ICSI and the Swiss Connection

Chuck Wooters

Senior Research Engineer

International Computer Science Institute, Berkeley, California, USA

Outline

- Introduction to ICSI
- The Meeting Recorder Project at ICSI
- The ICSI-IM2 Visitor Program

Introduction to ICSI

- Nonprofit, affiliated with UC Berkeley
- Inaugurated in 1988
- Focused on fundamental, open research in computer science
- Current international program participants:
 Spain, Germany, Switzerland, Finland

Introduction to ICSI (cont.)

- Strong domestic industrial support: Intel,
 Qualcomm, others
- Strong domestic government support: NSF, DARPA
- Potential ICSI/EPFL/IDIAP ties:
 - IM2: human-computer and human-human interaction
 - ICSI: natural meetings
 - Both: speech research

ICSI Ties to UC Berkeley

- UC Berkeley and affiliated labs (e.g., ICSI) are key centers for EECS research.
- UCB Professors
- UCB Students (PhD and others)
- Board of Trustees includes UCB faculty and admin
- Joint research projects
- Infrastructure: 200 Mb/s connection to campus, "berkeley.edu" domain

Research at ICSI

- Investigator-driven: 13 senior researchers
- Strong UCB student/faculty involvement
- Visitors key in several areas
- Involvement in standards processes (IETF in networks, ETSI in speech)
- Most work clustered in two areas

Major Scientific Themes

Internet Research

Theory

graph theory, topology, computational structure, randomized rumor spreading Core

security, congestion control, measurement and analysis, architecture Open SW

xorpextensible open router platform Human-centered Computational Intelligence

Speech

ASR, enhancement, front-ends, prosodic features, dialogue act modelling, etc. Language

FrameNet, corpusbased linguistics, natural language understanding

Human-centered Comp. Intelligence

ICSI emphasis: Natural Speech & Language

- Speech processing (especially recognition) providing robust voice interfaces for ubiquitous (including portable and wireless) distributed information sources.
- Natural language understanding —
 use deep and corpus-based linguistic models
 to enable human interfaces to computers.

Speech Research Projects

- SmartKom German speech interface project
- Center for Ubiquitous Speech Processing (CUSP) — speech/speaker recognition for cellular phones (ETSI speech standards)
- Rich Transcription generating readable text from speech
- Meeting Browser information retrieval and extraction from audio

Meetings Have It All

- Recorded (natural) meetings have nearly every conceivable spoken language research problem, in some portion
- Nonetheless, this is a domain with purposeful interaction (thus somewhat constrained)
- Speech technology for meetings has a wide range of applications
- We've been working on it (for several years)

Meetings: Technical Challenges

- ASR with increased speaker variability (pronunciation, rate, overlaps)
- ASR with increased acoustic variability (far field microphones, speaker movement)
- Other acoustic analysis segmentation, turn detection, speaker ID, emotion, etc.
- Dialog abstraction, analysis
- Meeting summarization, IR
 - Portable devices (energy, memory, ...)

ICSI Work On Meetings

- Primary collaborations with UW, SRI; also with OGI, Columbia U, IBM; new ones with IM2, M4.
- Fundamental Goal: technology to process spoken language from "natural" meetings
- Near-term goals: data collection, transcriptions, preliminary systems for segmentation, ASR
- Long-term goals: understanding, "mapping" meetings

Types of Meetings

- Regular, weekly group meetings
- "Natural" data (meetings that would happen even if we weren't recording)
- Close-talking and far-field microphones
- Digits: provide a baseline task for far-field signals
- Up to 10 speakers per meeting (averaging 6)
- Few meeting types, but many tokens

Data Collection Process

- Audio format: NIST Sphere, shortened (compressed), 16 KHz, 16 bit
- Up to 16 Channels (each in its own file):
 - 2 "PDA" mics
 - 4 PZM omni-directional (table-top) mics
 - 10 (max) close-talking (Sony® and Crown®, mostly radio)

Transcription Process

What do we transcribe?

- Speakers, channels
- Words (plus abbreviations, acronyms, etc.)
- Overlaps (recoverable from time marks)
- Disfluencies (e.g. um, eh, false-starts & interruptions)
- Backchannels (e.g. uh-huh)
- Non-canonical pronunciations
- Non-lexical events (e.g. laughs, door-slams)

Transcript "Transformations"

Master XML transcript is transformed to application specific versions.

Corpus Status

- Over 80 hours x 8-15 channels recorded at ICSI
- Mostly transcribed, but going through final checking and approval stages
- Connection to NIST efforts: transcription standards for NIST recordings, RT-02 dev and eval data
- Planning to distribute corpus via LDC

Current ICSI Meeting Research

- Speech Activity Detection/Segmentation
- Enhancement for reverberated (far-field) speech recognition
- Portable device issues
- Prosodic features
- Overlaps, modeling for punctuation, ASR
- Adjacency pairs, pragmatics
- Information retrieval and summarization

ICSI-IM2 Visitor Program

- Pre- and post-doctoral visitors
- Six-month or one-year (preferred) research stay in Berkeley
- Visitors will be involved in ICSI projects relevant to IM2
- Initially a two-year program, but if successful, we expect to keep renewing it.
- Swiss contact: Hervé Bourlard

