
Joint Factor Analysis (JFA) and i-vector Tutorial

Howard Lei

•  Relevance MAP adaptation is a linear interpolation of all mixture components of
UBM to increase likelihood of speech from particular speaker

•  Supervectors consist of the speaker-dependent GMM mean components

•  Problem: Relevance MAP adaptation adapts to not only speaker-specific
characters of speech, but also channel and other nuisance factors.

•  Hence, supervectors generated in this way are non-ideal.

Supervectors for speakers

Speech from
particular speaker

Speaker-independent
GMM model (UBM)

Extract
MFCC
features

Speaker-
dependent
GMM
model

Supervector

Relevance MAP
adaptation

•  A supervector for a speaker should be decomposable into speaker
independent, speaker dependent, channel dependent, and residual
components

•  Each component can be represented by a low-dimensional set of
factors, which operate along the principal dimensions (i.e. eigen-
dimensions) of the corresponding component

•  For instance, the following illustrates the speaker dependent
component (known as the eigenvoice component) and corresponding
factors:

JFA Intuition

V * y =
| | | |
v1 v2  vN
| | | |

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
*

y1
y2

yN

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥Eigenvoice

matrix
Low-dimensional eigenvoice
(or speaker) factors

Each speaker factor
controls an eigen-
dimension of the
eigenvoice matrix
(i.e. y1 controls v1)

•  A given speaker GMM supervector s can be decomposed as follows:

•  where:
–  Vector m is a speaker-independent supervector (from UBM)
–  Matrix V is the eigenvoice matrix
–  Vector y is the speaker factors. Assumed to have N(0,1) prior distribution
–  Matrix U is the eigenchannel matrix
–  Vector x is the channel factors. Assumed to have N(0,1) prior distribution
–  Matrix D is the residual matrix, and is diagonal
–  Vector z is the speaker-specific residual factors. Assumed to have N(0,1)

prior distribution

JFA Model

s = m +Vy +Ux + Dz
Speaker-
independent
component

Speaker-
dependent
component

Channel-
dependent
component

Speaker-dependent
residual component “Ideal” speaker

supervector

•  For a 512-mixture GMM-UBM system, the dimensions of each JFA
component are typically as follows:

–  Matrix V: 20,000 by 300 (300 eigenvoice components)
–  Vector y: 300 by 1 (300 speaker factors)
–  Matrix U: 20,000 by 100 (100 eigenchannel components)
–  Vector x: 100 by 1 (100 channel factors)
–  Matrix D: 20,000 by 20,000 (20,000 residual components)
–  Vector z: 20,000 by 1 (20,000 speaker-specific residual components)

•  These dimensions have been empirically determined to produce
best results

Dimensions of JFA model

•  Note: the following is taken from the paper “A Study of Inter-Speaker
Variability in Speaker Verification” by Kenny et. al, 2008.

•  We train the JFA matricies in the following order:
1.  Train the eigenvoice matrix V, assuming that U and D are zero
2.  Train the eigenchannel matrix U given estimate of V, assuming that D is zero
3.  Train residual matrix D given estimates of V and U

•  Using these matrices, we compute the y (speaker), x (channel), and z
(residual) factors

•  We compute the final score using the matricies and factors

Training the JFA model

1) Accumulate 0th, 1st, and 2nd order sufficient statistics for each speaker (s)
and Gaussian mixture component (c)

Training the V matrix

Nc (s) = γ t
t∈s
∑ (c)

Fc (s) = γ t
t∈s
∑ (c)Yt

Sc (s) = diag γ t
t∈s
∑ (c)YtYt

*⎛
⎝⎜

⎞
⎠⎟

The posterior of Gaussian
component c for observation t of
speaker s

Keep only the diagonal
entries; zero out other entries

0th order
statistic

1st order
statistic

2nd order
statistic

Denotes Hermitian transpose
of vector or matrix

Sum over feature frames of all relevant
conversation sides of speaker s

2) Center the 1st and 2nd order statistics

Fc (s) = Fc (s) − Nc (s)mc

Sc (s) = Sc (s) − diag Fc (s)mc
* + mcFc (s)

* − Nc (s)mcmc
*()

0th order
statistic

Centered 1st
order statistic

Centered 2nd
order statistic

UBM mean for mixture
component c

Training the V matrix

3) Expand the statistics into matricies

NN(s) =
N1(s) * I


NC (s) * I

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ FF(s) =

F1(s)

FC (s)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

C total Gaussian
mixtures

Identity matrix

SS(s) =

S1(s)


SC (s)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Training the V matrix

4) Initial estimate of the speaker factors y

lV (s) = I +V
* *Σ−1 *NN(s) *V

y(s)  Normal(lV
−1(s) *V * *Σ−1 *FF(s),lV

−1(s))⇒

y(s) = E[y(s)] = lV
−1(s) *V * *Σ−1 *FF(s)

Posterior distribution
of y(s) given all data
from speaker s

The expected value
(the value we want)

Gaussian normal
distribution

Use random
initialization of V

Training the V matrix

Inverse UBM
covariance matrix

Like a least-squares estimate to:

min
y(s)

|| FF(s) −Vy(s) ||2

5) Accumulate some additional statistics across the speakers

Nc = Nc (s)
s
∑

Αc = Nc (s)lV
−1(s)

s
∑

 = FF(s) * (lV
−1(s) *V * *Σ−1 *FF(s))*

s
∑

NN = NN(s)
s
∑

Covariance of posterior
distribution of y(s)

Transposed mean of posterior
distribution of y(s)

Training the V matrix

6) Compute V estimate

V =
V1

VC

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

A1
−1 *1


AC
−1 *C

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Block matrix components of
V corresponding to each
Gaussian mixture

where  =
1

C

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Block matrix components of
C corresponding to each
Gaussian mixture

Training the V matrix

7)  Compute covariance update (optional)

8) Run approx. 20 iterations of steps 4-6 (or 4-7). Substitute estimate of V into
equations in step 4.

Σ = NN −1 SS(s)
s
∑⎛⎝⎜

⎞
⎠⎟
− diag( *V *)

⎛
⎝⎜

⎞
⎠⎟

Training the V matrix

1) Compute estimate of speaker factor y for each speaker, and 0th and 1st
order statistics for each conversation side (conv) of each speaker (s) in
JFA training data

Training the U matrix

Nc (conv, s) = γ t
t∈conv,s
∑ (c)

Fc (conv, s) = γ t
t∈conv,s
∑ (c)Yt

2) For each speaker (s), compute the speaker shift (along with speaker-
independent shift) using matrix V and speaker factors y

3)  For each conversation side of each speaker (used for JFA training),
subtract Gaussian posterior-weighted speaker shift from first order
statistics

Training the U matrix

spkrshift(s) = m +V * y(s)

Fc (conv, s) = Fc (conv, s) − spkrshift(s) *Nc (conv, s)

4) Expand the statistics into matricies

NN(conv, s) =
N1(conv, s) * I


NC (conv, s) * I

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

FF(conv, s) =

F1(conv, s)


FC (conv, s)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Training the U matrix

5)  NN(conv,s) and FF(conv,s) used to train U and x in exact same way that
NN(s) and FF(s) was used to train V and y

6)  Run approx. 20 iterations of training procedure for V and y using
NN(conv,s) and FF(conv,s)

Training the U matrix

Intuition: For the V matrix, we focused on obtaining the speaker-
based principal dimensions. For the U matrix, we focus on obtaining
the channel (or non-speaker, or nuisance)-based principal dimensions.
Hence, we use the speaker-subtracted statistics to train U in the same
way the speaker statistics were used to train V

1) For each speaker (s), compute the speaker shift using matrix V and
speaker factors y

2)  For each conversation side (conv) of speaker (s), compute the channel
shift using matrix U and channel factors z

3) For each speaker (used for JFA training), subtract Gaussian posterior-
weighted speaker shift AND channel shifts from first order statistics

Training the D matrix

spkrshift(s) = m +V * y(s)

chanshift(conv, s) =U * x(conv, s)

Fc (s) = Fc (s) − spkrshift(s) *Nc (s) − chanshift(conv, s) *Nc (conv, s)
conv∈s
∑

Computed for V estimate

4) Expand the statistics into matricies

NN(s) =
N1(s) * I


NC (s) * I

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

FF(s) =

F1(s)

FC (s)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Training the D matrix

5) Initial estimate of the residual factors z

Training the D matrix

lD (s) = I + D
2 *Σ−1 *NN(s)

z(s)  Normal(lD
−1(s) *D *Σ−1 *FF(s),lD

−1(s))⇒

z (s) = E[z(s)] = lD
−1(s) *D *Σ−1 *FF(s)

The expected value
(the value we want)

Use random
initialization of D

6) Accumulate some additional statistics across the speakers

Nc = Nc (s)
s
∑

a = diag(NN(s) * lD
−1(s))

s
∑

b = diag(FF(s) * (lD
−1(s) *D *Σ−1 *FF(s))*)

s
∑

NN = NN(s)
s
∑

Covariance of posterior
distribution of y(s)

Transposed mean of posterior
distribution of y(s)

Training the D matrix

7)  Compute D estimate

8)  Iterate steps 5-7 20 times. Substitute estimate of D into equations in step 5.

D =
D1

DC

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

a1
−1 *b1


aC
−1 *bC

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Block matrix components of
D corresponding to each
Gaussian mixture

where b =
b1

bC

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Block matrix components of
b corresponding to each
Gaussian mixture

Training the D matrix

•  Refer to “Comparison of Scoring Methods used in Speaker Recognition
with Joint Factor Analysis” by Glembek, et. al.

1)  Use the matricies V, U, and D to get estimates of y, x, and z, in terms of
their posterior means given the observations

2) For test conversation side (tst) and target speaker conversation side (tar),
one way to obtain final score is via the following linear product:

Score = (V * y(tar) + D * z(tar))* *Σ−1 * (FF(tst) − NN(tst) *m − NN(tst) *U * x(tst))

Computing linear score

Target speaker conversation
side centered around speaker
and residual factors

Test conversation side has speaker-
independent and channel factors
removed, and hence also centered
around speaker and residual factors

An i-vector system uses a set of low-dimensional total variability factors (w) to
represent each conversation side. Each factor controls an eigen-dimension
of the total variability matrix (T), and are known as the i-vectors.

1) To train T, run exact training procedure used to train V, but treat all
conversation sides of all training speakers as belonging to different
speakers

2) Given T, obtain i-vectors (w) for each conversation side

The i-vector approach

i-vector

s = m + Tw

Total-variability
matrix

Conversation
side supervector

3)  For channel compensation of i-vectors, perform LDA then WCCN
(techniques empirically determined to perform well) on i-vectors. Denote
channel-compensated i-vectors as ω.

4)  Perform cosine distance scoring (CDS) on channel-compensated i-vectors
ω for a pair of conversation sides:

The i-vector approach

score(ω1,ω2) =
ω1
* *ω2

||ω1 || * ||ω2 ||

If i-vectors of two speakers point in the same
direction, their cosine distance takes highest
possible value of 1. If they point in opposite
directions, their cosine distance takes lowest
possible value of -1.

= cos(θω1 ,ω2
)

The End

