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Abstract
We describe a “direct modeling” approach to using prosody

in various speech technology tasks. The approach does not in-
volve any hand-labeling or modeling of prosodic events such as
pitch accents or boundary tones. Instead, prosodic features are
extracted directly from the speech signal and from the output of
an automatic speech recognizer. Machine learning techniques
then determine a prosodic model, which is integrated with lex-
ical and other information to predict the target classes of inter-
est. We discuss task-specific modeling and results for a line of
research covering four general application areas: (1) structural
tagging (finding sentence boundaries, disfluencies), (2) prag-
matic and paralinguistic tagging (classifying dialog acts, emo-
tion, and “hot spots”), (3) speaker recognition, and (4) word
recognition itself. To provide an idea of performance on real-
world data, we focus on spontaneous (rather than read or acted)
speech from a variety of contexts—including human-human
telephone conversations, game-playing, human-computer dia-
log, and multi-party meetings.

1. Introduction
Recent years have seen increasing interest in using prosody for
speech technology. From a large literature in linguistics and
related fields, we know that prosody provides valuable informa-
tion often not available from text alone—for example informa-
tion on phrasing and disfluencies, pragmatics and emotion, and
even (as is clear from speech heard through a wall) information
on speaker identity. It is well understood that humans make am-
ple use of such information in everyday communication. Thus,
capturing prosodic knowledge in speech technology is one way
to make systems more intelligent and human-like.

To use prosody effectively in automatic systems, however,
one needs to address some key challenges. First, one must per-
form all of the processing automatically—from extracting and
normalizing features, to using the features in some way to aid
the application. Second, the very words being spoken must
be determined automatically and may contain errors—adding
to the overall challenge for both lexical cues and for prosodic
cues that depend on word locations. Finally, to be viable for
many desired applications, the modeling must work not only
for read or acted speech (which have formed the basis for much
of the descriptive work on canonical prosody) but in particular
for spontaneous speech, which is much less regular in prosodic

behavior.
Along with colleagues at SRI and more recently at ICSI,

we have tried to address these concerns by developing a “direct
modeling” approach to incorporating prosody in various speech
technology tasks [14]. The approach involves no hand-labeling
or modeling of prosodic events such as pitch accents or bound-
ary tones. Instead, prosodic features are extracted directly from
the speech signal and machine learning techniques determine
the best way to use these features in predicting the target classes
of interest.

Although this area of research is currently relatively small,
it is expanding, with similar work developed independently
(most notably the work of researchers at the University of Er-
langen), and other work building on the work described here.
This overview will focus mainly on selected studies from the
SRI/ICSI line of research, due to space limitations and also be-
cause the work is generally representative. We note that many
references to interesting work by other researchers in the vari-
ous application areas covered here can be found within the cita-
tions listed in Section 3.

The advantages of direct modeling are both practical and
technical. Direct modeling is less costly than modeling via
intermediate representations, since no human annotation of
prosody is required. Furthermore, direct modeling can lead to
better performance, because features are optimized for perfor-
mance on the end task of interest rather than for the detection
of intermediate labels. Direct modeling also avoids the prob-
lems of human error or subjectivity in labeling. Finally, direct
modeling is more easily ported across tasks, domains, and even
languages.

This paper is organized into two main sections. The first
section describes the general approach. It includes methods for
automatic feature extraction based on the output of a speech rec-
ognizer, feature normalization and stylization, machine learning
techniques for predicting target classes from prosodic features,
and methods for combining prosodic models with lexical and
contextual information from statistical language modeling. The
second section discusses more detail on work in four selected
application areas: (1) structural tagging, (2) pragmatic and par-
alinguistic tagging, (3) speaker recognition, and (4) word recog-
nition itself. Across studies, data come from a range of corpora
of spontaneous speech, including human-human telephone con-
versations, human-human game-playing, human-computer dia-
log, and multi-party meetings.



Figure 1: Schematic diagram of general approach across tasks. White boxes indicate processing in standard speech and speaker
recognition. Shaded boxes indicate processing added in the prosody modeling approach.

2. General method
The overall approach can be summarized as shown in Figure 1.
We refer to this figure to provide a high-level description of the
common framework across tasks. Further details (in particular
on the language model, prosodic model, and integration) are
provided by individual application area in Section 3.

2.1. Standard speech and speaker recognition

The white boxes in Figure 1 indicate components that are stan-
dard in current automatic speech and speaker recognition sys-
tems. Cepstral featuresand theacoustic modelare included
as part of the approach because they are used in the standard
speaker recognition systems. For word recognition we use
a standard (prosody-unaware) large-vocabulary speech recog-
nizer, which has its own acoustic and language models that are
separate from the components shown in the figure. We will use
not just the string of word hypotheses but also the corresponding
phone and time alignment information. A thorough modeling
and processing of prosodic information would make use of the
set of possible recognition hypotheses, appropriately weighted.
However, to simplify the discussion we will consider only the 1-
best recognition hypothesis here, except in Section 3.4 in which
the subject is prosody for the word recognition task itself.

2.2. Event language model

Shaded boxes in Figure 1 represent additional processing steps
involved in our modeling approach. Thelanguage modelshown
captures not only word sequences, but rather the joint pattern of
words and target events. Details differ depending on the type
of task. For example in modeling information such as sentence
boundaries, which can be considered to occur between words,
the language model creates N-grams of words and interword-
boundary events. In the case of dialog acts however, there are
actually two aspects to the language model: the sequence of
words within a dialog act, and also the sequence of dialog acts
themselves. In the case of speaker recognition, language model-
ing focuses on N-gram sequences that reflect idiosyncratic word
usage patterns.

2.3. Event prosodic model

For most of our work we have used either decision trees or
Gaussian mixture models to model prosodic information. Both
approaches are well established and have been shown to be use-
ful for a variety of machine learning tasks. Decision tree models
are “grown” by asking one question at a time of the available
features. The feature queried in each question, as well as the
threshold value in the question (e.g., is normalized pitch in the
sample above .70?) is that which best distinguishes the classes
at that node in the tree. Since our different tasks use different
features, separate trees are grown for each task. In the testing
phase, the decision tree estimates, for each sampleX, the pos-
terior probability of each of the classesC, yieldingP (CjX).

For simple tasks these estimates can be used directly, but of-
ten we will use the estimated probabilities in combination with
other probabilistic knowledge to compute a combined estimate
from multiple knowledge sources. Although there exist other
classifier architectures and associated learning algorithms that
also estimate posterior class probabilities, we have tended to
use decision trees because they perform well, can be inspected
to gain insight into features, and because good public software
is available.

The second kind of statistical model we use for prosodic
features is a Gaussian mixture model (GMM). GMMs are linear
combinations of multivariate Gaussian distributions that model
P (XjC). GMMs can be converted into posterior classifiers
using Bayes Rule:P (CjX) = P (C)P (XjC)=P (X), where
P (C) is the prior distribution of the classes, andP (X) is the
marginal distribution of the data. Thus, GMMs are fundamen-
tally different from decision trees inwhat they model (as well
as how), since they estimate the probability of the data given
a class, i.e.,P (XjC). They are limited to data that can be
represented as real-valued feature vectors, and (without modifi-
cation) cannot deal with datapoints that have missing features.
However, they have other advantages, such as the ability to train
a model on a large set of data, and then adapt it to new data.



2.4. Prosodic features

The prosodic classifiers take as input a set of human-designed
derived prosodic featuresthat we hope will be useful for the
particular task at hand.Hypothesized time marks from the
speech recognizer are used to compute and normalize a variety
of duration and speaking-rate features. From phone-level tim-
ing information, we compute duration features based on phones,
vowels only, syllables, and sub-syllable units such as rhymes.
To produce meaningful derived duration features, we normal-
ize durations in various ways, using overall statistics for phone,
syllable, and state-level information from all data in the training
set. For some tasks, we also normalize durations based on local
speaking rate and/or duration habits of the particular speaker.
For tasks in speaker recognition, we use patterns of unnormal-
ized and word- or phone-specific durations, to a level of detail
that includes state (sub-phone) units.

For additional prosodic features we performprosodic fea-
ture processingdirectly on the speech signal. From this we
obtain F0, voicing, energy, and spectral tilt information. Also
in this step, we apply some useful smoothing and fitting tech-
niques. For example, F0-based features benefit greatly from a
post-processing stage that fits linear splines to the raw F0 esti-
mates and models octave errors [16]. We also fit a log-normal
tied-mixture model of pitch to a speaker’s overall data to obtain
estimates of the speaker’s F0 baseline, which we have found
useful for pitch range normalizations [16, 15].

Derived pitch and energy features are then designed for
each task. These includelocal estimates of pitch range(e.g.,
average or maximum speaker-normalized pitch near a word
boundary [for sentence boundaries] or over an utterance [for
emotion or hot spots]);local estimates of pitch contour type and
magnitude(e.g., falling before a word boundary [for sentences]
or rising at the end of an utterance [for dialog acts]), andoverall
pitch variation patternssuch as contour type and variation over
a conversation [for speaker recognition]. Similar features are
also computed for energy patterns.

Finally, for some tasks we also make use ofother features
or knowledge sources that interact in interesting ways with our
prosodic features. For example, in work on detecting frustra-
tion in a corpus of speakers talking with a computer system, it
was clear that utterances involving a repeated request (i.e. af-
ter a previous machine misunderstanding) were more likely to
be frustrated than those involving a new request or response.
Thus, a feature capturing “repeat attempts” was also modeled
in the prosodic classifier.

2.5. Model integration

As indicated in Figure 1, the prosodic model is combined
with various other knowledge sources. We minimally combine
prosody with information from the language model. For speaker
recognition, we include frame-based acoustic features; for emo-
tion classification, as just noted above, we include information
from the discourse context. More details on integration as it
pertains to specific tasks is provided in Section 3.

2.6. Coping with classifier greediness and skewed data

Decision trees have two main problems, which we have tried
to address. First, to help overcome the problem of greediness,
we wrap a feature subset selection algorithm around the stan-
dard tree growing algorithm, thereby often finding better classi-
fiers by eliminating detrimental features up front from consid-
eration by the tree [15]. Second, to make the trees sensitive to

prosodic features in the case of highly skewed class sizes, we
train on a resampled version of the target distribution in which
all classes have equal prior probabilities. This approach has ad-
ditional benefits. It allows prosodic classifiers to be compared
(both qualitatively and quantitatively) across different corpora
and tasks. In addition, classifiers based on uniform prior distri-
butions are well suited for integration with language models, as
described further in the next section.

3. Applications
Having provided a brief overview of the key ideas in our ap-
proach to computational prosody, we now summarize some
sample applications of the framework.

3.1. Structural tagging

Automatic speech recognizers typically output only a stream of
words, which lacks the punctuation, capitalization, and format-
ting that help to convey structure in written text. In structural
tagging, the task is to annotate this simple word stream with ba-
sic information related to phrasing, including information on the
boundaries of sentence units and larger units such as paragraphs
or topics, as well as finding local interruptions of structure in-
cluding disfluencies. In written language, such phenomena are
conveyed via punctuation or formatting. In structural tasks, the
events of interest occur at candidate locations that correspond
either to specific words or word sequences (as in filled pauses
or discourse markers used as fillers), or to inter-word boundaries
(as in sentence or topic boundaries, and also as in the interrup-
tion point of disfluencies). Prosodic cues are well understood to
mark both major phrase boundaries and disfluencies in English,
as well as in other languages. Although it is often difficult to
find clear prosodic marking of structure in spontaneous speech,
stochastic models of prosody, especially when combined with
lexical information, do show promise for these tasks.

3.1.1. Modeling

The tasks of sentence segmentation, topic segmentation and
disfluency detection can all be cast as word-boundary classi-
fication tasks. That is, each location between words is to be
classified as a sentence end, topic change, or disfluent inter-
ruption point, respectively, versus an unmarked word boundary.
For prosodic modeling purposes, each word boundary is repre-
sented by a vector of features describing the location of interest.
The prosodic classifier then estimates the probabilityP (CjF )
of the boundary typeC given that feature vectorF . For reasons
given earlier we use decision tree classifiers for these tasks.

As one would expect, it is important to combine prosodic
cues with information from other knowledge sources. The lex-
ical context, in particular, can convey useful information about
the type of word boundary. For example, it is much more
likely that a sentence boundary precedes the word “the” than
follows it. We model the interaction between words and bound-
ary classes (sentence boundaries, topic boundaries, and inter-
ruption points) using N-gram language models. These are sta-
tistical models that estimate the probability of a sequence of
tokensP (t1t2 : : : tn) based on the cooccurrence statistics of up
to N consecutive tokens. In our case, the token stream con-
sists of both words and markers for the boundaries of interest.
Thus the language model models the cooccurrence of words and
boundary types.

Prosodic and word-level knowledge sources can be com-
bined by manipulating probabilities from the language model



and the decision tree. We useC to denote the classes of all
boundaries in a stretch of speech,W to denote the correspond-
ing word sequence, andF to denote the corresponding prosodic
features. Our goal is to obtain a model for the combination of all
three elementsP (W;F;C), and then to choose the sequence of
boundary classifications that have the highest probability given
the observed words and prosody:

argmax
C

P (CjW;F ) = argmax
C

P (W;F;C) :

The combined model forP (W;F;C) is constructed as follows:

P (W;F;C) = P (W;C)P (F jW;C)

� P (W;C)P (F jC)

= P (W;C)P (CjF )P (F )=P (C)

The second line is an approximation; it makes the simplify-
ing assumption that the prosodic features of a boundary depend
only on the boundary class, not on the words. Of course this
assumption is not always true. The phonetic makeup of specific
words can be correlated directly with prosodic differences that
are difficult to normalize for. Furthermore, there are certain in-
direct relationships between words and prosody; for example,
utterance boundaries are frequently found after backchannels
like “yeah” and “uh-huh”, but the prosodic nature of these ut-
terance boundaries differs from boundaries of utterances con-
taining semantic content. Despite these cases, however, it is
often reasonable to make this independence assumption. In the
final step we use Bayes Rule to make use of the decision tree
model, which gives usP (CjF ). If the decision tree was trained
on a resampled training set with equated priors, as suggested in
Section 2.6, then the tree posteriors can be used directly in lieu
of P (F jC), since the quantities differ only by a constant factor
that is independent ofC.

A last consideration in this approach is how to find the set
of boundaries that maximizes the joint probabilityP (W;F;C).
Here we will again gloss over the details, and just mention that
the form of the model described above (especially the fact that
it involves an N-gram language model forP (W;C)) makes it
possible to use efficient search algorithms derived from hidden
Markov models [12].

3.1.2. Selected results

We have examined the contribution of prosody to sentence
boundary detection in a number of different studies. We have
compared a language-model-only approach to an approach that
combines language model and prosodic information, and found
consistently that the latter performs significantly better. For
example, for spontaneous telephone conversations, using true
words for both the language and prosody model, prosody pro-
vided a significant 7% improvement over the language model
alone [15]. The improvement from prosody on this task is
even larger if one looks at read speech. In a study of anchor
speech in news broadcasts, we found that the prosodic model
alone outperformed the language model, despite the fact that
the language model was trained on more than an order of mag-
nitude more data than the prosody model. By combining mod-
els, we obtained an additional 19% relative error reduction for
true words and 8.5% for recognized words over the prosody
model alone [15]. We have also found improvements for sen-
tence boundary detection from prosody for data from natural
meetings. In this case, despite the speech being spontaneous,
prosody alone significantly outperformed the language model

alone for the case of recognized words. And again, a further
win was obtained by combining the prosodic and lexical mod-
els [2]. These results have generally shown a large reliance
(as expected) on pause durations, but also the use of durational
lengthening and pitch information.

The studies just mentioned have assumed an offline task,
which means that prosodic features can be measured both be-
fore and after potential boundary locations. In related work,
we have also asked whether prosody could be used in anonline
application—to find the ends of utterances to a spoken dialog
system, in real time. Currently such “endpointing” is done by
waiting for a silence of some fixed threshold duration. This
standard approach causes needless waiting time for users at real
utterance ends. It also results in premature cutoffs (and angry
users!) when speakers pause due to hesitation and expect the
system to know (as a human does) that the utterance is not yet
finished. We found that the prosody of speechbeforepauses
is quite helpful in distinguishing final from hesitation pauses.
For example, if the rate of premature cutoffs is held constant,
prosody modeling allows for an up to 81% reduction in the av-
erage user waiting time [7].

In addition to sentence boundaries, we have found prosody
to be helpful in detecting larger-level structures such as topic
boundaries in news speech [15]. We have also found it to aid
in finding points at which speakers become disfluent [10]. In
the case of disfluencies, prosody could be particularly useful
for finding disfluency types like false starts, which (unlike filled
pauses and repetitions) are difficult to detect using lexical infor-
mation alone.

3.2. Pragmatic and paralinguistic tagging

In English, and in human languages in general, it is well known
that discourse-level, pragmatic and paralinguistic information
can be conveyed through prosody. For example, for English
it is often said that certain types of questions, such as yes-no
questions, are marked with rising intonation. In studies of emo-
tion, variation in a speaker’s arousal level and along a positive-
negative dimension is associated with prosodic features such as
pitch. In spontaneous human-human speech, both dialog act
classification and emotion classification are not as straightfor-
ward as in restricted or acted domains. For example, in natural
conversation, many questions do not have rising intonation, and
conversely rising intonation is often used on nonquestions (the
notorious “valley girl” intonation that has insidiously crept into
a much broader usage).

3.2.1. Modeling

In dialog act tagging, the goal is to classify each utterance as
one of a number of dialog act types. The unit of classification
is thus a whole utterance. Accordingly, prosodic features are
extracted at the utterance level, and a decision tree is trained to
computeP (CjF ), whereC is the dialog act label andF are the
prosodic features of the utterance.

Again we have to consider how to combine the prosodic
model with other non-prosodic knowledge sources. In dialog
act tagging there are two additional types of knowledge that
can be modeled. First, the words in an utterance can provide
valuable information. We can capture lexical cues with N-gram
language models that are specific to each dialog act type. For
each dialog act classC, a model is trained to estimateP (W jC),
whereW are the words in the utterance. By assuming that the
words across different utterances are independent once the dia-
log act types are given (not a valid assumption, but workable



in practice) we can use these language models to model the
whole conversation (i.e., letW now denote the word sequence
andC the sequence of dialog act labels for the entire conver-
sation). The second additional knowledge source comes from
constraints on how dialog acts typically follow each other; e.g.,
a question is more often followed by a statement than by an-
other question. Such constraints can also be modeled with lan-
guage models, except that the tokens in question are now dialog
act labels instead of words. This is sometimes called adialog
grammar, and can conveniently be modeled using N-grams as
well. The dialog grammar estimatesP (C), the prior probability
of a dialog actsequence.

Again we search for the class (dialog act) assignment that
maximizes the posterior probability given the observed words
and prosody:

argmax
C

P (CjF;W ) = argmax
C

P (W;F;C)

The joint probability of words, prosody, and dialog acts is ob-
tained by decomposition into the models mentioned earlier:

P (W;F;C) = P (C)P (W jC)P (F jW;C)

� P (C)P (W jC)P (F jC)

In this case we make the simplifying assumption that the
prosodic features are independent of the words once the dia-
log act class is given. As before, the probability ofP (F jC) can
be derived from the decision tree estimateP (CjF ) by apply-
ing Bayes Rule. Emotion tagging can be thought of as a special
case of dialog act tagging, although we typically simplify the
framework in this case by not modeling the sequence of emo-
tions themselves.

3.2.2. Selected results

In the case of dialog act classification, although we have found
prosody to be of some help for overall classification [17], it
tends to be most helpful for specific class distinctions. One such
example, as might be expected, is the difference between state-
ments and questions. In a study of telephone conversations we
found that prosodic features, particularly F0, performed better
than recognized words alone, and combining the two knowl-
edge sources yielded at further 16% relative reduction in er-
ror [13]. We found a similar benefit in distinguishing questions
from statements in a corpus in which two speakers collaborated
on a simulated military exercise via a video display. In this case,
we also investigated the use of unsupervised methods for train-
ing models, since we had only limited hand-labeled data. We
found that the combined use of prosodic information and unsu-
pervised labeling reduced our tagging error rate by up to 16%,
compared to baseline systems using only word information and
labeled data [19].

Other distinctions for which prosody is useful involve short
responses like “yeah”, “right”, and “uh-huh”, which can serve
a variety of different pragmatic functions. For example in the
corpus of telephone speech, prosody aided the discrimination
of explicit agreements from simple backchannel responses by
(yes, yet again) 16% over words alone [13]. In data from multi-
party meetings, we looked at differences between four dialog
acts types: backchannels, agreements, acknowledgments, and
floor-grabbers—all of which can be performed using similar
words. Interestingly, by looking at two-way comparisons, we
found that quite different prosodic features cue the different dis-
tinctions [3].

A second type of utterance-level task for which we have
found prosody to be useful is emotion classification. We fo-
cused on user frustration in a study of telephone speech to an au-
tomatic air travel planning system. Results showed that words
alone were poor predictors of emotion in this domain. This is
probably because users had to stay within the task vocabulary,
and many utterances like “no” could be used in a variety of
contexts. Compared with a lexical-only model, classification
error was reduced by roughly 14% relative for a prosody model
alone, and by roughly 27% relative using prosody model that
included a “repeated-attempt” feature in the decision tree build-
ing [1]. In related work, we have begun to look at locations we
refer to as “hot spots”, or points of high participant “involve-
ment” in data from multi-party meetings. We have found that
automatically extracted pitch and energy features show signif-
icant correlations with involvement level—a finding that could
aid applications such as automatic browsing or summarization
[21].

3.3. Speaker Recognition

A common task in speaker recognition is verification: deter-
mining whether a speech sample comes from a known tar-
get speaker, or from someone else (possibly an intentional im-
poster). Many commercial systems use verification for user ac-
cess purposes. Other applications include methods for search-
ing large archives of conversational audio data to find voice
data from speakers of interest to intelligence or law enforce-
ment agencies.

Conventional speaker recognition systems use distributions
of spectral cues from very short and essentially unordered
time slices of speech. For applications in which more than
a few seconds of speech are available to train and to test a
system—such as the tasks involving flagging of large databases
of conversations—we and others have recently proposed that
longer-term features such as prosodic cues could provide addi-
tional speaker-specific information.

3.3.1. Modeling

The standard decision paradigm for speaker verification is to
evaluate the observed speech featuresF against two models:
one model for the target speakerP (F jtarget), and another
model for the likelihood that the features could have been gen-
erated from a generic speaker:P (F jgeneric). The latter model
is called abackground model. The two models likelihoods are
then compared. If their ratioP (F jtarget)=P (F jgeneric) ex-
ceeds a threshold, the system accepts the speech sample as com-
ing from the target speaker. The choice of threshold is flexible:
by raising it the system can lower the probability of false accep-
tance, at the expense of frequent rejections of the true speakers.
Conversely, a low threshold minimizes the chance of false re-
jections, but also incurs more false acceptances. The quality of
a system is therefore often summarized by theequal error rate
(EER), the point at which false acceptances and rejections occur
with equal frequency.

For various reasons the target speaker models are not
trained from scratch, but rather byadapting the background
models. This involves starting with the background model
and then adjusting its parameters to better represent the tar-
get speaker, but without “forgetting” the statistics of the back-
ground speaker population (which typically involves hundreds
or thousands of speakers). One important result of this proce-
dure is that the likelihoods of the background and target models
are numerically comparable over a wide range of possible ob-



served speech samples, which allows for a meaningful compar-
ison against a single threshold.

The need to estimate likelihoods and adapt models makes
GMMs a convenient tool. We extract real-valued feature vectors
for each speaker. These features can be extracted at the level of
the speaker, utterances, words, or whatever unit of speech is
convenient or natural for a given feature. In the case of multiple
samples per speaker (such as when the features are word-based)
the sample likelihoods are simply multiplied to form an over-
all score. This implies an assumption that the observations are
independent, which is not true, but which seems to be a viable
approximation in practice.

Features are extracted for the background training corpus,
and a background GMM is estimated. For each target speaker,
the background model is adapted to form a target speaker
model. On a given test speaker the ratio of the two model like-
lihoods is formed. To find the EER, all possible threshold val-
ues are checked to locate the setting that equates false accep-
tances and false rejections. As with other tasks, one usually
wants to combine prosodic knowledge with other, more stan-
dard knowledge sources. In this case the likelihood ratios for
different speaker features are combined using several standard
techniques. For example a linear combination of the log likeli-
hood ratios (with empirically optimized weights) is commonly
used, or a non-linear combination via a neural network.

3.3.2. Selected results

We have studied the use of long-range prosodic features through
participation in the NIST 2003 Speaker Recognition Evalua-
tion extended data task [11]. We evaluated the contribution of
prosody by comparing it to our best nonprosodic system, which
consists of a state-of-the-art frame-based cepstral system com-
bined with a system based on lexical N-grams (after [5]). The
EER for this combined system is 0.57%.

One prosodic feature type we have found to be extremely
useful is duration, particularly when duration is constrained by
segmental information. We create three different systems: a
word-based system (sequence of phone durations in specific
words), a single-component phone-based system (durations of
phones themselves, regardless of location), and a 3-component
phone-based system (sequence of durations of the states within
the phones). These vectors are then modeled by GMMs. By
combining these duration systems with each other and then with
the baseline+lexical system above, we reduce the EER from
0.57% to 0.29%—a nearly 50% relative reduction in error [6, 9].

We have also begun exploring a range of other prosodic
features, which we refer to as “NERFs” (for New Extraction
Region Features). These features are delimited not by con-
ventional units such as frames, words, or phones, but rather
by the presence of various automatically detectable events that
we hope may correspond to meaningful units in some way.
Within each new extraction region, a vector of different fea-
tures is defined and then modeled using GMMs. For example,
we have found that features such as maximum stylized pitch and
maximum phone-normalized duration are useful when extracted
from a region delimited by pauses larger than 500 milliseconds.
Using a system based on features in this “pause-to-pause” re-
gion, we can reduce the baseline EER by about 15%, an en-
couraging preliminary result especially given the low density of
NERFs compared with features modeled by other systems [9].

3.4. Word recognition

The applications discussed so far have all aimed to add some
type of tagged information (e.g., sentence boundaries, dialog
acts, emotion, speaker information) to the output of an auto-
matic speech recognizer. We conclude this paper by taking a
look at word recognition itself. There are two ways in which
prosody could be used to improve word recognition. The first
way is develop models that capture prosodic information about
words themselves. There has been some successful work in
this area for spontaneous speech, involving duration patterns,
which is discussed below. The second way to potentially im-
prove word recognition through prosody is to apply prosody to
tasks such as the structural and other tasks described earlier, and
then use the matches between acoustics and tags, and tags and
words, to help determine the most likely word sequence.

3.4.1. Modeling

The goal in word recognition is to find the word stringW that
has the highest posterior probability given a set of acoustic
observationsX. Using Bayes Rule, this is usually expressed
as maximizing the product of a prior word string probability
P (W ) (the recognizer language model) and an acoustic likeli-
hoodP (XjW ) (the recognizer acoustic model).

Some researchers have built a more detailed version of both
acoustic and language models by replacing the word labels with
a vocabulary that distinguishes phonological prosodic events,
such as stress and boundary tones. For example, in the work by
Chen et al. [4], each word comes in different versions depending
on whether or not it is stressed, and whether or not it precedes
a prosodic phrase boundary. Let us denote these prosodic la-
bels withL. The acoustic model can now be conditioned on
the prosodic events,P (XjW;L), allowing it to capture how
stress and phrasing affect the spectral properties of the speech
signal. The new language modelP (W;L) is also potentially
more accurate, since words with different prosodic characteris-
tic might well have different cooccurrence statistics with sur-
rounding words. A fringe benefit of this approach is that the
recognizer outputs not just words, but also prosodic tags. I.e., it
finds

argmax
W;L

P (W;LjX) = argmax
W;L

P (W;L)P (XjW;L)

The biggest drawback to such an approach, as noted earlier for
approaches involving intermediate categories, is that it requires
training data that is labeled for the prosodic distinctions used by
the models. Given that state-of-the-art recognizers use hundreds
or even thousands of hours of training data, and that prosodic la-
beling is notoriously difficult, this is a significant limitation. It
is however possible that automatic prosodic labeling will be-
come accurate enough at some point to support this approach
on a larger scale.

Our work on leveraging prosody in word recognition in-
volves using features and events that can be directly extracted
from the recognizer output or that are a by-product of recogni-
tion. This involves defining a prosodic observation streamF
in addition to the standard spectral featuresX. The goal of the
recognizer then becomes

argmax
W

P (W jX;F )

= argmax
W

P (W )P (X;F jW )

= argmax
W

P (W )P (F jW )P (XjW;F )



The new model componentP (F jW ) captures the dependence
of prosodic observations on the hypothesized words. Gadde [8]
describes one instantiation of this approach, in which phone du-
rations (normalized for rate-of-speech) in each word serve as
the featuresF , andP (F jW ) is estimated by GMMs. Vergyri
et al. [20] extend this approach by also modeling the pauses
(and their lengths) between words.

Of course the first approach (adding prosodic labels to the
vocabulary) can be combined with the second (adding prosodic
features as observations). In fact, [4] employ their stress and
phrase-conditioned models together with a frame-level F0 fea-
ture in the acoustic modelP (X;F jW;L), whereF is the F0
feature.

Yet another variant employs a standard vocabulary and
acoustic model (thereby avoiding the need to label large
amounts of training data prosodically), but models the effect
that linguistic structures beyond the words have on the directly
extracted prosodic featuresF . We letS denote the linguistic
structure: for example, the location of sentence boundaries, or
syntactic parses. We can model the effect that this structure has
on prosody, via a modelP (F jS;W ). We also need to character-
ize how the structures “go along” with different words strings,
i.e., a model forP (SjW ). Because these model components
are separate from the standard acoustic and language models
they can be trained on smaller amounts of data, or on data that
has been automatically annotated for the structuresS. Once all
these components are in place they can be used as follows:

argmax
W

P (W jX;F )

= argmax
W

P (W )P (X;F jW )

= argmax
W

P (W )P (XjW;F )P (F jW )

= argmax
W

P (W )P (XjW )

X

S

P (F jS;W )P (SjW )

The last line implies that we do not try to extract the single best
structure hypothesis for a given word hypothesis, but instead
sum over all possible structures. This leads to more accurate
overall results and helps to mitigate possible deficiencies in the
modelsP (F jS;W ) andP (SjW ). We have explored this last
approach successfully by considering sentence boundaries and
disfluent interruption points as the structural elements underly-
ing the words [18]. This allowed us to reuse prosodic models
previously used for sentence segmentation and disfluency de-
tection for the model componentP (F jS;W ). Similarly, the
N-gram language models used in those tasks can be employed
to estimateP (SjW ).

3.4.2. Selected results

As reported in [20], the explicit phone duration modeling with
GMMs and pause duration prediction with language models
reduced the word error rate on a conversational recognition
speech task by 2.1% relative. The modeling of hidden sentence
boundaries and disfluencies provided a 1.7% relative error re-
duction. When both techniques are combined, they reduce error
by 3.1%. This shows that, as expected, the two models are not
completely orthogonal, since they both model related pause and
duration aspects. Although the improvement on spontaneous
speech is relatively small, it is still highly significant.

4. Conclusions
We have briefly outlined an overall approach for direct model-
ing of prosody for various speech technology applications. The
approach extracts features from the speech signal and from the
associated output of an automatic speech recognizer, and mod-
els those features using either decision trees or Gaussian mix-
tures. Information from the prosodic model is further combined
with information from lexical features (and, in some cases, ad-
ditional knowledge sources) to predict the target classes of in-
terest.

The approach is completely automatic and has proven suc-
cessful when applied to spontaneous speech data for a range
of applications, including structural tagging, pragmatic and
paralinguistic tagging, speaker tagging, and word recognition.
While the overall framework is common across tasks, details
of the features, modeling, and integration are task-dependent.
In particular, different tasks require different prosodic feature
types and different regions from which to extract and define the
features. Tasks also differ in terms of the relative contribution
of prosodic versus lexical features to overall performance.

In conclusion, we would like to emphasize that this brief
overview has provided only a small sample of work in this new
and interesting area. We hope that in the long term, further
work on automatic prosody modeling in the greater research
community will help to make speech technology become just a
little bit more “human”.
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