Read-Once Threshold Formulas,
Justifying Assignments,
and Generic Tranformations

Nader H. Bshouty!
Thomas R. Hancock?
Lisa Hellerstein?®
Marek Karpinski*

TR-92-020

March, 1992

Abstract

We present a membership query (i.e. interpolation) algorithm for exactly
identifying the class of read-once formulas over the basis of boolean threshold
functions. Using a generic transformation from [Angluin, Hellerstein, Karpin-
ski 89], this gives an algorithm using membership and equivalence queries for
exactly identifying the class of read-once formulas over the basis of boolean
threshold functions and negation. We also present a a series of generic trans-
formations that can be used to convert an algorithm in one learning model
into an algorithm in a different model.

!Department of Computer Science, The University of Calgary, Calgary, Alberta, Canada
T2N 1N4. This research was supported in Part by the NSERC of Canada.

?Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138. Supported by
ONR grant N00014-85-K-0445.

3Department of EECS, Northwestern University, Evanston, IL 60208-3118. Supported in part
by a grant from the Siemens Corporation and ONR grant N00014-85-K-0445. Portions of this
research were done while the author was visiting the Dept. of Computer Science, University of
Bonn, the University of California at Santa Cruz, and the Massachussetts Institute of Technology.

4Dept. of Computer Science, University of Bonn, 5300 Bonn 1, and the International Com-
puter Science Institute, Berkeley, California. Supported in part by Leibniz Center for Research in
Computer Science, by the DFG, Grant KA 673/4-1 and by the SERC Grant GR-E 68297.

1 Introduction

The technical content of this paper can be divided into two parts. In the first
part, we present query algorithms for learning read-once formulas over the basis
of boolean threshold functions and negation. In the second, we present a series of
generic transformations that can be used to convert an algorithm in one learning
model (the base model) into an algorithm in a different model (the target model).
Such transformations can be regarded as reductions, in that they reduce the problem
of designing an algorithm in one learning model, into the problem of designing an

algorithm in another learning model.

The results in this paper generalize the work of Angluin, Hellerstein, and Karpin-
ski on learning read-once formulas [AHK 89]. A read-once formula is a boolean for-
mula over the basis (AND,OR,NOT) that contains at most one occurrence of each
variable. Angluin, Hellerstein, and Karpinski gave a polynomial time membership
query algorithm for exactly identifying (i.e. interpolating) the class of monotone
read-once formulas, where the basis is just (AND,OR). Then they applied a generic
transformation to produce a polynomial time membership and equivalence query al-
gorithm for the non-monotone case. It is easily shown that there is no membership

query only algorithm for the non-monotone case.

We generalize the monotone [AHK 89] algorithm by presenting a polynomial time
membership query algorithm to exactly identify read-once formulas over the basis
of boolean threshold functions (a superset of the basis (AND,OR)). The [AHK 89]
transformation then implies a membership and equivalence query algorithm to iden-

tify read-once formulas over the basis of boolean threshold and negation.

The class of read-once formulas over the basis of boolean threshold and negation

was previous studied by Heiman, Newman, and Wigderson [HNW 90] . They proved
that each non-degenerate read-once formula over this basis expresses a unique func-
tion (this result follows implicitly from our learning algorithm), and proved bounds

on the size of randomized decision trees computing such functions.

The second part of this paper demonstrates a more extensive set of generic
transformations. As in the [AHK 89] transformation, in these transformations we
assume the technical condition that the classes being learned are projection closed.
In our transformations, either the base or target model has the property that the
learning algorithm (in addition to being able to ask queries) is given as input a set
of “justifying assignments” for the relevant variables. A justifying assignment for a
variable = in a formula f is an assignment in which flipping the value of z would
change the output of f. We say that algorithms in such models “use justifying
assignments” (meaning that they receive them as input) just as we say that they
use certain types of queries. Many of the transformations convert algorithms in
models that use justifying assignments into algorithms in models that do not, and

thus can be useful in some cases for simplifying the process of algorithm design.

Our interest in these transformations began with an alternative membership
and equivalence query algorithm for identifying read-once formulas over the basis of
threshold functions and negations [Han 90]. This algorithm is qualitatively different
from the one described in the first part of this paper, but achieves the same bounds.
The algorithm was initially designed in the membership and justifying assignments
model, and then a generic transformation was applied (MJ—ME, described below)
to produce an algorithm in the membership and equivalence query model. This
technique does not immediately imply an interpolation result (membership queries
only) for the monotone case. However, we were able to derive such an interpolation

result by demonstrating another generic transformation (MJ(U)— M(M), described

below) that converts a membership query and justifying assignment algorithm for
learning a unate class into a membership query only interpolation algorithm for the
corresponding monotone class. Unfortunately, the resulting algorithm is a factor of
n less efficient than the membership query only interpolation algorithm presented

in this paper (hence our decision not to present it here).

The transformations in this paper have also been used in designing algorithms

for learning read-once formulas over other bases [HH 91], [BHH 91a], [BHH 91b].

We note that for some classes of formulas (including the restricted classes of
read-once formulas discussed in [GKS 90a], and the arithmetic read-once formulas
discussed in [BHH 91a]), justifying assignments can be generated with high proba-
bility using random membership queries. For such classes, it is trivial to transform
a learning algorithm using membership queries and justifying assignments into an
algorithm that interpolates (with high probability) using deterministic and random

membership queries.

The first transformation we present is a very simple one that we call
M(M)—MJ(U), which converts a membership query algorithm for learning a mono-
tone class into a membership query and justifying assignments algorithm for learning
the corresponding unate class (This transformation is almost identical to one pre-
sented in [AHK 89]. We present it here for completeness). We then present a
second transformation, MJ—ME which converts an algorithm for learning a class
of formulas in the membership and justifying assignments model, into an algorithm
for learning the same class of formulas in the membership and equivalence query

model.

The main transformation presented in [AHK 89] is M(M)—ME(U) (Membership

query algorithm for monotone class — Membership and equivalence query algorithm

4

for unate class). By combining the M(M)—MJ(U) transformation with the MJ—ME
transformation, we get an M(M)—ME(U) transformation which is slightly different
from the one presented in [AHK 89]. As in [AHK 89], we also show that these
transformations can be modified to include equivalence queries in the base and

target models of the transformation (i.e. we argue that transformations of the form

ME(M)—MJE(U), MJE—=ME, and hence ME(M)—ME(U) all exist).

We then present the transformation MJ(U)—M(M), which is the reverse of the
first transformation. This is also shown to hold when equivalence queries are allowed,

so MJE(U)—ME(M) also exists.

In contrast, we show that the reverse of the ME—MJ transformation does not
exist in general. We present a class of formulas that can be learned in the model
of membership and equivalence queries but not in the model of membership queries

and justifying assignments.

Some of the results in this paper appeared in a preliminary form in [HK 91],

[Han 90], and [HH 91].

2 Basic Definitions

Let V,, denote the set {X;, X5, ..., X,,}. An assignment A to V,, can be denoted by
giving the vector [A(X7),..., A(X,)], where A(X;) is the value assigned to X; by A.

We say that a formula f is defined on the variable set V, if the variables in f
are a subset of V. If A is an assignment to the variables in V,, and [is defined
on V,,, then we denote by f(A) the output of the formula f when its inputs are set

according to the assignment A.

If V' is any subset of V,,, 1y+ denotes the vector that assigns 1 to every element

of V' and 0 to every element of V,, — V',

For X € V,, let Ax_\ denote the assignment B such that B(Y) = A(Y) for
all Y € V, — {X}, and B(X) = k. Let A_x denote the assignment B such that
B(Y)=A(Y) forall Y € V, — {X}, and B(X) = -A(X).

If f is defined on V,,, A is an assignment to V,,, X € V,, and f(A) # f(A-x),
then A is justifying for X in f.

Let V! C V,,. We say that a formula f depends on the variables in V' if for every

X € V', there is a justifying assignment for X in f.

A partial assignment P to V,, can be denoted by a vector [P(X71),..., P(X,)]
where each P(X;) € {0,1,*}. We say that a variable X; in V,, is assigned by P if
P(X;) # =. If Ais an assignment to V,,, and P is a partial assignment to V,,, then
we denote by P/A the assignment C to V such that C'(X;) = P(X;) for all X; such
that P(X;) # *, and C(X;) = A(X,) for all X, such that P(X;) = .

If a formula f is defined on V,, then each partial assignment P to V, induces
a projection fp of f which is the formula obtained from f by replacing by the

appropriate constants those variables in f to which P assigns a value.

Let T'h}" denote the boolean function on m variables which has the value 1 if at
least k of the m variables are set to 1, and which has the value 0 otherwise. The
boolean threshold functions are functions of the form T'A7*. Note that T'hT* computes
the OR of m variables, and T'h]" computes the AND of m variables. Thus the
boolean threshold basis includes the basis (AND,OR).

A boolean formula is monotone if all of its gates compute monotone functions. A

boolean formula is unate if all negations in the formula occur next to the variables,

6

all (other) gates in the formula compute monotone functions, and for every variable
z in the formula, either x always occurs with a negation, or it always occurs without

a negation.

If f is any monotone boolean formula over V, let U(f) denote the class of all
formulas f’ obtained from f by selecting a subset V' of V and replacing every
occurrence of X; in V' by =X,. If M is a class of monotone boolean formulas, let

U(M) denote the union of U(f) for all f € M. All elements of U(M) are unate,
and we call U(M) the unate class corresponding to M.

We define the class of read-once threshold formulas to be the class of read-once
formulas over the basis of boolean threshold functions and negation. The class of
monotone read-once threshold formulas consists of read-once formulas whose gates

all compute functions of the form Th]' (no negations).

Because —Th7(z1,29,...,2m,) = ThT (-xy,-29,..,7&y), it is possible to
rewrite every read-once threshold formula so that all negations occur next to the
variables. Thus every read-once threshold formula is equivalent to a unate read-
once threshold formula. We will therefore assume, without loss of generality, that
all read-once threshold formulas are unate. It follows that the unate class corre-
sponding to the class of monotone read-once threshold formulas is the class of (not

necessarily monotone) read-once threshold formulas.

Let f be a monotone boolean formula defined on V,,. A set of variables S C V,,
is a minterm of f if for every assignment A that assigns 1 to every variable in S we
have f(A) = 1, and this property does not hold for any proper subset S’ of 5. A
set T' C V, of variables is a mazterm of f if for any assignment B that assigns 0 to
all the variables in 7' we have f(B) = 0, and this property does not hold for any
proper subset T” of T.

A formula can be viewed as a rooted tree whose gates are internal nodes labelled
by the function computed by the gate, and whose leaves contain variables or con-
stants. If a formula f is read-once, then for every pair of variables X and Y in f,
there is a unique node farthest from the root that is an ancestor of both X and Y

called their lowest common ancestor, which we write as lca(X,Y).

2.1 Identification with queries and justifying assignments

The learning criterion we consider is ezact tdentification. There is a formula f
called the target formula, which is a member of a class of formulas C' defined over
the variable set V. The goal of the learning algorithm is to halt and output a
formula f from C' that is logically equivalent to f.

In a membership query, the learning algorithm supplies an assignment A to the
variables in V,, as input to a membership oracle, and receives in return the value of
f(A). Note that because fp(A) = f(P/A) it is possible to simulate a membership

oracle for the projection fp using a membership oracle for f.

In an equivalence query, the learning algorithm supplies a formula A from the
class C as input to an equivalence oracle, and the reply of the oracle is either “yes”,
signifying that h is equivalent to f, or a counterezample, which is an assignment B
such that h(B) # f(B). The counterexample can be any such assignment B, and
an algorithm that learns using equivalence queries is expected to perform properly

no matter which counterexamples are produced.

A set of justifying assignments for a formula f contains, for every relevant vari-
able X in f, a pair (X, A) such that A is a justifying assignment for X in f. When

we say that an algorithm uses justifying assignments, we mean that the algorithm

must be given as input a set of justifying assignments for the target function f.

3 Learning Monotone Read-Once Threshold

Formulas

We present an algorithm for exactly learning monotone read-once threshold formulas

in polynomial time using membership queries.

3.1 Findmin

Our algorithm for learning monotone read-once threshold formulas makes repeated
use of the standard greedy procedure for finding minterms of a monotone function
f defined on V,,, using a membership oracle for f. This procedure takes as input a

subset () containing a maxterm of f, and outputs a maxterm contained in ().

3.2 The basic subroutine

Our algorithm for learning monotone read-once threshold formulas using member-
ship queries relies on a basic subroutine called LeaRootT?. LeaRootT/ takes as input
a variable X, a minterm S, and a maxterm T, (of the target formula f) such that
SNT ={X} (in addition to some other properties). It outputs the set of variables
Y in T — {X} such that lca(X,Y) is the root of f. A dual subroutine, LeaRootS’,
finds the set of variables Y in S — { X} such that lca(X,Y) is the root of f.

We defer the presentation of these subroutines to Section 3.5.

3.3 Outline of the Algorithm

In this section we present an outline of the algorithm. We present the full algorithm
in Section 3.6. The algorithm is recursive, and it learns the target formula f depth

first.

We assume without loss of generality that the target formula f contains no
constants in its leaves, and that it is non-degenerate, in that there are no adjacent
AND gates or adjacent OR gates along a root leaf path. Any monotone read-once

threshold formula can be rewritten to satisfy these conditions.

To begin, the algorithm generates a minterm S and a maxterm 7" such that
SNT ={X}. Suppose the root of f computes T'h}* and that the inputs to the root
are the outputs of the subformulas f1, f3,..., fn. Without loss of generality, assume
X is a variable of f;. Because f is read-once, S is composed of minterms of exactly
kof fi, fa,..., fm (including fi). Without loss of generality, assume it is composed
of the minterms of fi, fo,..., fr. T is composed of the maxterms of m — k 4+ 1 of
f1, fay - ooy fn. It is well known that every minterm and maxterm of a formula have
a non-empty intersection. Because S NT = {X}, T' does not contain maxterms of

f2, fas- -+, fr. It follows that 7' contains maxterms of fri1, fra2,..., fm, and of fi.

The algorithm calls LecaRootT! to find the set T" of variables Y in T' — {X}
such that lca(X,Y) is the root of f. This set is the union of the maxterms of
frt1s fos2s---» fm appearing in T'. The algorithm then calls LeaRootS7 to find the
set S’ which is the union of the minterms of fy, fs,..., fr appearing in S. The
projection of f induced by setting the variables in S to 1, and the variables in 7"
to 0, is equal to f;. The algorithm finds f; recursively by simulating calls to the

membership oracle for f; using the oracle for f.

10

The algorithm then finds the subformulas f,, f3, ..., fr as follows. Until all vari-
ables in S — {X} have appeared in some recursively generated subformula, the
algorithm executes the following loop. First it picks some arbitrary Y in S — { X},
such that Y has not yet appeared in a recursively generated subformula of f. Let
"€ {f2 ..., fm} be the subformula containing Y. The algorithm uses the greedy
procedure to generate a maxterm 7Ty such that S N 7Ty = {Y}. It then uses
LeaRootT! and LeaRootS? on S and Ty (as it did with S and T) to find a pro-
jection of f that is equal to f’. As the final step of the loop, the algorithm finds f’
recursively. By counting the number of iterations of this loop, the algorithm learns

the value of &.

In a dual way, the algorithm recursively generates fii1,..., f,, and learns the

value of m — k.

The algorithm ends by outputting the formula Th7*(f1, fa, ..., fm)-

3.4 Lemmas

The algorithm is based on the following lemmas (and their duals).

Lemma 1 For any monotone function g, if S is a minterm of g, and X is a variable
in S, then there exists a mazterm T of g such that TN S = {X}. Dually, if T is a
mazterm, and X is in T, then there exists a minterm S of g such that TNS = {X}.

Proof: A maxterm of ¢ is a minimal set which has a non-empty intersection with
each minterm of ¢g. Consider the set (V,, —S)U{X}. This set intersects S because it

contains X. Every other minterm S’ of S must contain an element not in S — {X},

11

because otherwise S’ is a subset of S. Hence S’ contains a variable in (V,, — S)U{X}.
Therefore (V,, — 5) U {X} intersects every minterm, implying that (V,, — 5) U {X}

must contain a maxterm. The dual is proved analogously. O

Lemma 2 Let f be a monotone read-once threshold formula defined on the variable
set V,,. Let g be a subformula of f, and let Z be the set of variables appearing in
g. Let V' be a subset of V,, such that Z CV'. Let S be the minterm of [output by
Findmin(V'). If SNZ # 0, then SN Z is the minterm of g output by Findmin?(Z).

Proof: Consider the execution of Findmin/(V").

At each iteration of the loop, a variable X; is tested (using a membership query)

to see whether it should be eliminated from 5’.
Assume SN Z # ().

In order to show the lemma, it suffices to show the following two facts.

1. Fmdminf(V’) tests the variables of Z in the same order as Findmin?(Z)

2. For every X; in Z, the output of the membership query in Findmin/(V') that
tests X, is the same as the output of the membership query in Findmin9(Z)
that tests X;.

Fact 1 follows immediately from the definition of Findmin, which specifies that

the variables in the input set are tested in increasing order of their indices.

Fact 2 follows from an observation and a claim. The jth iteration of the loop

in Findmin/(V'), tests whether Xi; should be included in the output minterm S’.

12

The observation is that if X;, ¢ Z, then the value of 5’ N Z at the start of the jth
iteration of the loop is the same as the value of S’ N Z after the iteration. Thus the

value of S’ N Z remains unchanged while Findmin tests variables not in Z.

The claim is that if X; € Z, then f(ls/_{Xi]}) (i.e. the value returned by the
membership query in the jth iteration of the loop) is equal to g(lslnz_{Xl.]}). A

simple inductive argument combining the observation and the claim proves Fact 2.

We now prove the claim. By assumption S N Z # (). Because g is a subformula
of f, f is read-once, and S is a minterm of f, S must contain exactly one minterm
of g. After every iteration of the loop in Findmin/(V'), S’ contains a set which is a
superset of S. S contains a minterm of g, and therefore ¢(1s) = 1. By monotonicity,
g(lg) =1 after every iteration of the loop. If f(ls'—{Xij}) = 1, then Xj; is removed
from S’. Therefore, f(lsl_{Xij}) = 1 implies that g(lsl_{Xl.J}) = 9(15'02—{)(1-]}) =1.

Conversely, suppose g(lslnz_{Xi]}) = 1. Then g(ls/_{Xij}) = 1. The assignment
15’—{X5} is obtained from the assignment 15 by changing the setting of the variable
X;, from 1 to 0. Since g(lgs/) = g(lsf_{Xl.]}) = 1, changing the assignment of X; in
lg: from 1 to 0 does not affect the output of ¢g. The formula f is read-once, and g¢
is a subformula of f, so changing the assignment of X;, in 15 from 1 to 0 does not

affect the output of f either. Therefore f(lsl_{Xi]}) =1.0

Lemma 3 Let f be a monotone read-once threshold formula defined on the variable
set V. Let T be a mazterm of f. Let S be the output of Findmin/(V') for some
VIOV, =T andlet SNT ={X}. IfY € T —{X} and Sy is the minterm output
by Findmin/((V, — T)U{Y}), then

1) Sy — (Sy NS) is a minterm of the subformula rooted at the child of lea(X,Y)

containing Y .

13

2) S —(Sy NS) is a minterm of the subformula rooted at the child of lea(X,Y)

containing X.

Proof: Consider a gate on the path from X to the root. Suppose the gate
computes Th]*. T contains maxterms of exactly m — k 4+ 1 of the m subformulas
whose outputs are inputs to this gate, including the subformula containing X. S
contains a minterm of the subformula containing X, and of the remaining k& — 1

subformulas of which 7" does not contain a maxterm.

Similarly, if we consider a gate on the path from Y to the root computing T'h7",
T will contain maxterms of exactly m — k 4 1 of the m subformulas, including the
subformula containing Y. Sy will contain a minterm of the subformula containing

Y, and of the remaining k£ — 1 subformulas of which 7" does not contain a maxterm.

Let G be a gate which is on the path from lea(X, Y) to the root such that GG is not
equal to lea(X,Y). S and Sy contain minterms of the same subformulas (rooted
at children of (Z). Since T' contains no variables from these subformulas, V' and
(V, = T)U{Y} will include the all variables from such subformulas. By Lemma 2,
S and Sy will contain the same minterms of these subformulas. Similarly, S and Sy
will contain the same minterms of the subformulas rooted at children of lea(X,Y")
that do not contain X or Y, and for which T" does not contain a maxterm. The two

parts of the lemma follow easily from these facts. O

Lemma 4 Let f be a monotone read-once threshold formula defined on the variable
set V. Let T be a mazterm of f. Let S be the output of Findmin/ (V') for some
VIOV, =T and let SNT ={X}. ForallY in T — {X}, let Sy be the minterm
output by Findmin/((V, — T)U {Y'}). If there exists a Y in T — {X} such that

14

SN Sy s empty, then
{YeT —{X}lca(X,Y)=root of f} ={Y € T —{X}| Sy NS =10}
If there is no Y in T'— { X} such that S N Sy is empty, then

{Y e T-{X }lca(X,Y) =root of f} ={Y e T-{X}VZ € 5—(S5yNSI), SUSy—{Z}contains a minterm}.

Proof: There are two cases.

e Case 1: The root of f is an OR.

In this case there is at least one variable Y in T'— { X'} such that leca(X,Y) is
the root. Sy 1s a minterm of the subformula that contains Y and is rooted at

a child of the root of f. It follows that S N Sy = 0.

Now let Y be a member of T'— { X'} such that lca(X,Y') is not the root. Let G
be the gate which is the child of the root, on the path from X to the root. The
gate (7 is also on the path from Y to the root. Since f is a (non-degenerate)
monotone read-once threshold formula, G is not an OR gate. Therefore, there
exists a subformula & rooted at a child of G such that T' does not contain a
maxterm of h. Clearly V" and (V,, —T)U{Y } both contain all the variables of
h. Since SNT = {X}, S must contain minterms of all the subformulas of G
for which 7" does not contain a maxterm, and hence S contains a minterm of
h. Similarly, Sy contains a minterm of A. By Lemma 2, S and Sy will contain

the same minterm of h, and therefore S N Sy is not empty.

e (Case 2: Root of f is not an OR.

15

Suppose the root is Th]' (k # 1). By the same reasoning as in the second part
of Case 1, for all Y in T'— {X}, SN Sy is not empty.

If lea(X,Y) = root, then for all Z in SN Sy, SUSy —{Z} contains a minterm,
because setting S U Sy to 1 forces k + 1 of the subformulas rooted at children
of the root of f to 1.

If lea(X,Y") is not the root, then setting S U Sy to 1 forces exactly k of the
subformulas rooted at children of the root to be 1. By Lemmas 2 and 3, SN Sy
must contain a minterm of some subformula & rooted at a child of the root of
f, such that h does not contain X (or Y'). Let Z be a variable in the minterm
of h contained in S N Sy. Setting S U Sy — {Z} to 1 will force only k — 1 of
the wires into the root to 1, because SUSy — {Z} does not contain a minterm

of h. Therefore S U Sy — {Z} does not contain a minterm of f. O

The duals of the above lemmas also hold.

We present the basic subroutines LcaRootS and LeaRootT', and then we present

the complete algorithm.

3.5 LcaRootT and LcaRootS

LeaRootT takes as input a minterm S, a maxterm 7', and a variable X, such that

SNT ={X}. S is the output of Findmin/(V'), where V' 2 V,, — T

The output of LeaRootT is the set of variables Y in T'— { X'} such that lca(X,Y)

is the root of f.

LeaRootT? (S, T, X)

16

I. forall Y in T — {X} Sy := Findmin!((V, — T)U{Y}).

2. if there exists a Y in 7" — {X} such that S N Sy is empty then re-
turn({Y]| Sy NS =10}).

3. Q:=10

forall Y in T'— {X} do
for all Z in SN Sy do

lf f(lsLJSy—{Z}) = 0 then
Q:=QU{Y}.

4. Output T'—{X} — @
A dual subroutine finds the set of Y in S — { X} such that lca(X,Y") is the root
of f.

3.6 The Algorithm

MROT Learn’

1. §:= Findmz’nf(Vn)

2. Pick an X in S.
T := Findmaz’((V,, — S) U {X})

3. if S =T = {X}, then return(X) (the formula f is equal to X)

4. T':= LeaRootT!(S, T, X)

17

5. 5" := LeaRootS?(S,T, X)

6. (a) k:=1 (counts number of inputs to root of f set to 1 by a minterm of f)
(b) j :=1 (counts number of inputs to root of f set to 0 by a maxterm of f)
(©) Q=8
(d) R:=T"

(e) Let fi be the projection of f induced by setting the variables in S’
to 1, and the variables in 7" to 0. Recursively learn f; by running
M ROT Learn’t, simulating calls to the membership oracle of f; with

calls to the membership oracle of f.
7. while Q # 0 do

(a) Pick an X' in Q.

(b) Tx: = Findmaz?((V, —) U {X'})

(¢c) S := LeaRootS! (S, Tx:, X')

(d) &=k + 1.

(e) @:=QNS"

(f) Let f, be the projection of f induced by setting the variables in S’
to 1, and the variables in 7’ to 0. Recursively learn f; by running

M ROT Learn’*, simulating calls to the membership oracle of f;, with

calls to the membership oracle of f.

8. while R not empty do

(a) Pick an X' in R.

(b) Sx: := Findmin/((V,, — T)U {X'})

18

(c) T':= LeaRootT! (S%, T, X").

(d) j:=37+1.

(e) R:==RNT".

(f) Let fri;—1 be the projection of f induced by setting the variables in
S% NS to 1, and the variables in 77 to 0. Recursively learn fiy;_1 by

running M ROT Learnf*i-1, simulating calls to the membership oracle

of frt;j—1 with calls to the membership oracle of f.

9. Output the formula Thl,zﬂ_l(fl, fa, fay -y fotjo1)

4 Correctness and Complexity

Theorem 1 There is a learning algorithm that exactly identifies any monotone

read-once threshold formula in time O(n®) using O(n®) membership queries.

Proof: Consider the algorithm described in the above sections. The correctness of

the algorithm follows from the four lemmas (and their duals) proved in Section 3.4.

The routines Findmin and Findmax each take time O(n) and make O(n) queries.

The routine LeaRootT makes O(n?) queries and can be implemented to run in time

O(n?) (this includes the calls to Findmin).

The complexity of the main algorithm can be calculated by “charging” the costs
of the steps to the edges and nodes of the target formula f. In each execution of
MROT/, we charge some of the steps to f, and some of the steps to the edges
joining the root to its children. Recursive calls to M ROT/* are charged recursively

to the subformula f;.

19

More specifically, we charge steps 1 - 6(d), step 9, and the checking of the
loop conditions in steps 7 and 8, to the root of f. We recursively charge calls
to M ROT Learn’* in steps 6(e), 7(f), and 8(f) to the subformulas f;. For each
iteration of step 7, we charge steps 7(a) through 7(e) to the edge leading from the
root of f to the root of the subformula fj defined in step 7(f). Similarly, for each
iteration of step 8, we charge steps 8(a) through 8(e) to the edge leading from the
root of f to the root of the subformula fy;;_; defined in step 8(f). Thus at each
execution of M ROTY, we charge time O(n?) to the root of f and O(n?) membership
queries to the root of f. We also charge time O(n?) and O(n?) membership queries

to each of the edges joining the root of f to its children.

The total number of nodes in f is O(n), and the total number of edges is O(n).

Therefore the algorithm takes time O(n?) and makes O(n®) queries. O

Corollary 1.1 There is a learning algorithm that exactly identifies any read-once
threshold formula in time O(n*) using O(n*) membership queries and O(n) equiva-

lence queries.

Proof: The class of read-once threshold formulas is the unate extension of the
class of monotone read-once threshold formulas. The theorem follows directly from
the results of Angluin, Hellerstein and Karpinski [AHK 89], who showed that if a
class M can be learned in time O(rn*) with O(n/) membership queries, then the
corresponding unate class can be learned in time O(n**!) with O(n’*!') membership

queries, and O(n) equivalence queries. O

20

5 Transformations

5.1 M(M)—MI(U)

Let f be a unate formula. Since f is unate, all negations in f appear at the leaves.
If X is a variable in f and X is negated in f (i.e. there is a negation appearing next
to all occurrences of X in f) then we say the sign of X is negative in f. Otherwise,
we say the sign of X is positive. If the sign of X is negative, then (because f is
unate) for all assignments A, f(Ax—o) > f(Ax—1). If the sign of X is positive, then
for all assignments A, f(Ax—o) < f(Ax—1).

Suppose you are given a justifying assignment A for a variable X in f. Because
A is justifying for X, the values of f on Ax.o and Ax.; are distinct. Therefore,
if Ax.o = 1 then the sign of X is negative, and if Ax. o = 0 then the sign of X
is positive. It follows that to find the sign of a variable X in f, given a justifying

assignment A for X in f, it suffices to ask the membership query Ax ..

Given a unate formula f, define a corresponding monotone formula f’ that is
derived from f as follows: for every X; in f that is negative, replace all occurrences
of =X, in f with a new variable Y;. The formula f’ is a monotone formula that
is closely related to f. If we know the signs of the variables in f, it is easy to
simulate a membership oracle for f’ using a membership oracle for f. To answer the
membership query “What is f/(A’)?” using a membership oracle for f, we simply
create an assignment A such that A[X,] = A’[X;] if the sign of X is positive, and
AlY;] = =A'[X;] if the sign of X is negative. Since f'(A") = f(A) to discover f'(A’),

it suffices to query the membership oracle for f on assignment A.

The above observations give a simple method of transforming an algorithm for

21

learning a monotone class of formulas using membership queries into an algorithm
for learning the corresponding unate class using membership queries and justifying
assignments. Let AlgM M be an algorithm for learning a class of monotone formulas
using membership queries. Let S be a set of justifying assignments for the variables
in f. Discover the signs of the variables in f using the justifying assignments in S.
Let f’ be the monotone formula corresponding to f as above. Use AlgMM to learn
f', simulating a membership oracle for f’ using the membership oracle for f. When
AlgMM outputs f (or an equivalent formula), replace each new variable Y; with the

literal =X, yielding a formula equivalent to f. Output this formula.

Note that the transformation can be modified to handle equivalence queries in the
base model, i.e. to show ME(M)—MJE(U). The only difference is that in simulating
the algorithm from the base model to learn f’, we must simulate an equivalence
oracle for f" using the equivalence oracle for f. This can be done simply as follows.
If the question is “Does ¢’ = f'?” (where ¢’ is a formula over the variables on which f
is defined), then we convert ¢’ into a formula ¢ produced by replacing each variable
Y; with the literal —X;, and asking the equivalence oracle for f, "Does g = 7. If
the answer is yes, then we’ve learned f and we halt and output it. If the answer is a
counterexample A, then we continue the simulation by answering no to the question
"Does ¢’ = f'?7” and returning the counterexample A’ such that A'[X;] = A[X|] for
all variables X; with positive signs in f, and A'[Y;] = —=A[X]] for all variables X;

with negative signs in f.

The above transtormations give the following theorem.

Theorem 2 Let M be a monotone class of formulas. If M can be exactly identified
in polynomial time by an algorithm using membership queries then U(M) can be

exactly identified in polynomial time by an algorithm using membership queries and

22

justifying assignments. Furthermore, if M can be exactly identified in polynomial
time by an algorithm using membership and equivalence queries, then U(M) can
be exactly identified in polynomial time by an algorithm using membership queries,

equivalence queries, and justifying assignments.

52 MJ—-ME

Let AlgMJ be an algorithm using membership queries and justifying assignments.
The transformation algorithm, ToOME(AlgMJ), which uses membership and equiva-
lence queries, is based on a loop. At the start of the loop, we have a subset V' of
V., and a projection p assigning values to the variables in V,, — V' and leaving the
variables in V' unassigned. For every X € V', we know a justifying assignment for
X in fp. For the first iteration of the loop, we set V' to empty, and we set p to an

arbitrary assignment to V,,, so fp is constant.

We run AlgMJ to learn fp (simulating a membership oracle for fp with the
membership oracle for f). The output of AlgMJ is a formula ¢ = fp. We ask the
equivalence query “g = f?” (i.e. fp = f7). If the answer is “yes” (which it will be
when V' contains all the relevant variables of f), we are done. If the answer is “no”
the equivalence oracle returns a counterexample A. We call a routine ProjBitFlip
(described below) that returns a new, larger subset V' of V,, a new associated
projection P, and justifying assignments (with respect to fp) for the variables in
the new V'. We then repeat the loop. Termination of ToOME(AlgMJ) is guaranteed

by the fact that at each iteration we increase the size of V'.

ProjBitFlip takes as input V', the projection P, the counterexample A (and
assignment on which fp differs from f), and a set S of justifying assignments for the

variables in V' (the assignments in S are justifying with respect to f and fp). The

23

key processing in ProjBitFlip is a loop to greedily reduce the number of variables

on which A and P differ.

ProjBitFlip(V',P,A, S)

1. Set Bto A. Set W to be the set of variables in V,, —V’ such that B(X) # P(X).

2. While there exists an X € W such that f(B-x) = f(b), set B to B_x and
delete X from W.

3. Let P’ be the projection such that P'(X) = P(X) for all X € V,, — W, and
P'(X) =xforall X € W.

4. Let 8" = SU{(X,B)|X € W}.

5. Output V'UW, P', and S’.

The processing in ProjBitFlip does not change either f(B) or fp(B), so for the
final B those two values still differ. This means B # P/B and therefore W is not

empty. Our new variable set is V' JW, and P’ assigns * to all variables in W.

Assignment B is justifying for those new variables in fp: and in f.

For completeness, we present the transformation algorithm ToME(AlgM.J).

ToME(AlgMJ)

1. Let W =1. Let S = 0.

2. Do forever:

(a) Let P be an arbitrary partial assignment whose defined set is V,, — V.

24

(b) Call the procedure AlgMJ using the justifying assignments S, and sim-
ulating membership queries to the function fp. Let g be the formula

returned.

(c) Make an equivalence query with ¢. If the reply is “yes” then output ¢

and halt, otherwise, let A be the counterexample.

(d) In this case, g(A) = fp(A) # f(A), that is, f(P/A) # f(A). Call
ProjBitFlip(V', P, A, S). Set V', P and S to the values W, P’ and S’
returned by ProjBitFlip.

The techniques in [AHK] show that a modified version of ToME works if the
input algorithm uses equivalence queries as well as membership queries and justifying
assignments. The modification is mainly to step 2b, where we are simulating AlgM.J
to learn fp, even though we only have oracles for f. If AlgMJ asks an equivalence

query "Does g = fp?”, we can do the following:

o Ask the equivalence oracle for f, “Does ¢ = f7”7 If the reply is “yes”, then
halt and output g. Otherwise, the reply is no and a counterexample A. Ask
the membership oracle for f for the value of f(P/A) (which equals fp(A)).
Evaluate g(A). If g(A) # fp(A), then A is a counterexample to the query
asked by AlgMJ "Does ¢ = fp?”, so continue the simulation by returning the
counterexample A. If g(A) = fp(A), then fp(A) # f(A). Discontinue the
simulation, and jump to step 2d (because we already have an assignment A
such that fp(A) # f(A), which is what we need in step 2d to call ProjBitFlip
and expand the set V).

We have the following theorem.

25

Theorem 3 [f C is a projection closed class of formulas such that C can be ezxactly
tdentified in polynomial time by an algorithm using membership queries, equivalence
queries, and justifying assignments, then C can be exactly identified in polynomial

time by an algorithm using membership and equivalence queries.

5.3 ME-—-MJ does not exist

We present a class of formulas for which there exists a polynomial time member-
ship and equivalence query learning algorithm, but for which no polynomial time

membership query and justifying assignment algorithm exists.

Consider the subclass of monotone DNF formulas defined over the variable
set V, = {x1,...,2,} where n = m? consisting of m + 1 terms of the follow-
ing type. The first m terms are 1 Aza A - AZmy Tmat ATma2 A ANZTomy -+,
T(m-1)m+1 A T(m-1)mt2 A+ - - ATn. The last term is made up of all but m variables,

with one variable missing from each of the first m terms. This class is learnable by

the membership and equivalence query algorithm for learning monotone DNF [A 87].

The formulas in this class differ only in their last term, so learning a formula
in this class is equivalent to learning the last term in the formula. Note that for a
given formula in the class, there is exactly one assignment that sets only the last
term to true — the assignment in which all variables in the last term are set to 1,

and all other variables are set to 0. There are m™ possibilities for this last term.

Let AlgMJ be an algorithm for learning this class with membership queries and
justifying assignments. No matter what the target formula, the algorithm could be
given the same set of justifying assignments — the assignment setting z;...x,, to 1

and the other variables to 0 is justifying for the variables z;...x,,, the assignment

26

setting #,,41...T2,; to 1 and the other variables to 0 is justifying for the variables
Tyg1..-Tam and so forth. Suppose AlgMJ is given this set of justifying assignments.
Consider the following adversary strategy. Each time AlgMJ asks a membership
query which sets one of the first (known) m terms to 1, answer 1. Each time AlgMJ
asks a membership query which doesn’t set any of the first (known) m terms to 1,
answer 0. Since for each possible final term of the target formula, there is exactly
one assignment which sets this term to 1 without setting one of the first m terms
to 1, it follows that each time the adversary answers 0 it eliminates at most 1
candidate for the last term of the target formula. Thus to uniquely identify the
last term of the target formula (and learn the target formula) takes at least m™ — 1
membership queries, given this set of justifying assignments. It follows that there is
no polynomial time algorithm for learning this class using membership queries and

justifying assignments.

5.4 MJ(U)=M(M)

To perform this transformation, we need to show how we can generate justifying

assignments for the variables in a monotone class using membership queries.

The transformation is based on the following observation. Suppose f is a mono-
tone formula defined on the variable set V,,. Let V'’ be a subset of the variables
in V,,. Let fp, be the projection setting the variables in V' to 0 and leaving the
variables in V,, — V' unassigned. Let fp, be the projection setting the variables in
V' to 1 and leaving the other variables in V,, — V' unassigned. Suppose there is a
relevant variable X in V,, — V', Let A be a justifying assignment for that variable
such that f(A) = 0. Then, because f is monotone, A(X) = 0 and f(Ax—1) = L.
It also follows from the monotonicity of f that fp(A) = f(FP/A) < f(A) and

27

fr(A) = f(Pi/A) > f(A). Therefore, fp,(A) =0 and fp(A) =1and fp, # fp,. In
summary, if V,, — V contains a relevant variable of f, then fp # fp,. In contrast, it

is clear that if V,, — V does not contain any relevant variables of f, then fp, = fp,.

Let AlgMJU be an algorithm for learning a unate class C’ of formulas using mem-
bership queries and justifying assignments. We present a transformation algorithm
ToMM(AlgMJU) which learns the corresponding monotone class C' of formulas using

only membership queries.

The transformation algorithm is based on a loop. At the start of the loop, we
have a subset V' of V and a set S of justifying assignments for the variables in V' (the
assignments are justifying with respect to f). With V' we associate the projections
fr, and fp,, which are the projections obtained by setting the variables in V' — V'
all to 0 and all to 1, respectively. We check to see whether for all (X, A) in S, A is
also justifying for X in fp and fp,. If this is not the case, then we will expand V'
and S as follows. Note that because A is justifying for X in f, f(Ax—o) = 0 and
f(Ax—1) = 1, and hence by monotonicity fr,(Ax—o) = 0 and fp (Ax—1) = 1. It
follows that if A is not justifying for X in both fp, and fp,, then either fp (Ax.—o) #
TR, (Ax o) or fp(Ax—1) # fr(Ax—1). Suppose that fp (Ax—o) # fp,(Ax—o) (the
other case is similar). Then fp (Ax—o/Po) = fr,(Ax—0) # f(Ax—o/Fy), meaning
that fp, and f differ on assignment Ax.o/Fy. We exploit the assignment Ax. o/ P
(calling ProjBitFlip) to find a justifying assignment (with respect to f) for a variable
Y in V — V', We then add Y to V', add Y and its justifying assignment to S, and
go back to the start of the loop.

When we reach the point where all the assignments in S are justifying for both
fp, and fp,, we run two parallel simulations of AlgMJU with the set S of justi-

fying assignments as input. In one simulation we answer a membership queries

28

by simulating a membership oracle for fp, and in the other simulation we answer
membership queries by simulating a membership oracle for fp,. If the simulations
terminate without ever diverging (doing anything different) then the two simulations
will output the same formula ¢, meaning that ¢ = fp, = fp, = f. In this case we
halt and output g. If the two simulations diverge, then they do so because at some
point the answer to a membership query on an assignment B is answered differently
in the two simulations, and thus fp, (B) # fp,(B), and so fp,(B/Fy) # f(B/F). In
this case we exploit the assignment B/ P, (calling ProjBitFlip) to find a justifying
assignment for a variable Y in V —V’. We then add Y to V', add Y and its justifying

assignment to S, and go back to the start of the loop.

We present the transformed algorithm below.

ToMM(AlgMJU)

1. Let W =1. Let S = 0.

2. Do forever:

(a) Let Py be the partial assignment setting the variables in V' — V' to 0 and
leaving the variables V' unassigned. Let P; be the partial assignment

setting the variables in V' to 1 and leaving the variables in V'’ unassigned.

(b) If there is a pair (X, A) € S such that A is not a justifying assignment
for X in fp,, then call ProjBitFlip(V',P;,Ax—o/Ps, S) and set V' and S

respectively to the values W, and S’ returned.

(c) else if there is a pair (X, A) € S such that A is not a justifying assignment
for X in fp,, then call ProjBitFlip(V',FPy,Ax—1/P1, S) and set V' and S

respectively to the values W and S’ returned.

29

(d) else run two parallel simulations of AlgMJU on input S to learn fp, and
fr,. lf the two simulations diverge on some membership query B then call
ProjBitFlip(V',P1,B/ Py, S) and set V' and S respectively to the values
W and S’ else if the two simulations do not diverge and they both output

the same formula ¢, halt and output g¢.

We can also modify this MJ(U)—=M(M) transformation to include equiva-
lence queries in the base and target models, i.e. to produce the transtformation
MJE(U)—ME(M). The modification is basically the same as that described at the

end of Section 5.2. Thus we have the following theorem.

Theorem 4 Let U(M) be a unate, projection closed class of formulas corresponding
to a monotone class M. If U(M) can be exactly identified in polynomial time by
an algorithm using membership queries, and justifying assignments then M can be
exactly identified in polynomial time by an algorithm using only membership queries.
Furthermore, if U(M) can be exactly identified in polynomial time by an algorithm
using membership queries, equivalence queries, and justifying assignments, then M

can be tdentified in polynomial time using only membership and equivalence queries.

References
[A 87] D. Angluin. Queries and concept learning. In Machine Learning, 2:319-
342, 1987.

[AHK 89] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once for-
mulas with queries. Technical report, Report No. UCB/CSD 89/528,

30

[BHH 91a]

[BHH 91b]

[GKS 90a]

[Han 90]

[HH 91]

[HNW 90]

[HK 91]

Computer Science Division, University of California Berkeley, 1989. To
appear, J. ACM "91.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning
arithmetic read-once formulas; to appear in 24* ACM STOC 1992.

Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning
boolean read-once formulas over extended bases. Manuscript in Prepa-

ration.

Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact
identification of circuits using fixed points of amplification functions. In

Proceedings of the 31st Symposium on Foundations of Computer Science,

1990.

Thomas Hancock. Identifying p-formula decision trees with queries.

Technical report, Harvard University TR-16-90, 1990.

Thomas Hancock and Lisa Hellerstein. Learning read-once formulas over
fields and extended bases. In The 1991 Workshop on Computational
Learning Theory, 1991.

R. Heiman, I. Newman, A. Wigderson, On Read Once Threshold For-
mulas and their Randomized Decision Tree Complexity, In IEEE Symp.
on Structures in Complexity 1990, pp. 78-87.

L. Hellerstein and M. Karpinski. Computational Complexity of Learn-
ing Read-Once Formulas over Different Bases Technical Report, Inter-

national Computer Science Institute TR-91-014, 1991.

31

