknowable) how much these interconnect

savings will change the relative costs if comparisons like those of Chapter 14 are desired. There

are no commercially successful coarse-grained FPGAs and the problem of efficiently mapping to a

coarser-grained structure remain unsolved, although there are considerable efforts, including Oskin

et al’s attempt to develop a sea-of-ALUs to map arbitrary C-code [69], as well as several startups

[16, 26].

If a successful sea-of-ALUs or similar coarse-grained FPGA was developed, it would then

be straightforward to estimate the cost of a corner-turn network by taking the layout components for

the SFRA, depopulating the switches to match the target’s wire schedule, and adapting the routing

tool to accept the target’s input format. But until such an array and accompanying toolflow is

created, it is impossible to perform reasonable comparisons.

16.3 Depopulated C-boxes

Another question is whether the C-boxes can be depopulated while still maintaining the

fast-routing properties. As the current C-boxes are switch dominated, depopulating theses C-boxes

should result in substantial area savings.

The key question is whether there exists a substantial depopulation where detailed rout-

ing can still occur independent of global routing. Global routing relies that all turns have identical

behavior, thus the selection of a particular turn at a particular switchpoint is irrelevant. Global

routing’s search techniques requires that turns be interchangeable, as without this requirement, the

search would not be choosing between equal-cost paths. Without this property, the individual chan-

nels would not be independent and global routing could not be separated from detailed routing.

Likewise, even if all turns are identical, it is an open question whether there exist fast-
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heuristics to perform detailed routing within these depopulated channels. Although conventional

FPGA routing algorithms could be employed, these heuristics lack the speed and comprehensive

nature of channel independent packing which guarentee a fixed routing overhead andO(n lg n)

runtime. Naturally, most depopulations would prevent the defect tolerance technique described in

Chapter 9 from being applied.

16.4 Summary

This section developed the major open questions arising from this thesis. The power-

effects caused byC-slowing are generally unknown and highly design dependent. Comparing the

relative costs of a corner-turning, coarse-grained array when compared with a conventional coarse-

grained array are limited by the difficulty in mapping designs to such arrays. Finally, depopulated

C-boxes will complicate routing, and it is an open question if a suitable depopulation can maintain

fast global and detailed routing while saving area.
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Chapter 17

Conclusion

The first part of this thesis presented a new FPGA interconnect topology, a “corner-turn”

interconnect, and used this to develop the SFRA FPGA architecture. Unlike other FPGA topologies,

the corner-turn topology supports fast routing, pipelined interconnect, and a degree of fine grained

defect tolerance, while maintaining conventional Manhattan placement properties. Routing for a

corner-turn array uses fast, polynomial time heuristics. A 6000 LUT design can be routed in 11

second, vastly faster than the 7 minutes to needed to route the same design when targeting a Xilinx

Virtex.

The SFRA is a fixed-frequency FPGA, using the corner-turn interconnect, which is largely

placement and design comparable with the Xilinx Virtex FPGA. Thus the same design can be

mapped to both a Virtex and the SFRA to facilitate high-quality comparisons. Simultaneously,

the SFRA can utilize existing synthesis and placement tools.

The second part of this thesis extended the understanding ofC-slow retiming. This pow-

erful transformation can be applied whenever there is available task-level parallelism. One signifi-

cant application is applying this transformation to a microprocessor core, automatically producing

a multithreaded architecture. Each thread will operate at a lower clock frequency, but the aggre-

gate design’s throughput will be substantially improved through the action of multiple threads. An

automaticC-slow retiming tool was developed for designs targeting the Xilinx Virtex, effectively

doubling the throughput on the benchmark designs.

Since the SFRA is fixed-frequency, it requires theC-slowing tool to automatically remaps

all designs so they operate at the SFRA’s clock. Not only does this guarantee the clock-rate for all

successfully mapped designs, but retiming for a fixed-frequency architecture like the SFRA runs

substantially faster than retiming for a conventional FPGA like the Virtex.
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The resulting designs, when targeted for the SFRA, run substantially faster. As an ex-

ample, the AES core whenC-slowed and mapped to the Xilinx would run at approximately 150

MHz, but would operate at 300 MHz in a comparable SFRA. Even when normalized for area, the

SFRA is reasonably competitive with the Virtex, given that the corner-turn architecture is better

targeted at coarse-grained FPGAs while the Virtex is a 5th generation commercial product, with an

interconnect topology highly optimized for bit-oriented tasks.

In the following sections, there are four areas of this thesis which are reviewed in more

detail. The first is benchmark selection, as the choice of benchmarks greatly aided this research.

The second is the SFRA architecture and the implications discovered in its design. The third area is

the effects ofC-slowing, which is applicable to a wide variety of designs. The final section involves

how this research might benefit commercial products.

17.1 Benchmark Selection

Evaluations are often limited by the quality of the benchmarks. Although having more

benchmarks would have offered more datapoints, an early decision was made to focus on a few,

high-quality benchmarks (Chapter 3 and Appendix A). Most of the existing FPGA benchmarks

are either the proprietary property of the FPGA companies (who assemble their own application-

based suites), microbenchmarks such as the MCNC suite, or functional benchmarks which require

reimplementation for various targets.

The three benchmarks created specifically for this thesis proved to be remarkably flexible

evaluation tools. By including both hand and automatic placement, these benchmarks could be used

to gauge the quality of the Xilinx placement tool (Chapter 12) and to isolate the effects of placement

when comparing the Virtex with the SFRA (Chapter 14). Likewise, the handC-slowing allowed an

evaluation of the automaticC-slowing tool (Chapter 13).

Since the same benchmarks were used for both theC-slowing tool and the SFRA evalua-

tion, the SFRA was compared with the Xilinx both before and after the benefits ofC-slowing were

included (Chapter 14). Although including theC-slowed results for the Virtex make the SFRA seem

less favorable in comparison, this allowed the final results to separate the benefits ofC-slowing from

the benefits of a fixed-frequency interconnect, which leads to the conclusion that it is generally su-

perior to use a general FPGA with better tools, rather than a fixed-frequency array (Chapter 15).

Finding publicly available, application-based designs which use hand placement, let alone

handC-slowing, are nearly impossible. Although such designs are constructed on a regular basis
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by professional designers,1 these designs are invariably proprietary.

Thus although creating benchmarks specifically for this thesis involved considerable ef-

fort (and therefore limited the number of benchmarks), these benchmarks proved extremely useful.

These custom benchmarks enabled studies which would not be possible with synthesized bench-

marks or microbenchmarks, as those benchmarks would require substantial reengineering.

17.2 The SFRA

The SFRA introduced two substantially new concepts: the corner-turn interconnect and

a fixed-frequency architecture which maintains Manhattan placement. Unlike previous academic

FPGAs, the SFRA is compatible with a successful, commercial FPGA, which enables direct com-

parisons.2

17.2.1 Corner Turn Interconnect and Fast Routing

The corner-turn interconnect structure offered several benefits, including Manhattan place-

ment, fast routing, and the ability to efficiently pipeline switchpoints. It is the Manhattan placement

and fast routing, not pipelined switchpoints, which offer the greatest benefits.

Since the corner-turn array maintains Manhattan placement, it can be used as a replace-

ment topology for large classes of FPGAs. This is especially appropriate for coarser-grained FP-

GAs, where the relative cost of corner-turn switches is reduced (Chapter 9).

The fast-routing advantage, an order of magnitude faster than a conventional FPGA (Chap-

ters 8 and 14), is a substantial improvement. Current FPGA routing algorithms take minutes to

complete, making them unsuitable for runtime design generation.

17.2.2 Compatibility

Unlike previous fixed-frequency arrays and other academic designs, the SFRA is largely

design and toolflow compatible with a modern FPGA, the Xilinx Virtex. The design-decision to

make the SFRA compatible with the Virtex proved to be an excellent aid in the research, as direct

1As just one example, Andraka Consulting Group’s (www.andraka.com) primary business is focused on creating
hand-placed, finely-pipelined designs.

2There have been a few academic arrays which are compatible with the Xilinx 6200, but that array was never com-
mercially successful, and the 6200’s interconnect is both very restricted and very poor compared to a modern FPGA
design.
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compatibility offered two huge advantages by creating a complete toolflow and allowing direct

comparisons.

Having a compatible toolflow enabled better benchmarks: rather than small minibench-

marks like the MCNC suite, this thesis used 4 application-based benchmarks, all of which represent

important tasks for modern FPGAs. Being able to map a fully synthesized benchmark (LEON)

helped to established that the SFRA is truly a generic fixed-frequency array.

Likewise, compatibility also ensured that the upstream tools were of high quality. It takes

considerable effort to develop a high quality synthesis, packing, and placement tool. Although

commercial tools have their limitations (as evaluated in Chapter 12), market competition generally

ensures a reasonable quality of results. Thus by insuring compatibility, these high quality tools

could be used. And by including both hand and automatically placed versions of the three hand-

benchmarks, any artifacts which might have been introduced can be isolated.

By being directly compatible, the SFRA was also directly comparable to the Virtex (Chap-

ter 14). Most new FPGA architectures have to rely purely on internal comparisons, benchmarking

the FPGA against internal variants. The SFRA is different because it was compared with an existing

commercial product.

The SFRA router runs an order of magnitude faster (routing the 6000 LUT LEON core

in 11 seconds, when compared with several minutes for the Xilinx router), while retiming also runs

an order of magnitude faster. The SFRA, when the comparable Virtex designs are not automatically

C-slowed, offers better throughput per area. When the Virtex designs wereC-slowed, the Virtex

proved marginally superior, suggesting that a pseudo-fixed-frequency approach might be superior,

as it provides both improved throughput, easier interfacing, and better latency (Chapter 15).

Without the ability to conduct apples-to-apples comparisons, the benefits and costs of the

SFRA could not have been accurately estimated. This suggests that future academic FPGA designs

would also benefit from being as compatible as possible, as it allows a much better evaluation of the

costs and benefits associated with a new design.

17.2.3 Fixed Frequency Operation

Although the SFRA demonstrates that a fixed-frequency FPGA can be made design and

toolflow compatible with conventional architectures, that frequency guarantees can be maintained

on arbitrary designs, and can be throughput/area competitive with a commercial FPGA, this thesis

also demonstrated that fixed-frequency operation is of fairly limited overall benefit.
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TheC-slowing and retiming tool (Chapter 13), although taking longer to complete when

targeting the Xilinx Virtex, offers substantial improvements in throughput. Without the automatic

C-slowing, the Virtex is significantly worse in throughput/area, but becomes competitive when this

or a similar tool is employed.

Yet a fixed-frequency architecture like the SFRA is substantially worse than a conven-

tional FPGA when latency is a concern (Chapter 15). As latency represents an intrinsic property of

the design and FPGA architecture, while throughput represents only a cost, it is probably better to

optimize the array for low latency and then rely on automatic tools to achieve a target throughput in

a pseudo-fixed-frequency manner, although pseudo-fixed-frequency does not provide a guaranteed

clock rate for all designs.

17.3 C-slowing and Retiming

Retiming andC-slowing are critical transformations for VLSI and FPGA CAD, able to

substantially increase throughput at a very low cost in area and complexity.

Although always known as a powerful transformation, the observation that aC-slowed

microprocessor is not only possible, but provides already understood multithreaded semantics, is

both novel and useful (Chapter 11). This can be used in both hand-implemented and automatically-

synthesized cores to create higher throughput, multithreaded designs.

Multithreading in this manner offers the most benefits forin-order designs, in sharp con-

trast to SMT which applies to out-of-order architectures. Thus interleaved-multithreading through

C-slowing can be effectively applied to large classes of in-order architectures, including vector pro-

cessors and in-order superscalar designs. It is probably worth evaluating a hypothetical two-thread,

narrow issue (3 instruction/cycle) IA64 to see what the costs and benefits are when this technique is

applied to a complex, conventional architecture.

AutomaticC-slowing offers substantial benefits (Chapter 13). All benchmarks showed

significant increases in throughput at a relatively minor cost in additional registers. In practice,

these additional registers only cost power, not area, as the tool is using unutilized registers in the

FPGA to enableC-slowing. The throughput benefits are substantial, doubling the throughput on the

synthesized LEON benchmark, and nearly doubling the throughput on all tested benchmarks.

The retiming transformation is much faster when applied to a fixed-frequency architec-

ture. This suggests that if retiming for a conventional FPGA could be approximated with local-

delays, without creating the global delay matrixes and global constraints, this should result in sub-
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stantially improved performance with only a minor loss in precision.

17.4 Applications to Commercial Products

Three significant contributions of this thesis, automaticC-slow retiming, the effects of

C-slowing a microprocessor, and the corner-turn topology, offer substantial benefits for future com-

mercial products.

Several existing FPGA synthesis tools include retiming, but all lack the ability toC-

slow designs. Two changes to conventional synthesis tools would greatly increase their ability to

automatically improve designs.

The first addition would be aC-slow directive which could be added to the HDL source.

When applied to a block of code, theC-slow directive replaces every register withC registers in

series, increases all inferred memories by a factor ofC, and adds a thread-counter to all memo-

ries to enforce isolation. This would allow individual blocks to beC-slowed (and even recursively

C-slowed down in the hierarchy), while presenting a straightforward interface (cycle-by-cycle in-

terleaving of execution) to the external logic.

The second change would be a compiler or HDL flag which would disable initial con-

ditions. If the designer uses explicit startup logic on the state machines, then there is no need to

preserve initial conditions or global set/reset properties. This substantially increases the quality of

the resultingC-slowed design, while imposing only a minor penalty on the designer. By combining

both changes, conventional synthesis tools could provide benefits which are comparable or even

superior to those shown by the automaticC-slowing tool created for this thesis (Chapter 13).

C-slowing a microprocessor represents a new variant on multithreaded architectures. Al-

though interleaved-multithreading has been previously proposed,C-slowing not only increases the

memory-access efficiency, but also increases the clock rate through additional pipeliningwithout

increasing the complexity of the control and bypassing logic.

Since it can be applied to effectively arbitrary in-order cores, and can even be assisted

by automatic tools,C-slowing should offer a substantial throughput benefit to a wide range of

future processors, including embedded cores, in-order VLIW DSPs, network processors, and vector

microprocessors.

Finally, the corner-turn array, although actually inefficient when constructing a bit-oriented

array like the SFRA, is far more efficient when targeting a coarse grained (8, 16, 32, or 64 bit word)

reconfigurable architecture. Since the significant penalty for a corner-turn interconnect (the fully
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populated C-boxes) is reduced by a coarse-grained architecture, while the benefits (including defect

tolerance, fast routing, heterogeneous channels, and possibly pipelined switchpoints) remain, this

interconnect seems very well suited to future coarse-grained reconfigurable devices.
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Appendix A

Case Study: AES Encryption

Many current high performance FPGA designs often require considerable effort, with

hand placement and careful pipelining needed to achieve high throughput. One of the primary goals

of a fixed-frequency array is to reduce this pressure: any design which is throughput bound and

which can be mapped to the target fabric will operate at the desired clock rate. Likewise, automatic

tools for conventional arrays which can repipeline designs for higher performance also ease pressure

on the designer.

This appentix presents a typical high performance design using current tools targeting

commercial FPGAs, able to operate at 115 MHz on a<$10 commercial FPGA. It clearly demon-

strates the design techniques needed to achieve high performance on conventional FPGAs. Since

a fixed-frequency FPGA can automate and ease the process of producing high throughput designs,

understanding the effort required for conventional high-performance design provides excellent mo-

tivation for the remaining work in this thesis.

This design also provides an illustration of how throughput and latency are often different

goals: a throughput oriented design may offer superior throughput, but the latency for an individual

calculation is significantly worse. Likewise, throughput can be easily scaled, but latency can’t

be improved by adding more resources. These themes on latency and throughput are discussed

Chapter 15, as these tradeoffs directly reflect on the suitability of fixed-frequency FPGAs.

This design represents one of the three hand-constructed benchmarks in Chapter 3 used

throughout this thesis. The techniques used to implement this benchmark: careful placement and

handC-slowing are also employed on the other two hand-implemented benchmarks.
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Design Latency Throughput Area Clock
Spartan II 100-5,
Latency 240 ns .52 Gbps 10 BlockRAMs, 460 Slices 45 MHz
Spartan II 100-5,
Throughput 480 ns 1.30 Gbps 10 BlockRAMs, 780 Slices 115 MHz
Virtex E,
Latency 180 ns .69 Gbps 10 BlockRAMs, 460 Slices 60 MHz
Virtex E,
Throughput 360 ns 1.75 Gbps 10 BlockRAMs, 780 Slices 155 MHz

Table A.1: Latency, Throughput, and Area requirements for various versions of this Rijndael core

A.1 Introduction

The recently adopted AES (Advanced Encryption Standard) block cipher [50], based on

the Rijndael encryption algorithm, offers solid performance in both software and hardware, with

hand-coded assembly implementations able to encrypt at over 1 Gbps [45] and published FPGA

implementations which, with suitable area, achieve multigigabit encryption rates.1 Because of the

expected widespread adoption, both within the federal government and private sector, AES is ex-

pected to be the most commonly implemented block cipher over the next twenty years.2 Because of

its growing ubiquity and versatility as a block cipher, it is an excellent candidate for implementations

in hardware.

There are two primary designs discussed in this appendix: one optimized for latency

and one optimized for throughput. Both use the same techniques, with the throughput optimized

implementation having additional,C-slow pipelining to increase throughput.3 In addition to some

implementation specific optimizations (rolling portions of the mix column step into the S-box and

switching the S-box and mix rows step), the primary performance comes from careful partitioning,

placement, and pipelining, the common tools of high performance FPGA design.

Performance for the throughput optimized version with a 128 bit key ranges from a 115

MHz clock rate with 1.3 Gbps throughput for non-feedback modes on a Spartan 2 100-5 (a∼$10

part in large quantities4) to 155 MHz clock with 1.75 Gbps throughput for a Virtex E-600-8. This

1This contrasts sharply with DES who’s bit-oriented, permutation based design is significantly faster in hardware
when compared with software.

2Although 3DES [76] may remain in use for a considerable period of time, most new implementations are expected
to select AES.

3TheC-slow transformation is discussed in more detail in Chapter 10
4The even faster Spartan 2E of the same size is available for $25 in single unit quantities from Digikey.
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Figure A.1: The AES round structure

design requires 10 BlockRAMs and 800 CLB slices for a fully key-agile encryption core, which

is less than 1/2 the area of a comparable HDL synthesis implementation.5 This design also offers

superior performance when compared with published commercial implementations. As this desgin

is “key-agile”, there is no overhead needed when changing encryption keys.

The latency optimized version with a 128 bit key runs at 45 MHz in the same Spartan 2

100-5, giving a throughput of 520 Mbps regardless of the feedback mode, using 10 BlockRAMs

and 460 CLB slices.

A.2 The AES Encryption Algorithm

The Rijndael block cipher, selected as the AES winner, operates on 128b data blocks with

either a 128, 192, or 256 bit key. It interprets the incoming data as 4x4 arrays of 8 bit words. The

cipher is built on 3 basic operations: byte recording, byte substitutions (based on Galois math), and

XORing. The single round (Figure A.1) is repeated either 10, 12, or 14 times, based on the size of

the key. The subkey generation is a simplified process, consisting of just S-boxes, XORs, and word

rotating, which can be run concurrently with encryption.

The incoming data is first XORed with the first subkeys, then proceeds into the encryption

round. The data is first passed through the S-boxes, then the 2nd, 3rd, and 4th rows are rotated over

by 1, 2, and 3 columns. Then each column is passed through a mix column step: a Galois matrix

multiplication which can be reduced to small table lookups and XORs. Finally, the next subkey is

5This core is freely available at http://www.cs.berkeley.edu/∼nweaver/rijndael
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Figure A.2: Three Common Operating Modes. A) Electronic Code Book (ECB), B) Cipher Block
Chaining (CBC), C) Counter (CTR)

XORed in and the round structure repeated, except for the final round which omits the mix-column

step.

Subkey generation consists of a feed forward structure operating on 32 bits at a time.

For the 128 bit version, each 32 bit subkey is XORed with the previous subkey and subkey from 4

iterations before. Every 4th subkey is handled slightly differently, being rotated, passing through

a set of S-boxes, and then XOR-ed with a row-based counter. The 192 and 256 bit versions use a

similar procedure.

A.3 Modes of Operation

In order to improve the security of block ciphers, different modes of operation are com-

monly used to prevent repeated inputs from encrypting to the same value. Most modes use feed-

back to achieve this, which slow down hardware implementations due to loop carried dependencies.

Three such modes are shown in Figure A.2: Electronic Code Book (ECB), Cipher Block Chaining

(CBC), and Counter (CTR) mode.

ECB mode is the simplest mode of operation, with each data block being encrypted by

the cipher to create the ciphertext. Because there are no feedback loops, this provides good perfor-

mance. However if a plaintext is repeated using the same key, the ciphertext will also be repeated.

Thus, ECB mode is commonly not used in practice because of such concerns.

CBC mode provides good security, by creating an initial vector (a random sequence which

is sent with the message), and XORing each plaintext with the last ciphertext before encryption. This

mode has very nice properties with respect to errors and manipulations (as an error in ciphertext

transmission will corrupt the resulting plaintext for the current block and create a single error in the
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next block, but nothing beyond that) and substitution. Unfortunately, CBC mode creates a feedback

loop for encryption. As a result, CBCk mode is often used, where theith plaintext is XORed with

thei− kth ciphertext before encryption, to lengthen this feedback loop.

CTR mode, rather than encrypting the plaintext, encrypts a counter. This encrypted value

is then XORed with the plaintext to create the encrypted cyphertext. The counter is then incremented

before the next block is encrypted. To decrypt the ciphertext, the same counter value is encrypted

with the same key, with the resulting block XORed with the ciphertext. Effectively, CTR mode

turns the block cipher into a stream cipher.

CTR mode provides both good security (as identical ciphertext only indicates that the

source blocks were different) and is an excellent choice for hardware implementations because of the

lack of feedback in the design. It also only requires an encryption core to perform both encryption

and decryption operations. The only concerns are that it doesn’t prevent the manipulation of the

encrypted text, requiring the use of an additional message authentication code6 and the counter

values must never be reused for a given key or all security is compromised.

A.4 Implementing Block Ciphers in Hardware

In general, most block ciphers consist of a single round type which is applied to a data

block multiple times, with a different subkey applied in each round. By repeating this process

several times, the data is obscured by the key. To decrypt the block, an inverted round is used and

the subkeys applied in the reverse order. The amount of control logic is usually miniscule, a simple

round counter and a mux to select between an input block and the output from the last round.

The subkeys are either stored in a local memory or generated concurrently with encryp-

tion. If generated concurrently, this is a “key agile” implementation, with subkey setup occurring

along with encryption. Key agile implementations are very useful in applications such as encrypted

routers, where the encryption keys may need to change on a packet by packet basis. For ciphers

which are amenable to a key agile implementation (such as Rijndael or Twofish [59]), it is often

best to use a key agile implementation, as it removes the need to store the expanded subkeys, even

if the application does not require key agility.

When an application will use a feedback mode such as CBC mode, and cannot take ad-

vantage of interleaving multiple data streams, an implementation should be optimized for latency

because a block can’t be encrypted until the previous block has been encrypted. A latency-oriented

6The limitation imposed by lacking integrity is discussed in Chapter 15
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implementation should consist of a single round with no pipelining, with each clock cycle comput-

ing a complete round. There is effectively no benefit in unrolling a latency optimized implemen-

tation, as even a complete unrolling only removes the setup, hold, and mux time at the cost of a

massive increase in circuit area.

For a throughput-optimized design, such as CTR mode, or where multiple data streams

can be supported, a single,C-slowed [41] retimed round should be used. This technique, also known

as inner round pipelining, has been used in many hardware implementations [77, 18] of different

block ciphers.

In order to improve on the throughput contained in a single round implementation beyond

that offered by pipelining the round, it is best to simply tile the design, with each tile consisting of

the full implementation. As more throughput is required, the cell is simply duplicated. This allows

throughput to scale linearly with area.

As can be seen in Figure A.3, this is significantly superior to the commonly implemented

unrolling. Unrolling expands the encryption core to perform multiple rounds, at the cost of addi-

tional area. Unrolling offers only a slight increase in relative performance and area (by removing

the muxes), but the impact is low because the muxes are only a small percentage of the area.

More importantly, if the number of cipher rounds is not equal to 0 modulo the number
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of unrolled rounds, the efficiency is seriously reduced because of wasted logic during the last iter-

ation through the cipher. Thus, unrolling is only good when the number of unrolled rounds equals

0 modulo the total number of rounds. This is especially difficult if a multiple-key-length AES

implementation is desired, as the different key lengths require different numbers of rounds.

Tiling the appropriate level of unrolled rounds to match the throughput requirements of-

fers only a very small benefit over simple tiling, while greatly increasing the complexity as now sev-

eral designs (a single round, and all unrolling such that the cipher rounds modulo unrolled rounds =

0) are required to be designed, implemented, and tested.

Similarly, since tiling can achieve arbitrary throughput by replication, encryption through-

put is not a good metric for performance oriented block cipher implementations in hardware. In-

stead, throughput/area or throughput/cost are much more representative as these reflect the actual

cost of an implementation.

A.5 Implementing AES in Hardware

The optimum hardware implementation for AES is a single round with agile subkey gen-

eration, as unrolling offers negligible benefits. Due to the reasonable size of AES subkey generation,

and the flexibility a key agile implementation allows, key agile implementations are preferable to

stored-key implementations. Since most applications require subkey generation, there is no reason

not to include a key agile subkey generation module.

If high throughput is desired, the single round and associated subkey generation should

be manually or automaticallyC-slowed. If the design either uses CTR mode or another parallel

mode, or multiple streams can be encrypted simultaniously, the high-throughput design should be

used. The pipelining greatly increases throughput without adding a major impact on the area. This

pipelining can either be performed manually, as discussed in this chapter, or automated using tools

like the one described in Chapter 13. If low latency is required, the additional pipeline stages should

be removed to create a low-latency, rather than high-throughput implementation.

If the implementation technology supports ROMs (such as ASICs) or embedded prepro-

grammed RAMs (such as many FPGAs including the Virtex), they should be used to implement the

S-boxes. If the memories are larger than what is required to store the S-boxes, portions of the Galois

multiplications from the mix-column should be rolled into the design. Otherwise, if the implemen-

tation fabric doesn’t include embedded ROMs, techniques such as those in [56] should be used to

compose the S-boxes.
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Figure A.4: The Subkey Generation Implementation in a Xilinx Spartan II-100. Arrowheads are the
location of pipeline stages, dataflow shown at 16 bit granularity.

In general, hand-layout offers significant performance benefits over HDL synthesis and

should be employed if high performance is desired. Often the best layout reflects the structure of

the cipher itself, with the data mostly kept in place and the operations applied. The only exception

is when the S-boxes need to be logically distinct from the rest of the design (as commonly seen in

Xilinx FPGAs, where the BlockRAMs are in separate columns), in which case a meet-in-the-middle

style structure may be appropriate.

A.6 AES Subkey Generation

Since the subkey generation depends on the key size, with the larger key sizes requiring

greater area, this core uses the 128 bit size, as this key-length is commonly usable while being more

compact than other implementations. Additionally, since fewer rounds are required, it offers greater

performance when compared with longer key lengths. This implementation is fully key-agile to

eliminate the time required for subkey setup and to eliminate the need for subkey storage. Since a

set of subkeys requires 176 bytes to store, the savings can be significant.

This implementation (Figure A.4) loads the keys in the center of the design and produces

128-bits of subkey after each pass through the pipeline. The subkey pieces are then passed to the

shift registers (SRL16s), with the one 32-bit quantity being word rotated and passed to registers in

front of the BlockRAMs used to implement the S-boxes. Due to the time required for communi-

cation, a register is placed to register the S-box inputs. Because of the considerable clk→q delay

on the BlockRAMs, the outputs are also registered. The keys are then mixed together, registered,

then transfered back to the middle. This meet-in-the-middle structure allows the rotation to occur

efficiently and matches the layout of the encryption core, which also includes a meet-in-the-middle

topology. The design effectively requires all of a 4 by 30 block of CLBs, requiring roughly 240

CLB slices and 2 BlockRAMs to implement.
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This pipeline takes 5 stages to produce a set of subkeys, which matches the 5 stage pipelin-

ing required for the encryption core. For a latency optimized version, all pipeline stages except the

mandatory register in the BlockRAM and a single register for each intermediate value can be re-

moved, creating the low latency version.

A 192 or 256 bit implementation would be larger, because it requires retiming for either

6 or 8 32 bit subkeys. Additionally, it would require muxing the S-box inputs in order to handle the

slightly different rules involved in subkey generation. However, it would not slow down the rate at

which subkeys could be generated.

Although this implementation performs encryption only, a key-agile decryption core would

take roughly the same area by using the reverse S-boxes and inverse logic. Instead of accepting the

key, the last round’s subkeys are accepted and the process works in reverse. If the last set of subkeys

were not available (due to the structure of the protocol), a separate encryption subkey module could

be used to create the last set of subkeys, which are then stored or passed to the decryption module.

If a non-key-agile core were desired, replacing the 2 BlockRAMs and 240 slices would

provide 23 kb of storage. Since a single set of subkeys requires 1.4 kb to store, this could provide

enough storage for 16 sets of subkeys.

A.7 AES Encryption Core

The encryption core (Figure A.5) is structurally similar to the subkey core, but sparser, as

it is spread out over an 16 CLB high section to match the pitch of the BlockRAMs used to implement

the S-boxes. The general layout is very similar to the description: a 4x4 array of words which is

loaded in the middle. The left half of the array is processed on the left side, with the right half on

the right side. The input is XORed with the appropriate keys and loaded into muxes located next to

the S-boxes (area already used for pipeline registers).

The layout is pitch matched to the S-boxes, with each BlockRAM performing two simul-

taneous S-box lookups. Since the BlockRAMs are twice the size of the S-boxes, the Galois∗03

operation is also included, as needed for the Mix-Column step. Additionally, to improve the meet-

in-the-middle structure, the row-swap and S-box operations were exchanged. The Mix-Column step

uses the results of the S-box and S-box∗03 operation, computes the results∗02, and XORs them

together for each output word.

On the first cycle of the round, the data is moved from the registers in the middle to

registers on the periphery, next to the S-boxes. On the next cycle, the data is loaded into the S-



169

S-Boxes Mix
Column

Key
Addition

Mix
Column

S-Boxes

Figure A.5: The Encryption Core Implementation in a Xilinx Spartan II-100. Arrowheads are the
location of pipeline stages, dataflow shown at 8 bit granularity.

boxes. On the third cycle, the resulting S-box and S-box∗03 operations are loaded into the inputs to

the Mix-column step. The fourth cycle performs the column-mix step. The 5th cycle performs the

subkey XORing (skipping the mix-column step on the final round), leaving the results back in the

center of the chip.

If a decryption core were required, the design should be modified to use reverse S-boxes

and a reverse subkey generation. The mix column step would also need to be larger, as it would

have to compute two Galois multiplications instead of one.

A.8 Testing

Cryptographic cores are one of the easiest designs to test: they have detailed specifica-

tions, reference implementations, and are highly amenable to monte carlo testing. In verifying this

core’s correctness, all three properties were exploited. The AES specification includes a sample

encryption for a specific key and data which includes all intermediate values. By simulating with

theses inputs, it becomes easy to see where errors in the design are located, as they produce almost

immediate deviations from the known good behavior.

Likewise, block ciphers have the property where a single changed bit in the input will
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result in a massive number of changes in the output, the “avalanche” property. To exploit this for

testing, the output of the cipher is used as both the key and data for the next round of input. The

reference code is also run in the same mode, with any difference between the reference and the

design being debugged would be immediately noticed, as even a single bit error anywhere in the

core would quickly cascade resulting in vastly different results for the outputs of the reference and

the tested design.

During testing, almost all bugs were actually trapped during the detailed, part by part

encryption test, but the monte carlo test provided excellent verification of the initial debugging

process.

A.9 Performance

This design was implemented on both a Spartan-II 100-5 and a Virtex-E 600-8, using

Xilinx Foundation 4.1 tools. The Spartan II is fabricated in a .22µm process and is optimized for

low cost and low silicon area, while the Virtex-E is fabricated in a .18µm process and is optimized

for performance. They are functionally identical in the basic structure, although the Virtex-E parts

have additional memories, and the design was only modified slightly in placement between the two

parts. All toolflows were maximum effort, with timing reported by static timing analysis.

In order to provide the performance of a latency optimized version, all pipeline stages

were removed except for the mandatory stage for the BlockRAM. This results in a design which

performs a round per clock cycle, albeit with a slower clock. This removes the penalty for additional

setup and hold times, as well as eliminates the effects of unbalanced pipeline stages.

The performance, as summarized in Table A.1, is very impressive. Even on the low cost

part, a throughput-oriented implementation provides 1.3 Gbps throughput for non-feedback modes

(CBCk where k≥ 5, ECB, and CTR modes), while the latency optimized version provides 500

Mbps regardless of the feedback mode. Virtex-E provides, as expected, performance improvements

due to its faster operation.

A.10 Other implementations

Tables A.2 and A.3 have an summary of various reported hardware implementations, their

throughput, and their area cost. Both the Amphion [7] and Helion [32] are commercially available

IP cores which have been mapped to both Virtex series FPGAs and standard cell processes. Both



171

Design Throughput Area Area
BlockRAMs Slices

Thesis Spartan II-5, Throughput 1.30 Gbps 10 770
Helion [32], Compact, Spartan II-6 0.22 Gbps 3 190
Elbiert et al, [25], Virtex-6, 2 stages 0.49 Gbps 0 3,000
Gaj & Chodowiec [28], Virtex-6, 1 stage 0.33 Gbps 0 2,900
Chodowiec et al [18], Virtex-6, 8 stages 1.25 Gbps 8 2,000

Design Gbps/B-RAM Mbps/Slices

Thesis Spartan II-5, Throughput .13 1.7
Helion [32], Compact, Spartan II-6 .07 1.2
Elbiert et al, [25], Virtex-6, 2 stages .16
Gaj & Chodowiec [28], Virtex-6, 1 stage .11
Chodowiec et al [18], Virtex-6, 8 stages .15 .63

Table A.2: Throughput, Area, and Throughput/Area for this implementation compared with other
commercial and academic implementations on Spartan II and Virtex FPGAs.

Design Throughput Area Area Gbps/B-RAM Mbps/Slices
BlockRAMs Slices

Thesis Virtex E-8,
Throughput 1.75 Gbps 10 770 .17 2.3
Amphion [7],
Compact, Virtex E-8 0.29 Gbps 4 421 .07 .69
Amphion [7],
Fast, Virtex E-8 1.06 Gbps 10 570 .11 1.9
Helion [32],
Fast, Virtex E-8 1.19 Gbps 10 450 .12 2.6

Table A.3: Throughput, Area, and Throughput/Area for this implementation compared with com-
mercial implementations on Virtex-E FPGAs.
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compact cores are sub-round implementation with microcoded datapaths, while both high speed

implementations are a single round (with unspecified pipelining) and include subkey generation.

The Amphion core uses a highly opitimzed HDL implementation which is synthesized

and retargeted for both Virtex, Altera, and standard cell models, while the Helion core is heavily

specialized to the Virtex architecture using unstated, architecture specific optimizations. As a result,

the Helion core shows greater performance in the same area. When compared with this chapter’s

core, the Helion fast core (which has the best performance of the available commercial implemen-

tations) actually gets better performance/slice, but worse performance/BlockRAM and worse total

performance for a single round when compared to this chapter’s implementation.

Three academic implementations have been reported, using HDL synthesis, targeting a

Virtex-6 speedgrade part. The Virtex parts targeted are only slightly faster than the Spartan II used

for this core, so it can be directly compared with out Spartan II numbers. None of these implemen-

tations included subkey generation, and all used HDL synthesis, where a language specified design

is compiled to the target architecture. The first, by Elbiert et al, [25], included several design points.

The optimal throughput per area implementation reported for a single round was a 2 stage pipeline,

using 3000 slices, without taking advantage of the BlockRAMs. It offered about 500 Mbps through-

put. The second, by Gaj & Chodowiec [28], was a similar structure but without any pipelining. As

expected, it only gets 330 Mbps throughput, while still requiring 2900 slices.

The third, a revision of the second version, by Chodowiec et al [18], used an 8 stage

pipeline. It is the HDL implementation which is most comparable to the benchmark implementation

used in this thesis, as the target is very comparable to the Spartan II and is aggressively pipelined.

Although it achieves a comparable (albeit slightly slower) throughput, it requires over twice the

number of slices due to the inefficiencies of HDL synthesis and requires an 8 stage pipeline instead

of a 5 stage pipeline to achieve the same performance.

A.11 Reflections

By careful use of hand mapping and selection, pipelining, and target specific optimiza-

tions, one can produce compact, high performance AES implementations on FPGAs. 1.3 Gbps on

nonfeedback modes, or 500 Mbps on feedback modes, are generally achievable on very low cost

FPGAs such as the Spartan II 100, using 10 BlockRAMs and 770 slices. The throughput-oriented

implementations can be scaled to arbitrary throughput by simple tiling. Making the implementation

fully key-agile offers significant flexibility benefits while only adding a small area cost.
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In general, applications such as AES are excellent choices for evaluating tools and archi-

tectures. A highly pipelined design can be compared with an unpipelined design which is automat-

ically C-slowed (as seen in Chapter 13, while the placement can be removed to evaluate the quality

of placement tools (discussed in Chapter 3).

For such experiments, there are substantial advantages in utilizing known important ap-

plications and kernels, as they are highly representative of real designs. The major disadvantage

is that the best results are achieved, as in this case, by careful optimization for a particular target

architecture. Thus these high quality benchmarks require significant implementer effort to create.

A.12 Summary

This appendix demonstrated the design techniques needed to create a high performance

design targeting a conventional FPGA. It shows that high performance designs, although possible,

require considerable effort to construct a good placement and a high performance pipeline. One of

the primary goals of a fixed-frequency architecture is to eliminate much of these efforts for high-

throughput designs, as the architecture and tools guarantee a throughput for all successfully mapped

designs.

The cryptographic example also illustrates the important distinction between latency and

throughput, how throughput can be arbitrarily scaled but latency reaches intrinsic limits, and how a

design optimized for throughput suffers from significantly worse latency. These themes will be re-

visited in Chapter 15, discussing the relationships between latency, throughput, and fixed-frequency

FPGAs.
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Appendix B

Other Multithreaded Architectures

As seen in Chapter 11, automaticC-slowing of a microprocessor core can automatically

create a multithreaded processor architecture. This appendix reviews other multithreaded architec-

tures, their goals, and the various synergistic and interference effects which occur. TheC-slowed

architecture, and interleaved architectures in general, have fewer interference effects when com-

pared with an SMT (Symmetric Multithreaded) architecture.

B.1 Previous Multithreaded Architectures

The HEP [66] was the first major multithreaded architecture. The HEP processing node

uses a simple 8 stage pipeline without forwarding and a large register file. Every clock cycle,

instructions from a different thread are issued into the pipeline. The HEP design allows for a con-

siderable amount of latency to be hidden through multiple threads, but significantly impacts single

thread performance.

Tera [6] was an extension of the HEP architecture, designed to accommodate memory

access in the pipeline. The Tera processing node had no data caches, instead choosing to hide

memory latency by switching to other threads. Although effective at hiding memory latency, nearly

70 threads are required to fully utilize a processing node on memory-intensive tasks.

“Context switching on event” has also been used to hide memory latency, in systems such

as the Intel IXP 1200 [35] network processor. The other operations in each microcoded core requires

only a single cycle, but memory may take many cycles. In order to hide memory latency, the core

will context-switch to one of three other threads, when there is a memory miss.

Interleaved Multithreading [40] was proposed as a compromise technique between the
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“no bypassing” of HEP and Tera and the “context switch on cache-miss” semantics used in the IXP

and others. This mechanism had 2 or more threads executing in a round-robin fashion, with the goal

of having more memory requests outstanding as each thread would be issuing independent requests

without incurring the context switch penalty on memory miss.

The interleaved architecture was justified because context-switching on a memory miss

introduces bubbles into the pipeline which result in a loss of efficiency. The interleaved model never

took advantage of the increased pipeline opportunities to gain higher overall throughput.

A different multithreaded approach, symmetric multithreaded, was developed initially

by at the University of Washington [75]. This approach modifies the issue rules and register file

of a wide superscalar architecture to issue from multiple threads simultaneously. This requires

modifying the issue logic, retirement logic, increasing the register file, and some other assorted

changes. SMT does not result in an improved clock frequency.

This techniques is highly productive to modifying a wide superscalar, as such architec-

tures tend to waste many of the available issues slots. The measured efficiency is claimed to better

than comparable superscalar, shared die SMP, or multithreaded architectures. If one also modifies

the translation and interrupt handling, one can create an SMP style programming model.

SMT offers several advantages: with a comparatively minor addition in complexity it

offers significant benefits in throughput while having a low effect on single thread throughput. Un-

fortunately, SMT is only applicable to wide superscalar architectures where there exists a consider-

able number of unused functional units. So, although the technique itself adds comparatively little

complexity, it is only applicable to highly complex architectures.

Intel has commercialized a 2-thread version based on the Pentium 4 core [36], creating a

design with 2 logical processors contained within a single physical processor. Intel has not released

many details about the internal architecture, but has reported that all architectural state (including

segment and interrupt registers) is duplicated to create an SMP programming model. Intel uses the

term “Hyperthreaded” rather than SMT.

An additional, backwards-compatiblepause instruction is added to insure that spin-

loops do not consume resources which could be devoted to the other virtual processor, while a

halt instruction should be added to the OS idle loop. Intel did not increase the number of physical

registers in the design. Since the P4 core uses register renaming, mapping 8 architectural registers

to 128 physical registers, there is really no need to increase the size of the register file when creating

an SMT based on the P4 core, although this adds another potential point-of-contention between the

two threads.
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B.2 Synergistic and interference effects

Anytime a multithreaded architecture shares resources between threads, there is a poten-

tial for interference or synergistic effects. Interference effects, where the two threads degrade each

others performance, are more common, as synergistic effects can only occur when the independent

threads benefit from shared results.

For all the multithreaded architectures, these effects will show up in memory behavior.

SMT has additional interference effects with functional-unit congestion and physical register limi-

tations. The most substantial effects occur in the cache and memory, where the different working

sets interact. The traditional cache miss sources, compulsory, capacity, conflict, and coherency, also

need to includeincoherancywhen discussing multithreaded systems.

In a conventional multiprocessor, when two processors share a working set, this will often

create coherency misses as the writes of one processor are forced to update or invalidate the other’s

cache entries. The opposite occurs on a multithreaded architecture, as a disjoint working set will

cause significantly more pressure on the cache, while a common working set will provide synergistic

benefits as the two threads will share the working set, reducing the cache misses. These cache effects

will occur on both theC-slowed/interleaved architecture and on SMT architectures.

An SMT also has interference effects with the functional units and physical registers. As

an example, the SMT Pentium 4 retains the same number of functional units and physical registers,

so when operating in multithreaded mode the two threads compete for the same resources. Since

threadsnevershare registers (allowing sharing breaks the programming model of two independent

processors), this can only degrade performance if the combined load of both threads requires more

than 128 physical registers to achieve maximum throughput.

Likewise, two floating-point intensive tasks on an SMT will interfere substantially, as they

are competing for access to the same functional units, an effect which would not occur if the two

tasks used different resources.

These register and functional-unit effects do not occur on an interleaved orC-slowed

architecture, as each thread is allocated exclusive access to all functional units. Thus each thread is

guaranteed access to these resources, whether or not the other task desires similar access.


