
Submitted to ICASSP-95

USING A STOCHASTIC CONTEXT-FREE GRAMMAR AS A LANGUAGE MODEL FOR
SPEECH RECOGNITION

Daniel Jurafsky, Chuck Wooters
�
, Jonathan Segal, Andreas Stolcke, Eric Fosler,

Gary Tajchman, and Nelson Morgan

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, CA 94704, USA
& University of California at Berkeley�

jurafsky,wooters,tajchman,jsegal,stolcke,fosler,morgan � @icsi.berkeley.edu

ABSTRACT

This paper describes a number of experiments in adding new gram-
matical knowledge to the Berkeley Restaurant Project (BeRP),
our medium-vocabulary (1300 word), speaker-independent, spon-
taneous continuous-speech understanding system (Jurafsky et al.
1994). We describe an algorithm for using a probabilistic Earley
parser and a stochastic context-free grammar (SCFG) to generate
word transition probabilities at each frame for a Viterbi decoder. We
show that using an SCFG as a language model improves word error
rate from 34.6% (bigram) to 29.6% (SCFG), and semantic sentence
recognition error from from 39.0% (bigram) to 34.1% (SCFG). In
addition, we get a further reduction to 28.8% word error by mixing
the bigram and SCFG LMs. We also report on our preliminary
results from using discourse-context information in the LM.

1. TIGHT COUPLING

A number of researchers have proposed ways to use natural-language-
backend information in the speech recognition process. Moore et al.
(1989) used a unification-based CFG to generate word transitions
for a Viterbi recognizer. Goodine et al. (1991) describe a system
which uses the CFG-based TINA parser to predict next words for
the SUMMIT speech recognizer, Kita & Ward (1991) used a CFG
to filter bigram follow-sets for the Sphinx recognizer. Hauenstein
& Weber (1994) also used a unification-based CFG to filter bigram
follow-sets. In all these cases, the CFG was used to generate or fil-
ter the word-transition list, but not to assign probabilities. Goddeau
(1992) extended these results by using a probabilistic LR parser to
actually produce word-transition probabilities.

Our tight coupling model extends these models to general
SCFGs by augmenting a probabilistic version of the Earley al-
gorithm (Stolcke 1993) to compute word transition probabilities
from an SCFG.

The system we have augmented, the BeRP system, is a speech
understanding system which answers questions about restaurants in
the city of Berkeley, California, inspired by earlier consultants like
VOYAGER (Zue et al. 1991). BeRP consists of a RASTA-PLP fea-
ture extractor, a multilayer perceptron (MLP) phonetic probability
estimator, a Viterbi decoder, an HMM lexicon, a natural language
interpreter which incorporates a stochastic context-free grammar,
and a database of restaurants.

�
Currently at Dept. of Defense

The SCFG used in BeRP consistsof 1389 hand-written context-
free rules. The non-terminals in the rules are very specific to the
corpus, and hence to the restaurant domain. The rule probabilities
are learned from the 4786-sentence BeRP corpus with the EM
algorithm. Figure 1 shows a sample of the grammar rules.

0.38 s � ISENTENCES
0.62 ISENTENCES � IWANTTO VP
0.71 VP � EATVERB EATOBJ
0.17 VP � SPENDVERB MONEY
0.11 VP � TRAVELVERB DISTANCE

Figure 1: Sample Grammar Rules

2. USING THE SCFG

We have experimented with a number of ways to use the information
provided by the SCFG:

1. Use the SCFG to smooth the bigram grammar, by taking our
original corpus, adding a pseudo-corpus generated from the
SCFG, and building the bigram with Monte-Carlo sampling
on this joint corpus.

2. Use the SCFG to smooth the bigram grammar by generating
the characteristic bigram for the SCFG in closed form.

3. Use the SCFG directly to provide word transition probabil-
ities on each frame.

4. Use a mixture of the SCFG and bigram probabilities directly
to provide word transition probabilities on each frame.

2.1. Using the SCFG to Smooth the Bigram

In the first two methods, we use the SCFG to smooth the bigram
grammar, and then use this improved bigram grammar in the rec-
ognizer. The first method extends an idea of Zue et al. (1991),
who used an advanced language model to generate random sen-
tences from which to train a word-pair model. We extended this
idea to generation of bigrams by Monte-Carlo sampling, by using
our SCFG-based parser in generation mode to generate a pseudo-
corpus of 200,000 sentences, adding in our regular BeRP corpus,
and then using our standard bigram-building tools on the combined
corpus.



In the second method, we have shown (Stolcke & Segal 1994)
that it is possible to generate a bigram from a stochastic context-
free grammar directly, by computing its characteristic n-gram in
closed form. The method computes the expected bigram counts for
strings generated by each of the nonterminals in the grammar by
solving a system of linear equations derived from the grammar rule
probabilities. We have implemented this algorithm recently, and
will use it instead of the Monte Carlo method to generate our future
bigrams.

2.2. Using the SCFG directly as the LM

In the third method, we use the SCFG directly as the LM for
the recognizer. We begin by abstracting away from probabilities.
Consider the problem of using a CFG to produce a follow-set, given
a prefix string. For example, if the recognizer passes the string I
want British to the parser, it will produce the follow words “food”,
“restaurants”, “places”, “cuisine”, etc. The parser parses the prefix
string, and then looks at every non-terminal symbol that the Earley
parser is predicting next. For each such non-terminal, we look up
its left-corner list – the list of terminal symbols which the non-
terminal can generate on the left fringe of some parse tree. This list
can be computed in advance.

i want british

WANT−OBJECTSWANT−VERBS

WANTING−SENTENCES

NATIONALITY FOOD−RESTAURANT

food
restaurants
places
cuisine
...

S

Left corner list for FOOD−RESTAURANT:

Figure 2: Prefixes and Left-Corner lists

The recognizer needs more than just follow sets, however.
In this case, it needs the various probabilities P(‘food’ | ‘I want
British’), P(‘restaurants’ | ‘I want British’) etc.; i.e., for each word��� in the follow set, we need to compute

��� ����� �
1
�

2 �	�	� �
���
1  (1)

To compute these probabilities, we first augment the left corner
list to produce the probability that a given non-terminal expands
to a terminal. For a given pair of symbols ����� ��� , where �
is a non-terminal and � is a terminal, the left-corner probability
is the probability that � generates some string which begins with� . Jelinek & Lafferty (1991) give an algorithm for computing this
left-corner probability for every pair of non-terminals and terminals
in the grammar with a single matrix-inversion.

If all sentences were unambiguous, this would be sufficient to
produce the correct transition probabilities. However, sentences
are ambiguous. Because of this, there will be multiple parses for
each prefix, and hence we will need to combine the left-corner
probabilities for non-terminals from different parses. We can do
this by weighting the follow-set for each parse, or derivation, by

the probability of the derivation.��� ����� �
1 �	��� �����

1 �� ���� derivations

�����  ��� ��� � �
1 �	��� �����

1 � � 
(2)

Thus the parser must be able to compute prefix probabilities
for derivations of input strings. For a given parse, the prefix prob-
ability is just the product of the probabilities of all the rules used
in the parse. In order to compute this probability efficiently, we
augment our probabilistic chart parser by annotating each edge of
the chart with quantities: a prefix probability and an inside prob-
ability. Each edge-creation action computes the inside probability
and prefix probability for the new edge from the old edges and the
grammar rule probabilities. Readers with interest in the details of
this probabilistic Earley computation are referred to Stolcke (1993),
which extends the simpler prefix algorithm used in BeRP to deal
with left-recursive grammars and unit productions.

We have described how the parser is able to compute follow-set
probabilities for each string that is passed to it by the recognizer.
We turn now to the tight-coupling interface. For each frame, the
decoder must compute word strings to pass to the parser. A bigram-
based recognizer would simply look up the bigram transition prob-
ability for each word that can end at the current frame. Since an
SCFG-based recognizer will use the entire prefix to compute the
transition probabilities, the recognizer must perform a backtrace to
determine the prefix associated with the word. The optimal algo-
rithm would search through the Viterbi array to find the N-best word
strings or the equivalent word lattice, and either pass each string
to the recognizer or parse the lattice directly. In practice, we use
a simple (but we believe poor) approximation to the N-best algo-
rithm, in which at each 10 ms frame, the decoder finds the 10 words
most likely to end, and for each performs a single backtrace to find
10 strings. Each of these is passed to the parser, which computes a
probability vector over the follow-set words. The recognizer then
uses each of these probabilities as the transition probability from
the word ending at frame ! to each of the words which the follow-
set vector gives a non-zero probability of starting at frame !#" 1.
If a word is included in the follow-set of more than one backtrace,
we pick the maximum probability (Viterbi) backtrace.

If the parser fails at any point in parsing a backtrace, it backs off
to the bigram grammar to compute word-transition probabilities for
the remainder of the sentence. As Figure 3 shows, this backoff is
quite rare, only happening for a very small number of the sentences
(mostly the very long sentences). Thus even sentences whose
correct transcription falls outside the CFG are usually forced into
the nearest CFG-grammatical string.

% backtraces parseable by CFG

Sentence Length

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22

Backoff to
Bigram

Parseable

Figure 3: Percentage of backtraces covered by the SCFG

One of the most challenging design aspects of this algorithm



was achieving reasonable time-performance, since the decoder re-
quires word-transition probabilities after every 10 ms frame, requir-
ing on average 2400 calls to the parser per sentence. Despite this
large number, our prototype tightly-coupled recognizer runs just
36% slower than our non-tightly-coupled recognizer using bigram
probabilities. To achieve this speed, we optimized the algorithm ex-
tensively by using efficient indexing in the grammar and the chart,
making use of shared substring information for the prefix compu-
tation, and adding a cache between the recognizer and the parser to
avoid reparsing repeated backtraces.

2.3. Mixing SCFG and SCFG-bigram

The final way to use SCFG information relies on the intuition that
the SCFG and the SCFG-smoothed-bigram offer complimentary
sources of knowledge about grammar. Where the SCFG is best
at modeling long-distance dependencies and hierarchical structure,
the SCFG-bigram is best at local and lexical dependencies. Our
idea is to mix the two models on a frame-by-frame basis. We have
experimented with two versions of this mixing. In one, we weight
the models equally:��� � � � prefix�� 0 � 5 ��� � � � prefix,SCFG "

0 � 5 ��� � � � prefix,Bigram (3)

In the second, we weight each model by how likely it is given
the prefix (which we compute using Bayes’ rule); this reflects the
intuition that we should rely more on the model which demonstrates
a better fit with previous input:��� � � � prefix�� ���

SCFG � prefix ��� � � � prefix,SCFG "���
Bigram � prefix ��� �
� � prefix,Bigram (4)

3. RESULTS AND CONCLUSIONS

Our tight coupling systems were tested on a test set of 364 sentences,
drawn from the same corpus as the 4786-sentence training sentences
(see Jurafsky et al. (1994) for details on the corpus collection).
Table 1 presents our word error results.

Word Error
Bigram 34.6
SCFG-Smoothed Bigram 29.6
SCFG 29.6
SCFG/SCFG-Bigram Weighted Mixture 29.5
SCFG/SCFG-Bigram Equal Mixture 28.8

Table 1: BeRP Tight Coupling Performance

Note that the SCFG gave a 5.0% improvement in word er-
ror over the bigram, significant at the .005 level. The SCFG and
the SCFG-smoothed bigram performed equally, and the mixture
models were slightly but not significantly better than either SCFG
model. One conclusion we can reach is that compiling the SCFG
into a bigram preserved most of the useful information. Addition-
ally, the equal-mixture model seemed to do the best, although the
difference with the other mixture and SCFG models was not sig-
nificant – we plan to rerun these experiments on a larger test set.
We suspect that the relative success of the equal-mixture over the
weighted-mixture model was due to a useful side effect of equal-
mixtures which penalizes the bigram model by normalizing it to 0.5
just in those backtraces where the SCFG returns a zero probability.

Use of the SCFG also improved the semantic sentence error from
39.0% (bigram) to 34.1% (all the systems incorporating the SCFG),
although this difference was not statistically significant with only
364 sentences.

In our most recent language model experiment,we train pragmatic-
context-specific bigrams. Because BeRP is a mixed-initiative sys-
tem, users often respond to questions asked by the system. For each
question the system can ask, we build a subcorpus of responses
from our training set, and train a bigram (smoothed with responses
to other questions). Then during recognition, we switch between
these bigrams depending on the system’s latest question. In very
preliminary experiments with this discourse-based tight coupling,
we show a non-significant 2% reduction in word error, but we are
extremely optimistic that these results will improve.

Further details of the BeRP system are presented in Wooters
(1993) and Jurafsky et al. (1994).

Acknowledgments
This work was partially funded by ICSI and an SRI subcontract

from ARPA contract MDA904-90-C-5253. Partial funding for the
BeRP system development also came from ESPRIT project 6487
(The Wernicke project).

4. REFERENCES

GODDEAU, DAVID. 1992. Using probabilistic shift-reduce parsing in
speech recognition systems. In ICSLP-92, I.321—324, Banff, Canada.

GOODINE, DAVID, STEPHANIE SENEFF, LYNETTE HIRSCHMAN, & MICHAEL

PHILLIPS. 1991. Full integration of speech and language understanding
in the MIT spoken language system. In Proceedings of Eurospeech 91,
24—26, Genova, Italy.

HAUENSTEIN, ANDREAS, & HANS H. WEBER. 1994. An investigation of
tightly coupled time synchronousspeech language interfacesusing a uni-
fication grammar. In Proceedings of AAAI-94 Workshop on Integration
of Natural Language and Speech Processing, 42–49.

JELINEK, FREDERICK, & JOHN D. LAFFERTY. 1991. Computation of
the probability of initial substring generation by stochastic context-free
grammars. Computational Linguistics 17.315–323.

JURAFSKY, DANIEL, CHUCK WOOTERS, GARY TAJCHMAN, JONATHAN SE-
GAL, ANDREAS STOLCKE, ERIC FOSLER, & NELSON MORGAN. 1994.
The Berkeley restaurant project. In ICSLP-94, Yokohama, Japan. to
appear.

KITA, KENJI, & WAYNE H. WARD. 1991. Incorporating LR parsing into
SPHINX. In IEEE ICASSP-91, I.269–272.

MOORE, ROBERT, FERNANDO PEREIRA, & HY MURVEIT. 1989. Integrating
speech and natural-languageprocessing. In ProceedingsDARPA Speech
and Natural Language Workshop, 243—247.

STOLCKE, ANDREAS. 1993. An efficient probabilistic context-free parsing
algorithm that computes prefix probabilities. Technical Report TR-93-
065, ICSI, Berkeley, CA. To appear in Computational Linguistics.

——, & JONATHAN SEGAL. 1994. Precise � -gram probabilities from
stochastic context-free grammars. In Proceedings of the 32nd ACL,
74–79, Las Cruces, NM.

WOOTERS, CHARLES C., 1993. Lexical Modeling in a Speaker Independent
Speech Understanding System. Berkeley, CA: University of California
dissertation. available as ICSI TR-92-062.

ZUE, VICTOR, JAMES GLASS, DAVID GOODINE, HONG LEUNG, MICHAEL

PHILLIPS, JOSEPH POLIFRONI, & STEPHANIE SENEFF. 1991. Integration of
speech recognitionand natural languageprocessing in the MIT VOYAGER

system. In IEEE ICASSP-91, I.713–716.


