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•  Relevance MAP adaptation is a linear interpolation of all mixture components of 
UBM to increase likelihood of speech from particular speaker 

•  Supervectors consist of the speaker-dependent GMM mean components 

•  Problem: Relevance MAP adaptation adapts to not only speaker-specific 
characters of speech, but also channel and other nuisance factors.  

•  Hence, supervectors generated in this way are non-ideal. 
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•  A supervector for a speaker should be decomposable into speaker 
independent, speaker dependent, channel dependent, and residual 
components 

•  Each component can be represented by a low-dimensional set of 
factors, which operate along the principal dimensions (i.e. eigen-
dimensions) of the corresponding component 

•  For instance, the following illustrates the speaker dependent 
component (known as the eigenvoice component) and corresponding 
factors: 
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•  A given speaker GMM supervector s can be decomposed as follows: 

•  where: 
–  Vector m is a speaker-independent supervector (from UBM) 
–  Matrix V is the eigenvoice matrix 
–  Vector y is the speaker factors. Assumed to have N(0,1) prior distribution 
–  Matrix U is the eigenchannel matrix 
–  Vector x is the channel factors. Assumed to have N(0,1) prior distribution 
–  Matrix D is the residual matrix, and is diagonal 
–  Vector z is the speaker-specific residual factors. Assumed to have N(0,1) 

prior distribution 
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•  For a 512-mixture GMM-UBM system, the dimensions of each JFA 
component are typically as follows: 

–  Matrix V: 20,000 by 300  (300 eigenvoice components) 
–  Vector y: 300 by 1  (300 speaker factors) 
–  Matrix U: 20,000 by 100  (100 eigenchannel components) 
–  Vector x: 100 by 1  (100 channel factors) 
–  Matrix D: 20,000 by 20,000  (20,000 residual components) 
–  Vector z: 20,000 by 1  (20,000 speaker-specific residual components) 

•  These dimensions have been empirically determined to produce 
best results 

Dimensions of JFA model 



•  Note: the following is taken from the paper “A Study of Inter-Speaker 
Variability in Speaker Verification” by Kenny et. al, 2008. 

•  We train the JFA matricies in the following order: 
1.  Train the eigenvoice matrix V, assuming that U and D are zero 
2.  Train the eigenchannel matrix U given estimate of V, assuming that D is zero 
3.  Train residual matrix D given estimates of V and U 

•  Using these matrices, we compute the y (speaker), x (channel), and z 
(residual) factors 

•  We compute the final score using the matricies and factors 

Training the JFA model 



1)  Accumulate 0th, 1st, and 2nd order sufficient statistics for each speaker (s) 
and Gaussian mixture component (c) 

Training the V matrix 
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t∈s
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2)  Center the 1st and 2nd order statistics 

Fc (s) = Fc (s) − Nc (s)mc

Sc (s) = Sc (s) − diag Fc (s)mc
* + mcFc (s)

* − Nc (s)mcmc
*( )
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3)  Expand the statistics into matricies 
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4)  Initial estimate of the speaker factors y 

lV (s) = I +V
* *Σ−1 *NN(s) *V

y(s)  Normal(lV
−1(s) *V * *Σ−1 *FF(s),lV

−1(s))⇒

y(s) = E[y(s)] = lV
−1(s) *V * *Σ−1 *FF(s)
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5)  Accumulate some additional statistics across the speakers 

Nc = Nc (s)
s
∑

Αc = Nc (s)lV
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6)  Compute V estimate 
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7)  Compute covariance update (optional) 

8)  Run approx. 20 iterations of steps 4-6 (or 4-7). Substitute estimate of V into 
equations in step 4. 

Σ = NN −1 SS(s)
s
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Training the V matrix 



1)  Compute estimate of speaker factor y for each speaker, and 0th and 1st 
order statistics for each conversation side (conv) of each speaker (s) in 
JFA training data 

Training the U matrix 

Nc (conv, s) = γ t
t∈conv,s
∑ (c)

Fc (conv, s) = γ t
t∈conv,s
∑ (c)Yt



2)  For each speaker (s), compute the speaker shift (along with speaker-
independent shift) using matrix V and speaker factors y 

3)  For each conversation side of each speaker (used for JFA training), 
subtract Gaussian posterior-weighted speaker shift from first order 
statistics 

Training the U matrix 

spkrshift(s) = m +V * y(s)

Fc (conv, s) = Fc (conv, s) − spkrshift(s) *Nc (conv, s)



4)  Expand the statistics into matricies 

NN(conv, s) =
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5)  NN(conv,s) and FF(conv,s) used to train U and x in exact same way that 
NN(s) and FF(s) was used to train V and y 

6)  Run approx. 20 iterations of training procedure for V and y using             
NN(conv,s) and FF(conv,s) 

Training the U matrix 

Intuition: For the V matrix, we focused on obtaining the speaker-
based principal dimensions. For the U matrix, we focus on obtaining 
the channel (or non-speaker, or nuisance)-based principal dimensions. 
Hence, we use the speaker-subtracted statistics to train U in the same 
way the speaker statistics were used to train V 



1)  For each speaker (s), compute the speaker shift using matrix V and 
speaker factors y 

2)  For each conversation side (conv) of speaker (s), compute the channel 
shift using matrix U and channel factors z 

3)  For each speaker (used for JFA training), subtract Gaussian posterior-
weighted speaker shift AND channel shifts from first order statistics 

Training the D matrix 

spkrshift(s) = m +V * y(s)

chanshift(conv, s) =U * x(conv, s)

Fc (s) = Fc (s) − spkrshift(s) *Nc (s) − chanshift(conv, s) *Nc (conv, s)
conv∈s
∑

Computed for V estimate 



4)  Expand the statistics into matricies 
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5)  Initial estimate of the residual factors z 

Training the D matrix 

lD (s) = I + D
2 *Σ−1 *NN(s)

z(s)  Normal(lD
−1(s) *D *Σ−1 *FF(s),lD

−1(s))⇒

z (s) = E[z(s)] = lD
−1(s) *D *Σ−1 *FF(s)

The expected value 
(the value we want) 

Use random 
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6)  Accumulate some additional statistics across the speakers 

Nc = Nc (s)
s
∑

a = diag(NN(s) * lD
−1(s))

s
∑

b = diag(FF(s) * (lD
−1(s) *D *Σ−1 *FF(s))*)

s
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NN = NN(s)
s
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7)  Compute D estimate 

8)  Iterate steps 5-7 20 times. Substitute estimate of D into equations in step 5. 
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•  Refer to “Comparison of Scoring Methods used in Speaker Recognition 
with Joint Factor Analysis” by Glembek, et. al. 

1)  Use the matricies V, U, and D to get estimates of y, x, and z, in terms of 
their posterior means given the observations 

2)  For test conversation side (tst) and target speaker conversation side (tar), 
one way to obtain final score is via the following linear product: 

Score = (V * y(tar) + D * z(tar))* *Σ−1 * (FF(tst) − NN(tst) *m − NN(tst) *U * x(tst))

Computing linear score 

Target speaker conversation 
side centered around speaker 
and residual factors 

Test conversation side has speaker- 
independent and channel factors 
removed, and hence also centered 
around speaker and residual factors 



An i-vector system uses a set of low-dimensional total variability factors (w) to 
represent each conversation side. Each factor controls an eigen-dimension 
of the total variability matrix (T), and are known as the i-vectors. 

1)  To train T, run exact training procedure used to train V, but treat all 
conversation sides of all training speakers as belonging to different 
speakers 

2)  Given T, obtain i-vectors (w) for each conversation side  

The i-vector approach 

i-vector 
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3)  For channel compensation of i-vectors, perform LDA then WCCN 
(techniques empirically determined to perform well) on i-vectors. Denote 
channel-compensated i-vectors as ω. 

4)  Perform cosine distance scoring (CDS) on channel-compensated i-vectors 
ω for a pair of conversation sides:  

The i-vector approach 

score(ω1,ω2 ) =
ω1
* *ω2

||ω1 || * ||ω2 ||

If i-vectors of two speakers point in the same 
direction, their cosine distance takes highest 
possible value of 1. If they point in opposite 
directions, their cosine distance takes lowest 
possible value of -1. 

= cos(θω1 ,ω2
)



The End 


