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Abstract

Incorporating long-term (500-1000 ms) temporal information
using multi-layered perceptrons (MLPs) has improved perfor-
mance on ASR tasks, especially when used to complement tra-
ditional short-term (25-100 ms) features. This paper further
studies techniques for incorporating long-term temporal infor-
mation in the acoustic model by presenting experiments show-
ing: 1) that simply widening acoustic context by using more
frames of full band speech energies as input to the MLP is sub-
optimal compared to a more constrained two-stage approach
that first focuses on long-term temporal patterns in each crit-
ical band separately and then combines them, 2) that the best
two-stage approach studied utilizes hidden activation values of
MLPs trained on the log critical band energies (LCBEs) of 51
consecutive frames, and 3) that combining the best two-stage
approach with conventional short-term features significantly re-
duces word error rates on the 2001 NIST Hub-5 conversational
telephone speech (CTS) evaluation set with models trained us-
ing the Switchboard Corpus.

1. Introduction
Hynek Hermansky’s group pioneered a method to capture long-
term (500-1000 ms) information for phonetic classificationus-
ing multi-layered perceptrons (MLP). Their approach learned
temporal patterns based on consecutive frames of log critical
band energies (LCBEs), and used these patterns as a basis for
phonetic classification [1][2]. More specifically, they developed
an MLP architecture called TRAPS, which stands for “Tempo-
RAl PatternS”. The TRAPS system consists of two stages of
MLPs. In the first stage critical band MLPs learn phone prob-
abilities posterior on the input, which is a set of consecutive
frames (usually 51-100 frames) of LCBEs, or LCBE trajectory.
A “merger” MLP merges the output of each of these individual
critical band MLPs resulting in overall phone posteriors proba-
bilities. This two-stage architecture imposes a constraint upon
the learning of temporal information from the time-frequency
plane: correlations among individual frames of LCBEs from
different frequency bands are not directly modeled; instead, cor-
relation among long-term LCBE trajectories from differentfre-
quency bands are modeled.

TRAPS by themselves perform about as well as more con-
ventional ASR systems using short-term features, and signifi-
cantly improve word error rates when used in combination with
these short-term features. TRAPS complement conventional
systems by performing better on speech examples that are prob-
lematic for models trained on conventional features. We worked
on improving the TRAPS architecture in the context of TIMIT
phoneme recognition [3]. This led us to the development of
Hidden Activation TRAPS (HATS), which differ from TRAPS
in that HATS use the hidden activations of the critical band
MLPs instead of their outputs as inputs to the “merger” MLP.
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Figure 1: Architecture for Naive One Stage Approach

So instead of using critical band level phoneme probabilities,
HATS uses outputs of critical band “matched filters” for inputs
to the second stage merger. We found that HATS significantly
outperformed TRAPS while using many fewer parameters.

In this paper, we wanted to further explore the incorporation
of long-term features in the setting of large vocabulary contin-
uous speech recognition (LVCSR). More specifically we want
to explore two major questions: first, does the two-stage learn-
ing of HATS and TRAPS actually provide any advantage over a
naive one-stage learning, where the latter consists of training an
MLP to learn phone probabilities using 51 consecutive frames
of LCBEs from all 15 critical bands in one step? And second,
are the non-linear transformations of critical band trajectories,
provided in different ways by HATS and TRAPS, actually nec-
essary? For this second question, we compare linear and non-
linear first stage critical band learning approaches and usethese
results as inputs to the second stage “merger” MLP.

We start this discussion with detailed architecture descrip-
tions in Section 2 and experimental setup explanations in Sec-
tion 3. In Section 4 frame accuracy results for each of the var-
ious long-term architectures are presented and discussed.Sec-
tion 5 presents word recognition results using phone posterior
features derived from the various long-term architectures, and
Section 6 discusses results from using these posterior features
in combination with a conventional short-term feature. Finally,
Section 7 summarizes the conclusions.

2. MLP Architectures
2.1. One Stage Approach

A straightforward approach to incorporating greater temporal
context is to give an MLP more frames of speech features and
simply let the MLP learn what it needs to estimate phonetic
posteriors. For our experiments, we chose this comparatively
simple approach as the baseline architecture. In all of the ex-
periments in this paper, we use LCBEs calculated every 10 ms
on 8 kHz sampled speech which gives us a total of 15 bark scale
spaced LCBEs. These are then mean and variance normalized
per utterance. Figure 1 shows our baseline approach (hence-
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Figure 2: Architecture for Two Stage Linear Approaches

forth referred to as “15 Bands x 51 Frames”) which uses 51
frames of all 15 bands of LCBEs as inputs to an MLP. These in-
puts are built by stacking 25 frames before and after the current
frame to the current frame, and the target phoneme comes from
the current frame. As is usual for this kind of use of MLPs, the
network is trained with output targets that are ”1.0” for theclass
associated with the current frame, and ”0” for all others. For all
of the systems described in this paper, the MLPs are trained on
46 phoneme targets obtained via forced alignment from SRI’s
LVCSR recognizer [4], and consist of a single hidden layer with
sigmoidal nonlinearity and an output layer with softmax nonlin-
earity.

2.2. Two Stage Linear Approaches

We hypothesize that the “15 Bands x 51 Frames” system is too
unconstrained, and that it will be useful to design the learn-
ing so that the MLP is forced to represent temporal structure.
We investigated several architectures that partition the learning
into two constrained stages: first, learn what is important for
phonetic classification given single critical band energy trajec-
tories of 51 frames; and second, combine what was learned at
each critical band to learn overall phonetic posteriors. This “di-
vide and conquer” approach to learning splits the task into two
smaller and possibly simpler sub-learning tasks.

For the first of these two-stage architectures, we calculate
principal component analysis (PCA) transforms for successive
51 frames of each of the 15 individual 51 frames of LCBE re-
sulting in a 51 x 51 transform matrix for each of the 15 bands.
We then use this transform to orthogonalize the temporal tra-
jectory in each band, retaining only the top 40 features per
band. Figure 2 shows how we then use these transformed (and
dimensionally reduced) features as input to an MLP. In a re-
lated approach, we replaced PCA with linear discriminant anal-
ysis (LDA) “trained” on the same phoneme targets used for
MLP training. This transform projects the LCBE of a single
band onto vectors that maximize the between class variance
and minimize the within class variance for phoneme classes.
These two two-stage linear approaches are henceforth denoted
as “PCA40” and “LDA40” respectively.

2.3. Two Stage Non-Linear Approaches

Finally, we experimented with four two-stage non-linear ap-
proaches based on training critical band MLPs. Once trained,
these critical band MLPs transform each of the 15 LCBE trajec-
tories into input for a second stage merger MLP that combines
and transforms this critical band information into estimates of
phoneme posteriors conditioned on the entire spectrum. The
two-stage MLP training approach is similar in spirit to the ef-
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Figure 3: Architecture for Two Stage Non-Linear Approaches

fective neural net training used in [5].
Figure 3 shows each of our four non-linear two-stage archi-

tectures. In the first of these approaches, the input to the sec-
ond stage is the dot product of the LCBE inputs with the input
to hidden unit weights of the corresponding critical band MLP.
Another way to say this is that the activation values before the
sigmoid in each critical band hidden unit is used as the inputto
the second stage merger MLP. We refer to this architecture as
“HATS Before Sigmoid”. While this first approach consists of
a linear matrix multiply, we categorize it in this subsection be-
cause the matrix was learned as part of a structure that included
non-linear sigmoid functions, which have a significant effect on
the values learned.

The second approach, “HATS”, takes the outputs of each
hidden unit as the input to the merger MLP. The third approach
takes the activations after the hidden to output weight matrix
multiplication, but just before the final softmax nonlinearity of
the critical band MLPs. This approach is denoted as “TRAPS
Before Softmax”. Finally, the fourth approach uses the regular
activations from the critical band MLPs that are phoneme pos-
terior probabilities conditioned on the LCBE inputs. This last
non-linear approach will be denoted as “TRAPS”.

3. Experimental Setup
For all of the experiments reported in this paper, we show test
results on the 2001 Hub-5 evaluation data (Eval2001), a large
vocabulary conversational telephone speech test set consisting
of a total of 2,255,609 frames and 62,890 words. The train-
ing set that we use for both MLP and HMM training consists
of about 68 hours of conversational telephone speech data from
four sources: English CallHome, Switchboard I with transcrip-
tions from Mississippi State, and Switchboard Cellular. This
training set corresponds to the one used in [6] without Switch-
board Credit Card data. Training for both MLPs and HMMs
was done separately for each gender, and the test results below
reflect the overall performance on both genders. We hold out
10% of the training data as a cross validation set in MLP train-
ing. For fairness in comparison, all of the long-term temporal



systems have roughly the same number of total network param-
eters (about 500,000 weights and biases). In preliminary ex-
periments we found that forty hidden units per critical bandfor
HATS was sufficient for good performance, so we made sure
that all the two-stage systems had forty hidden units or in the
case of PCA and LDA forty dimensions at the critical band
level. The use of forty hidden units for the TRAPS system is
not what has been previously reported when researchers refer
to TRAPS, but for this study, we enforced this for fair compari-
son’s sake1.

Once the MLPs are trained, we use them to generate pos-
terior features for an HMM back-end recognizer in a similar
manner as was done in [7]. More specifically, the back-end that
we used was similar to the first pass of the system described in
[4], using a bigram language model and within-word triphone
acoustic models. Further details on the posterior featuresused
will be explained below.

4. Classification Accuracy Results and
Discussion

In this section we examine the frame level classification of each
of the various neural net architectures on the Eval2001 testset.
Frame level accuracy serves as a good preliminary indicatorof
performance and is the ratio of the number of correctly classi-
fied frames to the total number of frames, where classification
is deemed correct when the highest output of the MLP corre-
sponds to the correct phoneme label. Table 1 summarizes the
frame accuracy scores, relative improvement over baseline, and
rank for each of the seven temporal architectures. For reference,
we have included a conventional intermediate temporal context
MLP that uses 9 frames of per-side normalized (mean, variance,
and vocal tract length) PLP plus deltas and double deltas as in-
puts (“PLP 9 Frames”). This intermediate context MLP was
trained on the same training data and phonetic targets as the
others.

The one-stage 15 Bands x 51 Frames system serves as our
naive baseline system and gets 64.73% of all frames correct.
With the exception of the TRAPS system, all of the two-stage
systems do better than this. From this, we can see that simply
feeding an MLP classifier more frames for temporal context is
suboptimal, but using the right two-stage approach is also im-
portant. HATS outperforms all other two-stage approaches at
the frame level by achieving a 66.91% accuracy. HATS Be-
fore Sigmoid and TRAPS Before Softmax perform comparably
at 65.80% and 65.85% respectively, while PCA and LDA ap-
proaches perform similarly at 65.50% and 65.52% respectively.
At the frame level, it seems that forcing the system to focus
first on learning what it can in each of the long-term narrow
frequency band inputs independently is a useful constraint, par-
ticularly in the case of HATS.

5. MLP Based Feature Recognition Results
and Discussion

Frame accuracy results give a good preliminary indication of
performance, but can sometimes only be moderately correlated
to word error rates. We performed word recognition experi-
ments by transforming the outputs of the various MLPs and us-
ing them as features for the SRI speech recognizer. Specifically,

1It is possible that better results could be obtained by optimizing the
number of critical band hidden units (or dimensions) for each of the
different systems presented.

Baseline
System Frames Improv.

Description (Rank) Correct (%) (% Rel.)

Baseline:
15 Bands x 51 Frames (6) 64.73 -

PCA40 (5) 65.50 1.19
LDA40 (4) 65.52 1.22

HATS Before Sigmoid (3) 65.80 1.65
HATS (1) 66.91 3.35

TRAPS Before Softmax (2) 65.85 1.73
TRAPS (7) 63.96 -1.19

PLP 9 Frames 67.57 N/A

Table 1: Frame Accuracies on Eval2001

in each case we take the log of the outputs from the MLPs and
then decorrelate the features via PCA. Then we apply per-side
mean and variance normalization on these transformed outputs
and use the result as the front-end features in our HMM back-
end. As in the previous section, we report the performance of
the seven feature sets incorporating a long temporal input (500
ms), and include results for a moderate but more conventional
input range (100ms for 9 frames of PLP). Table 2 summarizes
the rank, word error rate (WER), and improvement over the one-
stage baseline when appropriate.

Looking at tables 1 and 2, we can see that HATS al-
ways ranks 1 when compared to all other long temporal sys-
tems, achieving 3.35% and 7.29% relative improvement over
the baseline one-stage approach in frame accuracy and WER
respectively. The TRAPS (after softmax) doesn’t provide an
improvement over the baseline, but all of the other approaches
do. This suggests that constraining the learning in the two-stage
process can be helpful if the architecture is appropriate. The fi-
nal softmax nonlinearity in the critical band MLPs in TRAPS
is the only difference between it and TRAPS Before Softmax,
so including this nonlinearity during recognition, causessignifi-
cant performance degradation, though it is apparently critical to
include it during training. It is likely that the softmax’s output
normalization is obscuring useful information that the second
stage MLP needs. Since the HATS system significantly out-
performs both the HATS Before Sigmoid and TRAPS Before
Softmax systems, this means that the sigmoid nonlinearity is
helpful whereas the extra linear mapping from hidden units to
critical band phones is not. Another way to interpret this isthat
when using our two-stage learning approach, the best first-stage
approach is to learn “probabilities” of certain critical band en-
ergy patterns. These “probabilities” correspond to the outputs
of the hidden units of the critical band MLPs, and the patterns
correspond to the energy trajectories represented by the input to
hidden unit weights (essentially a non-linear form of matched
filters).

6. Feature Augmentation Results and
Discussion

Previous studies have shown time and again that systems learn-
ing temporal patterns perform reasonably well by themselves,
but that in combination with the more conventional short-term
full band features these temporal patterns provide significant ad-
ditional performance improvements. Our current results also
corroborate this previous finding. In the following experiments,



Baseline
System WER (%) Improv.

Description (Rank) (% Rel.)

Baseline:
15 Bands x 51 Frames (6) 48.0 -

PCA40 (2) 45.3 5.63
LDA40 (3) 46.5 3.13

HATS Before Sigmoid (4) 45.9 4.38
HATS (1) 44.5 7.29

TRAPS Before Softmax (4) 45.9 4.38
TRAPS (7) 48.2 -0.42

PLP 9 Frames 41.2 N/A

Table 2: WER of Systems Using Stand-Alone Posterior Fea-
tures on Eval2001

Baseline
System WER (%) Improv.

Description (Rank) (% Rel.)

Baseline:
Non-Augmented 37.2 -
HLDA(PLP+3d)

15 Bands x 51 Frames (6) 37.1 0.27
PCA40 (2) 36.8 1.08
LDA40 (2) 36.8 1.08

HATS Before Sigmoid (2) 36.8 1.08
HATS (1) 36.0 3.23

TRAPS Before Softmax (5) 36.9 0.81
TRAPS (7) 37.2 0.00

PLP 9 Frames 36.1 2.96

Inv Entropy Combo
HATS + PLP 9 Frames 34.0 8.60

Table 3: WER of Systems Using Augmented Posterior Features
on Eval2001

we started with SRI’s EARS Rich Transcription 2003 front-
end features - 12th order PLP plus first three ordered deltas,
per side mean, variance, and vocal tract length normalized,
all transformed by heteroskedastic linear discriminant analy-
sis (HLDA), keeping the top 39 features. Using these baseline
features (HLDA(PLP+3d)), we performed a first pass viterbi
recognition on Eval2001 and achieved a 37.2% word error rate
(WER).

We then appended the top 25 dimensions after PCA on each
of the temporal features described in section 5 to the baseline
HLDA(PLP+3d) features. Table 3 summarizes the rank, WER,
and relative improvement over the baseline HLDA(PLP+3d)
features. All systems below the baseline system refer to the
features that are appended to the baseline HLDA(PLP+3d) fea-
tures.

When HATS features augment the conventional
HLDA(PLP+3d) features, WER can be reduced by 3.23%
relative, which is much better than the other long-term temporal
methods tested. The one-stage approach and TRAPS lag the
other two-stage approaches which perform roughly at the
same level. Using the intermediate-term PLP 9 Frames system
to augment HLDA(PLP+3d) features gives about the same
performance as HATS. If we combine the posterior probability

outputs of HATS and PLP 9 Frames systems using an inverse
entropy weighting method [8], take the log followed by PCA
to 25 dimension, and append to HLDA(PLP+3d) features, we
get the “Inv Entropy Combo HATS+PLP 9 Frames” features.
These features achieve a sizable 8.60% relative improvement
over the HLDA(PLP+3d) features alone. This improvement is
greater than the sum of the individual HATS augmentation and
PLP 9 Frames augmentation. In combination, HATS and PLP
9 Frames features act synergistically to reduce WER.

7. Conclusions
We have compared several different approaches for incorpo-
rating long-term temporal information in MLP based front-end
acoustic models and have shown that applying specific tempo-
ral constraints on the learning from time-frequency plane is im-
portant. More specifically, the one-stage approach, in which
we feed 51 consecutive frames of 15 log critical band energies
to the MLP, underperforms almost all two-stage approaches in
which we have constrained the learning into two stages. The
first of these stages extracts relevant information for phoneme
classification within each long-term critical band energy trajec-
tory, while the second stage combines what was learned in the
first stage to produce the overall phoneme probabilities. We
have also shown that it is important to use the hidden activations
temporal patterns (HATS) as the two-stage approach. HATS
significantly outperforms all other long-term temporal systems
studied both as a standalone feature to an HMM back-end, but
also when it is concatenated with conventional PLP features.
Finally, HATS features combines synergistically with an inter-
mediate time MLP features to achieve an 8.6% relative WER
reduction on the Hub-5 2001 evaluation test set.
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