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Abstract

The main contribution of this paper is the introduction of a formal notion of public
randomness in the context of cryptography. We show how this notion affects the
definition of the security of a cryptographic primitive and the definition of how much
security is preserved when one cryptographic primitive is reduced to another. Previous
works considered the public random bits as a part of the input, and security was
parameterized in terms of the total length of the input. We parameterize security
solely in terms of the length of the private input, and treat the public random bits as
a separate resource. This separation allows us to independently address the important
issues of how much security is preserved by a reduction and how many public random
bits are used in the reduction.

To exemplify these new definitions, we present reductions from weak one-way
permutations to one-way permutations with strong security preserving properties that
are simpler than previously known reductions.
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1 Introduction

Over the years, randomness has proved to be a powerful algorithmic resource, i.e. random-
ized algorithms that are simpler, or more efficient, or both, than any known deterministic
algorithm have been developed for a variety of problems. Randomness has also proved to
be a powerful resource in the construction of cryptographic primitives based on other prim-
itives, e.g., the randomized reductions from weak one-way functions to one-way functions
and the reductions from one-way functions to pseudo-random generators. The source of
randomness used in these reductions is typically public, in the sense that the random bits
are accessible to all parties enacting the primitive and to any adversary trying to break the
primitive. However, up till now, the distinction between the private part of the input and
the public random bits has been blurred.

The main contributions of this paper are to formally introduce the notion of public
randomness, to introduce appropriate generalizations of the definitions of cryptographic
primitives that use public randomness and, perhaps most importantly, to modify the defini-
tion of what it means to reduce one cryptographic primitive to another by allowing public
randomness to be used in the reduction. In terms of generalizing the definition of crypto-
graphic primitives to include public randomness, the main advantage is that the security
of a primitive can now be parameterized, as it should be, solely in terms of the length of
the private part of the input, and not at all in terms of the public random bits. In terms
of reductions, the main advantage is that we can now separately consider the two issues of
how much security is preserved by the reduction and how much public randomness is used
in the reduction.

As particular examples of how a primitive that uses public randomness can be defined,
we extend the definitions of one-way functions and pseudo-random generators to include
public random bits. Generalizations along the same lines for many other cryptographic
primitives can be made, including those related to public key cryptography.

As particular examples of how the new definitions of reductions using public randomness
work, we provide reductions that use public randomness from weak one-way permutations
to one-way permutations. Following [1], our primary concern is the security preserving
properties of the reduction, i.e., how much of the security of the weak one-way permutation
is transferred to the one-way permutation. However, unlike [1], we consider the security
as a function solely of the length of the private input, which does not include the public
random bits. We show reductions that preserve security in a very strong sense, which is
stronger than that of the reduction due to [1] (under the new definitions). We begin with a
very simple reduction (much simpler than that found in [1]), which uses a large number of
public random bits. Through a sequence of increasingly intricate reductions, we converge
on a reduction that is a slight modification of the reduction due to [1]. Both the reduction
of [1] and our improvement use only a linear number of public random bits.

Another simple reduction from a weak one-way permutation to a one-way permutation
was developed recently and independently by Phillips [2]. Phillips showed that his reduction
preserves security somewhat better than the reduction of [1], when considering the random-
ness as a part of the input. However, our new definitions of security preserving reductions
with public randomness reveal that Phillips” reduction actually preserves security as well
as our reductions, i.e. much better than [1]. Phillips’ reduction uses more public random



bits (O(nlog(n))) than our best reduction.
A full development and details of this work can be found in [3].

2 Definitions

2.1 Basic Notation

If 5 is a set then 5 is the number of elements in 5. Let z and y be bit strings. We let
||z || denote the length of z. We let (z,y) denote the sequence of two strings = followed by
y, and when appropriate we also view this as the concatenation of z and y. When (z,y) is
the input to a function f, we write this as f(z,y). We let z; denote the i*" bit of z. Let
z €40,1}" and let S C {1,...,n}. We let g denote the subsequence of bits in z indexed
by 5, e.g. x(y, ;) denotes the first ¢ bits of z, z(;4, 1 denotes all but the first ¢ bits of
v, and thus = = (g1, T4, 0))-

If  and y are bit strings, each of length [, then z @ y is the vector sum mod 2 (i.e. bit
wise parity) of z and y, i.e. (z @ y); = (¢; + y;) mod 2.

An m x n bit matrix z is indicated by z € {0,1}™*". We write z; ; to refer to the (¢,7)
in z. We can also view z as a sequence = = (z1,...,%,,) of m strings, each of length n,
where z; is the i*" row of the matrix, or as a string € {0, 1} of length mn, which is the
concatenation of the rows of the matrix.

If @ is a number, then |a| is the absolute value of a, [a] is the smallest integer greater
than or equal to «, log(a) is the logarithm base two of . If a number is an input to or an
output of an algorithm, the assumption is that it is presented in binary notation.

In general, we use capital letters to denote random variables and random events. When
S is a set we use the notation X €z 5 to mean that X is a random variable uniformly
distributed in 5, and z €y 5 indicates that z is a fixed element of S chosen uniformly.

2.2 Public Randomness

A source of random bits is public for a primitive if it can be read by all parties enacting the
primitive and by any adversary trying to break the primitive. The public random string is
always chosen uniformly. We use “;” to keep the public random string separated from other
strings in a list of strings, e.g. if y is the value of the public random string and z is the
input to some function f, then we write f(z;y) to indicate the evaluation of f on input z
with respect to y (note that the value of f depends both on the input  and on the public
random string y), and we write (f(z;y); y) to indicate the pair of strings f(z;y) and y.

Although the public random bits are known to an adversary, it turns out that these bits
often plays a crucial role in ensuring that the primitive is secure.

2.3 Security

The security of a primitive quantifies how secure the primitive is against attacks by an
adversary trying to break the primitive. The important question to consider is “What does
the security measure?” Intuitively, the security of a primitive is a measure of the minimal
computational resources needed by any adversary to break the primitive. There are two
natural computational resources we consider; the maximal total time 17" that the adversary



runs and the success probability é of the adversary. Both 1" and ¢ are stated with respect
to a given input instance to the adversary, and their definitions are primitive dependent.
A trivial strategy to increase the success probability 6 is to run the adversary again.
This doubles the running time, but also almost doubles the success probability (especially if
it is low). This motivates us to simplify the analysis by comparing only the ratios between
the success probabilities and the running times of different adversaries. An additional
simplification is to consider the ratio between the success probability é(n) and the maximal
running time 7'(n), both over all private inputs of length n. Without much loss in generality,
we hereafter assume that an adversary A always runs for the same amount of time 7'(n) on
all inputs parameterized by n.
Definition (achievement ratio): The achievement ratio of an adversary A for a primitive
f is defined as % where T'(n) is the running time of A and §(n) is the success probability
of A for f on private inputs of length n.
Definition (breaking adversary and security): An adversary Ais R(n)-breaking for

" of A for [ satisfies T(( )) > Ry(n) for infinitely

n)
n))-secure if there is no Rs(n)-breaking adversary

A

a primitive f if the achievement ratio

/\/—\

many n € N. The primitive fis (1— Rf
for f.

Intuitively, 0-secure means totally insecure, whereas 1-secure means totally secure. We
would like the primitive to be harder to break than it is to use. For example, suppose f is a
(1 — Rys(n))-secure one-way function, where for all constants ¢, Rs(n) < == for sufficiently
large n. Then f can be computed in polynomial time, whereas a polynomial time algorithm
can only invert f with inverse polynomial probability for finitely many values of n € N.

Allowing the security of a primitive to be parameterized is important because different
implementations of primitives may achieve different levels of security, which may offer differ-
ent tradeoffs between efficiency and security. We note that inverse polynomial security (e.g.
Rs(n) = nl%) means that the primitive may be broken by a polynomial adversary, so we
expect that many applications would require higher security. For example, it may be that
a particular function f is a (1 — Rs(n))-secure one-way function, where R¢(n) = m,
or even better with Rs(n) = 2%/77 The statement that f is secure with respect to either
of these bounds is quantifiably stronger than the statement that it is secure with respect
to an inverse polynomial bound. On the other hand, for any function computable in time
T(n) there is an inverting adversary that runs in 7°(n) - 2" time, and thus there is no
(1- W)—secure one-way function.

2.4 Primitives with Public Randomness

Definition (standard function): A function f(z;y) is called a standard function with
length relationship | || = n., ||yl| = i), | f(z;9)]| = m(n) i

e f(z;y)is computable in polynomial time.

o If [[z]| = n then ||y|| = I(n) and || f(z;y)|| = m(n), where both I(n) and m(n) are

polynomial in 7.

We now give the definitions of primitives using public randomness.



Definition (one-way function with public random bits): Let f(z;y) be a standard
function with length relationship ||z || = n, ||y|| = {(n), || f(z;y)| = m(n). Let X €4 {0,1}"
and Y €y {0, 1}1(”). The success probability of adversary A for [ is

6(n) = PrIf(AUS(X;Y)Y)Y) = F(X;Y)]

The running time T(n) of adversary A for f is the maximum over all z € {0,1}" and
y € {0, 1} of the running time of A on input (f(z;%);y). Then, fisa (1 — R¢(n))-secure
one-way function if there is no Ry(n)-breaking adversary for f.
Definition (one-way permutation with public random bits): Let f(z;y) be a
standard function with length relationship ||z || = n, ||y|| = I(n), || f(z;y)|| = m(n). Then,
fis a(1— Rg(n))-secure one-way permutation if fis a (1 — R¢(n))-secure one-way function
and m(n) = n and z is uniquely determined by f(z;y) and y.
Definition (pseudo-random generator with public random bits): Let g(z;y) be
a standard function with length relationship ||z| = n, ||y|| = l(n), g(z) = m(n), where
m(n) > n. The stretching parameter of g(z;y)is m(n)—n. Let X €4 {0,1}", Y €y {0, 1}
and Z €74 {0,1}™("), The success probability (distinguishing probability) of adversary A for
g is

b(n) = PRLAGXGY)Y) = 1] = PrIAZY) = 1]
The running time T(n) of adversary A for ¢ is the maximum over all z € {0, 1}m(”) and
y € {0,1}(") of the running time of A on input (z;y). Then, g is a (1 — R,(n))-secure
pseudo-random generator if there is no R,(n)-breaking adversary for g.
Example : To exemplify the difference between the traditional definition of a one-way
function and the definition introduced here with public randomness, consider the subset
sum problem. A one-way function based on the difficulty of this problem can be defined in
two ways; without public random bits and with public random bits. Let b € {0,1}" and let
a € {0,1}"*". In the first definition without public random bits the function is

fla,b) = <a,i b; - a;).

The security is parameterized by the input length N = n? + n. In the second definition, a
is the public random string and the function is defined as

f(b;a) = Zn: b; - a;.
1=1

In this case, the security is parameterized by the length of the private input b, which is
simply n. Note that in both cases, the actual security of f is based on exactly the same
thing, i.e. when a and b are chosen uniformly then given @ and > - b; - a; there is no
fast adversary that can find on average a b’ € {0,1}" such that 37/, bl -a; = 37y b; - a;.
The only difference is how the security is parameterized. Intuitively, security should be
parameterized in terms of what is hidden from the adversary, and not in terms of the
overall amount of randomness available to the function. The first definition parameterizes
the security in terms of the overall amount of randomness available to the function, i.e.



security is parameterized in terms of the length of b plus the length of a. The parameter of
security in the second definition is the length of b, where b is what is really secret.
Intuitively, a weak one-way function f is a function such that it is hard to find an inverse
of f(x) for some significant but perhaps not very large fraction of z € {0,1}" (the ‘hard
set’). (In contrast, for a one-way function it is hard to find an inverse of f(z) for all but an
insignificant fraction of the z € {0,1}".) We only give the traditional definition (not using
public randomness); the definition using public randomness is straightforward.
Definition (weak one-way function): Let f(z) be a standard function with length
relationship ||z|| = n, || f(z)|| = l(n). The weakness parameter of f is a function s(n)
such that s(n) > L for some constant ¢. The time bound and success probability of an
adversary A for f are defined exactly the same way as for a one-way function. An adversary
Ais Rg(n)-breaking for s(n)-weak f if there is a subset H,, of {0,1}" of measure at least

s(n) such that Rg(n) < %, where ég7(n) is the average success probability over H(n)
and Tx(n) is the maximal running time over H(n). A function fis a (1 — Ry(n))-secure
s(n)-weak one-way function if there is no R¢(n)-breaking adversary for s(n)-weak f.

Example : Define f(z,y) = zy, where z,y € {2,...,2" —1}. The problem of invert-
ing f(z,y) consists of finding z’,y" € {2,...,2" — 1} such that 2'y’ = zy. Let X,Y €y
{2,...,2" — 1} be independent random variables. On average, f(X,Y) is rather easy to in-
vert. For instance, with probability %, XY is an even number, in which case setting 2’ = 2
and ¢ = )(2_Y inverts f(X,Y). However, with probability approximately 1/n? both X and
Y are prime n-bit numbers. If there is no adversary that can factor the product of a pair
of random n-bit prime numbers in time m on average then fis a (1 — Rf(2n))-secure

n%—weak one-way function.

3 Reductions

All of the results presented in this paper involve a reduction from one type of cryptographic
primitive to another. In this section, we give a formal definition of reduction. We only
define a reduction in the case when both cryptographic primitives are standard functions.

Central to the definition of a reduction is the notion of an oracle Turing machine.
Definition (oracle Turing machine): An oracle Turing machine is a randomized Turing
machine § whose behavior is not fully specified. The behavior is not fully specified in the
sense that 5, in the course of its execution, interactively makes calls (hereafter described
as oracle calls) to and receives corresponding outputs from an algorithm that is not part of
the description of S. We let $4 denote the fully specified Turing machine described by §
using algorithm A to compute the oracle calls.

Note that although the running time of S is not defined, the running time of S is
defined. Also, if A is a Turing machine then so is S4.

Let f be a generic instance of the first primitive, where f(z) is a standard function with
length relationship ||z|| = n and || f(z)|| = l(n). Let X €y {0,1}". There are two parts to
a reduction: (1) an oracle Turing machine P that efficiently converts f(X) into an instance
g(Y') of the second primitive, where ¢ is a standard function and Y is the polynomially
samplable probability distribution on inputs to g; (2) an oracle Turing machine $ that is
the guarantee that the security of f(X) is passed on to g(Y). The security guarantee is



of the form that if A is a breaking adversary for ¢(Y') then 54 is a breaking adversary for
f(X). More formally,

Definition (reduction): We say that there is a reduction from primitive_1 to primitive_2
if there are two oracle Turing machines P and § with the following properties. Given any
instance f of primitive_1, Pf is an instance g of primitive_2. Given any R,(n)-breaking
adversary A for g, 54 is a R¢(n)-breaking adversary for f.

The reduction guarantees that there is no R,(n)-breaking adversary for ¢ as long as
there is no Rg(n)-breaking adversary for f. To have the reduction inject as much of the
security of f as possible into ¢, we would like R¢(n) to be as large as possible with respect
to Ry(n), e.g., Rf(n) = Ry(n).

To give a rough measure of the amount of security a reduction preserves, we make
the following definitions. Note that in all definitions the reduction has an overhead of nl—c
However, typically R,(n) < # and it is therefore the dominant factor.

Definition (preserving reductions): The reduction from primitive_1 to primitive_2 is
said to be

o slightly preserving if there are constants a > 1, § > 1 and ¢ > 0 such that

Rg(na)ﬁ

nC

R¢(n) >

o polynomially preserving if there are constants § > 1 and ¢ > 0 such that

Rg(")ﬁ

nC

Rf(n) >

o linearly preserving if there is a constant ¢ > 0 such that

,nC

Rf(n) >

For a linearly preserving reduction, R¢(n) is linearly lower bounded by R,(n), and for a
polynomially preserving reduction, R¢(n) is polynomially lower bounded by R,(n) (in both
cases there is also a polynomial in n factor). On the other hand, for a slightly preserving
reduction the lower bound on R¢(n) can be much weaker than any polynomial factor in
R,4(n). For this reason, a linearly preserving reduction is more desirable than a polynomially
preserving reduction which in turn is more desirable than a slightly preserving reduction.

Consider a reduction from a one-way function f to a pseudo-random generator g and
suppose we want the reduction to guarantee that g is (1 — Ry(n))-secure. The difference
between these types of guarantees isn’t so important when R,;(n) is not too small, e.g., if
R,(n) is inverse polynomial in n then all types guarantee that R¢(n) is inverse polynomial
in n, and thus g is (1 — R,(n))-secure if there is no polynomial time adversary that can
invert f with inverse polynomial probability. However, the difference between these types of
guarantees increases dramatically as R,;(n) goes to zero at a faster rate, which is expected in
most applications. To see the dramatic differences between the strengths of the reductions,
consider the case when R,(n) = 27" and a = B =2 and ¢ = 0. For a linearly preserving

reduction, g is (1—R,(n))-secure if there is no Rs(n) = 2-7'"% breaking adversary for f. For



a polynomially preserving reduction, ¢ is (1 — R,(n))-secure if there is no R¢(n) = 9-2n!/2.

breaking adversary for f. For a slightly preserving reduction, ¢ is (1 — R4(n))-secure if
there is no Rs(n) = 27?"-breaking adversary for f. Note that in this case Rs(n) is the
2nt/2 power of R,(n), which is not at all polynomial in R,(n). In fact, for trivial reasons
there is a 27%"-breaking adversary for f, and thus the slightly preserving reduction does
not guarantee that ¢ is (1 — 9-n!/? )-secure no matter how secure f is.

Because of the tremendous superiority of a linearly preserving over a polynomially pre-
serving reduction over a slightly preserving reduction, it is important to design the strongest
reduction possible. Some of the most important work (both theoretically and practically)
left to be domne is to find stronger preserving reductions between cryptographic primitives
than are currently known, e.g. the strongest reductions known from a one-way function to
a pseudo-random generator and from a weak one-way function to a one-way function (in
the general case) are only slightly preserving.

It turns out that the primary quantity that determines the strength of the reduction
is the ratio 7, where n is the length of the private part of the input for g and n' is the
length of the private part of the input for calls to f when computing g. The bigger this
ratio the more the loss in security. The best case is when these two lengths are equal or
nearly equal. The reason for this is that typically the achievement ratio for S4 is either
linear or polynomial in the achievement ratio R,(n) for A, and § 4 breaks one of the calls
to f on inputs of length n’, and thus Rs(n') is either linear or polynomial in R,(n). For
example, if n’ = n and Rf(n') = Ry4(n) then the reduction is linearly preserving. Slightly
weaker, if n’ = en for some constant ¢ > 0 and Rs(n') = Ry(n)’ for some constant 3 > 1
then the reduction is polynomially preserving. This can be seen as follows. Even in the
worst case, when Ry(n) = oL, it is easy to verify that Ry(n) = R,(n'/€) < Ry(n')/¢. Thus,
Ry(n') < Ry(n")?/c. If n' is substantially smaller than n (but still polynomial in n), then
the reduction is typically only slightly preserving.

4 The reductions

We describe several linearly preserving reductions from a weak one-way permutation to a
one-way permutation. All of the reductions work only for functions that are permutations.!
In [4], Yao describes a reduction from a general weak owf to a one-way function, but
the reduction is only slightly preserving. A good research problem is to design a linearly
preserving (or even polynomially preserving) reduction without any restriction on the weak
one-way function.

In all the reductions, we assume that the weak one-way function doesn’t use a public
random string. Only minor modifications need be made to handle the case when the weak
one-way function uses public randomness.

All of the reductions share a common approach, and each reduction builds on the ideas
developed in previous reductions. For completeness, we first describe a general reduction
from a weak one-way function to a one-way function.

!These reductions can be extended to the important case of regular functions, which is more general than
permutations but still not the general case. A function is regular if each point in the range of the function
has the same number of preimages.



Reduction 1 [Yao] : Let f(z) be a s(n)-weak one-way function, where z € {0,1}". Let

N = 5(7;), let y € {0,1}V*" and define the one-way function

9(y) = (f(y1)s .-, f(yn))-

Theorem 1 [Yao] : Reduction 1 is a slightly preserving reduction from a s(n)-weak one-
way function f to one-way function g. More precisely, there is an oracle algorithm § such
that if A is an R,(nN)-breaking adversary for g(y) then 54 is a Rs(n)-breaking adversary
for s(n)-weak f(z), where Rs(n) = %.

Note that s(n) must be at least inverse polynomial in n for the reduction to be even
slightly preserving. This is because it is necessary for n to be a polynomial fraction of NV,

and N = S0

4.1 A simple linearly preserving reduction

An important observation about Reduction 1 is that g doesn’t use any public random bits
beyond what is used by f. The reason the reduction is only slightly preserving is that
g partitions its private input into many small strings and uses each of these strings as a
private input to f. This can be thought of as a parallel construction, in the sense that the
calls to f are on independent inputs and thus all calls to f can be computed simultaneously.
The linearly preserving reduction given here is similar in its basic structure to Reduction
1. The main difference is that instead of partitioning the private input of g into N private
inputs of length n for f, the private input to ¢ is a single string € {0, 1}", and the public
random string is used to generate N inputs of length n to f sequentially.

Reduction 2 : Let f(z) be a s(n)-weak one-way permutation, where z € {0,1}". Let
N = S(”—n), let 7 € {0,1}¥*™ and define the one-way permutation

g(z;7) = yn41

where y; =z and, forall i =2,... . N+ 1,9y, =11 D f(yi-1).
Theorem 2 : Reduction 2 is a linearly preserving reduction from a s(n)-weak one-way
permutation f to one-way permutation g. More precisely, there is an oracle algorithm
S such that if A is an R,(n)-breaking adversary for g(z;7) then S4 is a R;(n)-breaking
adversary for s(n)-weak f(z), where R¢(n) = Rng—](\?).

The proof of Theorem 2 is similar in spirit to the proof of the Theorem 1. We only
describe the oracle algorithm S. Suppose that A is an adversary with time bound 7'(n) and

6(n)

success probability §(n) for g, and thus the achievement ratio is T A on input g(z;7)

and 7 finds z with probability §(n) when z € {0,1}" and 7 €z {0,1}V*". The oracle
machine described below has the property that §4 inverts f on inputs of length n with
probability at least 1 — s(n), where the time bound for 54 is %ﬂ. The input to S4 is
f(z) where z € {0, 1}".
Adversary 54 on input f(z) : .
Repeat % times
Randomly choose i €44 {2,...,N 4+ 1}.
Randomly choose 7 €74 {0, 1}V*™,



Let y; = f(z) @ mi1.

Compute yiy1 = 7 & [(Yi), .-, yn+1 = 78 & [(yn)-
Compute vg = A(yn41;7).

Compute v1 = mo @ f(v0),...,vi—1 = Ti—a @ f(vi_2).
if f(vi—1)= f(x) then output v;_;.

4.2 A linearly preserving reduction using less randomness

Although Reduction 2 is linearly preserving, it does have the drawback that the length of
the public random string is rather large, and even worse this length depends linearly on the
weakness parameter s(n) of the weak one-way function. In this subsection, we describe a
linearly preserving reduction that uses a much shorter public random string.

The overall structure of the reduction is the same as Reduction 2. The difference is
that we use many fewer public random strings of length n in a recursive way to produce
the almost random inputs to f. The reduction is in two steps. In the first step we describe
a linearly preserving reduction from a s(n)-weak one-way permutation f to a %—Weak one-
way permutation g. The second step reduces g to a one-way permutation h using the
construction given in Reduction 2.

Reduction 3 : Let f(z) be a s(n)-weak one-way permutation, where z € {0,1}". Let

l= [log3/2(2/s(n))w and let N = 2. Let 7 € {0,1}*". Define

g(z;m) = f(m1 @ f()).

For all 2 = 2,...,1[, recursively define

gl i) =g9(m@gleimy, iy)im, im1y)-

Theorem 3 : Reduction 3 is a linearly preserving reduction from a s(n)-weak one-way
permutation f(z) to %—Weak one-way permutation g(z; 7). More precisely, there is an oracle
algorithm § such that if A is an R,(n)-breaking adversary for 1-weak g(z;7) then 54 is a
R¢(n)-breaking adversary for s(n)-weak f, where R¢(n) = Rng—](\?).

The final step in the reduction is to go from weak one-way permutation g with weakness
parameter % to a one-way permutation h using Reduction 2, except now g has weakness
parameter 7 and uses a public random string of length m = O(nlog(1/s(n)). Thus, when
using Reduction 2 to go from g to h, we set N = log(1/R,(n)) < n and partition the
public random string into N blocks of length n + m. Thus, the overall reduction uses
O(n*log(1/s(n))) public random bits, as opposed to O (%) for Reduction 2. It is not

hard to verify that the overall reduction from f to & is linearly preserving.

4.3 A linearly preserving reduction using expander graphs

The work described in [1] gives a polynomially preserving reduction from a weak one-way
permutation to a one-way permutation that uses only a linear amount of public randomness.
As briefly described below, their reduction can be modified in minor ways to yield a linearly
preserving reduction from a weak one-way permutation f to a one-way permutation A that
uses only a linear number of public random bits overall.



As in Reduction 3, the reduction is in two steps: The first step is a linearly preserving
reduction from a s(n)-weak one-way permutation f to a %—
the second step reduces g to a one-way permutation h. As in Reduction 3, the first step
is recursive and uses O(log(s(n)) independent public random strings, but they are each of
constant length instead of length n. The idea is to define a constant degree expander graph
with vertex set {0,1}", and then each string is used to select a random edge out of a vertex
in the expander graph. The second step is iterative, but uses only an additional O(n) public
random bits. These O(n) public random bits are used to define a random walk of length
O(n) on a related expander graph.

The overall number of public random bits used in the entire reduction from f to A is
only linear. The way [1] describes the reduction, the one-way permutation f is applied
to inputs of different lengths (all within a constant multiplicative factor of each other) to
yield h. For this reason, as they describe their reduction it is only polynomially preserving,
even with respect to the new definitions. Minor modifications to their reduction yields an
alternative reduction where all inputs to f are of the same length as the private input to h.
It can be shown that the alternative reduction with respect to the new definitions is linearly
preserving.

weak one-way permutation g and

Acknowledgements

We wish to thank Oded Goldreich, Hugo M. Krawczyk and Rafail Ostrovsky for their
comments.

References

[1] Goldreich, O., Impagliazzo, R., Levin, L., Venketesan, R., Zuckerman, D., “Security
Preserving Amplification of Hardness”, Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science, pp. 318-326, 1990.

[2] Phillips, S. J., “Security Preserving Hardness Amplification Using PRGs for Bounded
Space - Preliminary Report”, unpublished manuscript, July 1992.

[3] Luby, M., “Pseudo-randomness and Applications”, monograph in progress.

[4] Yao, A., “Theory and applications of trapdoor functions”, Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science, pp. 80-91, 1982.

10



