Comparison of Rate-Controlled
Static Priority and Stop-and-Go

Hui Zhang† and Edward W. Knightly ‡
† Lawrence Berkeley Laboratory
‡ ICSI and EECS Department, U.C. Berkeley
TR-94-048

Abstract
To support emerging real-time applications, high speed integrated services networks need to provide end-to-end performance guarantees on a per-connection basis in a networking environment. In addition to the issue of how to allocate resources to meet diverse QOS requirements in a single switch, resource management algorithms also need to account for the fact that traffic may get burstier and burstier as it traverses the network due to complex interaction among packet streams at each switch. To address this problem, several non-work-conserving packet service disciplines have been proposed that fully or partially reconstruct the traffic pattern of the original source inside the network. This is achieved by a policing or delay-jitter control mechanism in which packets may be held at intermediate switches in order to keep the traffic from becoming burstier.

In this paper, we compare two non-work-conserving disciplines: Stop-and-Go and Rate-Controlled Static Priority or RCSP. Stop-and-Go uses a multi-level framing strategy to allocate resources in a single switch and to ensure traffic smoothness throughout the network. RCSP decouples the server functions by having two components: a regulator to partially or
fully reconstruct the traffic pattern and a static priority scheduler to allocate delay bounds in a single switch. We compare the two service disciplines in terms of traffic specification, scheduling mechanism, buffer space requirement, end-to-end delay characteristics, connection admission control algorithms, and achievable network utilization. The comparison is first done analytically, and then using MPEG compressed video traces for numerical investigations into the properties of practical real-time network sources.
1 Introduction

Future high-speed networks will have to support real-time communication services that allow clients to transport information with performance guarantees expressed in terms of delay, delay jitter, throughput and loss rate. It has been argued that a connection-oriented architecture, with explicit resource allocation and connection admission control, is needed to offer such a real-time service [6]. In a packet-switching network, packets from different connections will interact with each other at each switch. Without proper control, these interactions may adversely affect the network performance experienced by clients. The service disciplines at the switching nodes, which control the order in which packets are serviced, determine how packets from different connections interact with each other.

Service disciplines and associated performance problems have been widely studied in the contexts of hard real-time systems and queueing systems. However, results from these studies are not directly applicable in the context of integrated-services networks. Analyses of hard real-time systems usually assume a single server environment, periodic jobs, and the job delay bounded by its period [23]. However, network traffic is bursty, and the delay constraint for each individual connection is independent of its bandwidth requirement. In addition, bounds on end-to-end performance need to be guaranteed in a networking environment, where traffic dynamics are far more complex than in a single server environment. Queueing analysis is often intractable for realistic traffic models. Also, classical queueing analyses usually study average performance for aggregate traffic [14], while in integrated-services networks performance bounds need to be derived on a per-connection basis [5, 17]. In addition to the challenge of providing end-to-end per-connection performance guarantees to heterogeneous, bursty traffic, service disciplines must be simple enough that they can be implemented at very high speeds.

A service discipline can be classified as either work-conserving or non-work-conserving. With a work-conserving discipline, a server is never idle when there is a packet to send. With a non-work-conserving discipline, the server may be idle even when there are packets waiting to be sent. Recent study suggests that non-work-conserving disciplines have some unique characteristics that make them suitable to provide performance guarantees in packet switching networks [31, 29]. In this paper, we compare two representative non-work-conserving disciplines proposed in the context of high speed networks: Stop-and-Go and Rate-Controlled Static Priority. Although both Stop-and-Go and RCSP can be used to provide statistical guarantees [10, 30], only deterministic performance guarantees are considered in this paper.

The paper is organized as the follows. In Section 2, we discuss the background and motivate the need for non-work-conserving disciplines. In Section 3, we review the two disciplines and compare them by casting them into the same framework of rate-controlled service disciplines. In Section 4, we discuss the admission control algorithms, end-to-end delay characteristics, and buffer space requirements for the two disciplines. In Section 5, we quantitatively compare the maximum network utilization that can be achieved by the two
disciplines. In Section 6 we examine implementation issues. In Section 7, we review some of the related work. Finally, in Section 8, we conclude the paper by summarizing major results of the paper.

2 Background

In order to provide end-to-end performance guarantees on a per connection basis, a connection-oriented and reservation-based architecture is needed [6]. In such an architecture, there are two phases in a communication session: connection establishment and data transfer. During the connection establishment, the client first specifies its end-to-end traffic and performance parameters to the network. The network then translates them into local parameters, and performs a set of connection admission control tests with the local parameters at each switch. The new connection is accepted only if there are enough resources to guarantee its performance at all switches along the path. During data transfers, each switch will transmit packets from different connections according to a packet service discipline. By ensuring that the local performance requirements are met at each switch, the end-to-end performance requirements can be satisfied. Notice that there are two levels of control in this paradigm: connection admission control at the connection level, and service discipline at the packet level. A complete solution needs to specify both the service discipline and the associated connection admission control conditions.

A switch can provide local performance guarantees to a connection only when the traffic on that connection behaves according to its specified traffic characteristics. However, network load fluctuations at previous switches may distort the traffic pattern of a connection and cause an instantaneous higher rate at some switch even when the connection satisfies the client-specified rate constraint at the entrance to the network. Since local performance bounds can be guaranteed for a connection only if the connection’s input traffic to the switch satisfies a certain traffic characterization, traffic pattern distortions may make it difficult to guarantee local performance bounds at the switches inside the network.

One solution to this problem is to characterize the traffic pattern distortion inside the network, and derive the traffic characterization at the entrance to each switch from characterizations of the source traffic and of the traffic pattern distortions [4, 1, 21, 16]. In general, characterizing traffic inside the network is difficult. In networks with work-conserving service disciplines, even in the situations when traffic inside the network can be characterized, the worst-case traffic is usually more bursty inside the network than that at the entrance. This property is independent of the traffic model being used. In [4], a deterministic fluid model \((\sigma, \rho)\) is used to characterize a traffic source. A source is said to satisfy \((\sigma, \rho)\) if during any time interval of length \(u\), the amount of its output traffic is less than \(\sigma + \rho u\). In such a model, \(\sigma\) is the maximum burst size, and \(\rho\) is the average rate. If the traffic of connection \(j\) is characterized by \((\sigma_j, \rho_j)\) at the entrance to the network, its characterization will be \((\sigma_j + \Delta \sigma_j^{i-1}, \rho_j)\) at the entrance to the \(i-th\) switch along the path,
where $\Delta \sigma_j^{i-1} = \sum_{\nu=1}^{i-1} \rho_j d_{\nu,j}$ and $d_{\nu,j}$ is the local delay for the connection at the i'th switch. Compared to the characterization of the source traffic, the maximum burst size at switch i increases by $\sum_{\nu=1}^{i-1} \rho_j d_{\nu,j}$.

This maximum burst size grows monotonically along the path of the connection.

In [16], a family of stochastic random variables is used to characterize a source. Connection j is said to satisfy a characterization $\{(R_{t_1,j}, t_1),(R_{t_2,j}, t_2),(R_{t_3,j}, t_3)\ldots\}$, where the $R_{t_i,j}$ are random variables, and $t_1 < t_2 < \ldots$ are time intervals, if $R_{t_i,j}$ is stochastically larger than the number of packets generated over any interval of length t_i by source j. If the traffic on connection j is characterized by $\{(R_{t_1,j}, t_1),(R_{t_2,j}, t_2),(R_{t_3,j}, t_3)\ldots\}$ at the entrance to the network, its characterization will be $\{(R_{t_1+\Delta t_j^{i-1},j}, t_1),(R_{t_2+\Delta t_j^{i-1},j}, t_2),(R_{t_3+\Delta t_j^{i-1},j}, t_3),\ldots\}$ at the i'th switch, where $\Delta t_j^{i-1} = \sum_{\nu=1}^{i-1} b_{\nu}$ and b_{ν} is the maximum busy period at switch i'. The same random variable that bounds the maximum number of packets over an interval at the entrance of the network now bounds the maximum number of packets over a much smaller interval at switch j. I.e., the traffic is burstier at switch j than at the entrance.

In both the (σ_j, ρ_j) and $\{(R_{t_1,j}, t_1),(R_{t_2,j}, t_2),(R_{t_3,j}, t_3)\ldots\}$ analysis, the burstiness of a connection’s traffic accumulates at each hop along the path from source to destination. More resources need to be reserved for a burstier traffic characterization. For example, the amount of buffer space required to prevent packet loss for a connection must grow monotonically along the path.

Another approach to deal with the problem of traffic pattern distortions is to control the distortions to traffic patterns at each switch. By maintaining certain traffic characteristics throughout the network, non-work-conserving algorithms such as Stop-and-Go and RCSP can provide end-to-end performance guarantees in networks of arbitrary topology. Also, problems like requiring more resources at downstream switches and characterizing traffic inside the network are eliminated.

3 Service Disciplines

In this section, we first review the traffic model used in Stop-and-Go and RCSP, we then describe each algorithm, and compare them by casting them into the same framework of rate-controlled service disciplines [29].

3.1 Traffic Model

In order to allocate resources for each connection, sources must specify their traffic characteristic. Additionally, if schedulers do traffic reconstruction, the reconstruction may often be described in terms of the original traffic description. In the literature, different traffic models have been used for different schedulers. For example, Stop-and-Go uses the (r, T) traffic model. A stream of packets is called (r, T)-smooth if during each frame of length T the total number of bits that are transmitted by the source is no more than $r \cdot T$ bits.
In RCSP, the \((X_{\text{min}}, X_{\text{ave}}, I, S_{\text{max}})\) model has been used [6]. In this model, \(X_{\text{min}}\) is the minimum packet inter-arrival time, \(X_{\text{ave}}\) is the average packet inter-arrival time over an averaging interval \(I\), and \(S_{\text{max}}\) is the maximum packet size. However, the RCSP algorithm is general and other traffic characterization can be used. For example, the \((\sigma, \rho)\) model proposed in [4] may be used. In this case, RCSP’s regulators are simply leaky buckets. Additionally, if a more elaborate deterministic BIND model is used [15], the flexibility offered by RCSP allows the admission control algorithm to accept additional connections. This will be demonstrated in Section 5 using real traffic traces.

3.2 Stop-and-Go

Stop-and-Go uses a framing strategy [8]. In such a strategy, the time axis is divided into frames, which are periods of some constant length \(T\). Stop-and-Go defines *departing* and *arriving* frames for each link. At each switch, the arriving frame of each incoming link is mapped to the departing frame of the output link by introducing a constant delay \(\theta\), where \(0 \leq \theta < T\). All the packets from one arriving frame of an incoming link and going to output link \(l\) are delayed by \(\theta\) and put into the corresponding departing frame of \(l\). According to the Stop-and-Go discipline, the transmission of a packet that has arrived on any link \(l\) during a frame \(f\) should always be postponed until the beginning of the next frame. Since packets arriving during a frame \(f\) of the output link are not eligible for transmission until the next frame, the output link may be left idle even when there are packets in the switch to be transmitted, thus, Stop-and-Go is a non-work-conserving policy.

In Stop-and-Go, bandwidth is allocated to each connection as a certain fraction of the frame time. As for delay, by using the admission control algorithms discussed in Section 4, Stop-and-Go ensures that all packets coming on one arriving frame of the input link will always go out on the next departing framing of the output link.

The framing mechanism also limits the traffic-pattern distortion and maintains \((r, T)\) smoothness throughout the network. This is stated in the following proposition.
Proposition 1 Consider a connection that traverses a cascade of Stop-and-Go servers. If the connection satisfies \((r, T)\) smoothness at the entrance to the network, and each server ensures that packets coming on one arriving frame of the input link will always go out on the next departing frame of the output link, the connection will satisfy \((r, T)\) smoothness at each of the servers throughout the network.

By maintaining traffic smoothness throughout the network, end-to-end delay bounds can be guaranteed in a network of arbitrary topology as long as each local server can ensure local delay bounds for \((r, T)\) smooth traffic. As discussed in [29], one of the biggest advantages of non-work-conserving disciplines like Stop-and-Go is that they greatly simplify the analysis in a networking environment by allowing a single node analysis to be extended to a network of arbitrary topology.

The framing strategy also introduces the problem of coupling between delay bound and bandwidth allocation granularity. The delay of any packet at a single switch is bounded by a multiple of frame times. To reduce the delay, a smaller \(T\) is desired. However, since \(T\) is also used to specify traffic, it is tied to bandwidth allocation granularity. Assuming a fixed packet size \(P\), the minimum granularity of bandwidth allocation is \(\frac{P}{T}\). To have more flexibility in allocating bandwidth, or a smaller bandwidth allocation granularity, a larger \(T\) is preferred. It is clear that low delay bound and fine granularity of bandwidth allocation cannot be achieved simultaneously in a framing strategy like Stop-and-Go.

Figure 2: Two levels of framing with \(T_2 = 3T_1\)

To get around this coupling problem, a generalized version of Stop-and-Go with multiple frame sizes is proposed. In the generalized Stop-and-Go, the time axis is divided into a hierarchical framing structure as shown in Figure 2. For an \(n\) level framing with frame sizes \(T_1, \ldots, T_n\), and \(T_{m+1} = K_m T_m\) for \(m = 1, \ldots, n-1\), packets on a level \(p\) connection need to observe the Stop-and-Go rule with frame size \(T_p\), i.e., packets which have arrived at an output link during a \(T_p\) frame, will not become eligible for transmission until the start of next \(T_p\) frame. Also, for two packets with different frame sizes, the packet with a smaller frame size has a non-preemptive priority over the packet with a larger frame size.

With multi-frame Stop-and-Go, it is possible to provide low delay bounds to some channels by putting them in frames with a smaller frame time, and to allocate bandwidth with fine granularity to other channels by putting them in levels with a larger frame time. However, the coupling between delay and service quantum still exists within each frame.
3.3 Rate-Controlled Static-Priority

A Rate-Controlled Static-Priority server differs from a Stop-and-Go server in that it uses two components to allocate delay bounds and bandwidth instead of one framing structure [27]. These two components are a rate controller and a static-priority scheduler. The rate controller shapes the input traffic from each connection into the desired traffic pattern by assigning an eligibility time to each packet. The scheduler then orders the transmission of eligible packets from all the connections. The architecture of the RCSP server is shown in Figure 3.

![Diagram](image)

Figure 3: Rate-Controlled Static-Priority Queueing

Conceptually, a rate controller consists of a set of regulators corresponding to each of the connections traversing the switch. Upon the arrival of each packet, the regulator assigns an eligibility time for the packet, and holds the packet till that time before handling it to the scheduler. Different ways of calculating the eligibility time of a packet will result in different types of regulators so that a source’s traffic pattern may be partially or fully reconstructed.

One possible regulator for the RCSP scheduler is a dual leaky bucket regulator. This regulator is currently advocated by the ATM Forum and implemented in several commercial switches. As the name suggests, this regulator is based on enforcing two \((\sigma, \rho)\) pairs. More details on the use of leaky bucket policing for RCSP can be found in [15].

A second possible RCSP regulator that has additional advantages over the dual leaky bucket regulator is a delay-jitter regulator. In this case, the scheduler absorbs the delay variation introduced by the previous switch so that at the input to the priority queues, the original traffic pattern is completely reconstructed (of
course with the exception of packets that have been dropped or lost). The eligibility time of a packet for a DJ regulator is defined with reference to the eligibility time of the same packet at the immediately upstream switch. The definition assumes that the queuing delays of packets on the connection, and the link delay from the upstream switch to the current switch, are bounded. Let \(d_{i-1} \) be the local delay bound for the connection in the scheduler at switch \(i - 1 \), and \(\Phi_i \) be the maximum link delay from switch \(i - 1 \) to switch \(i \). For a delay-jitter controlling regulator, \(ET^k_i \), the eligibility time of the \(k^{th} \) packet on a connection that traverses switch \(i \) is defined as:

\[
ET^k_0 = AT^k_0
\]

\[
ET^k_i = ET^k_{i-1} + d_{i-1} + \Phi_i, \quad i > 0
\]

where switch 0 is the source of the connection, and \(AT^k_0 \) is the arrival time of the \(k^{th} \) packet at the entrance to the network.

Notice that no traffic pattern or traffic model is assumed in the definition. That is, by turning the network into a constant delay line, the DJ regulators reconstruct the exact original traffic pattern of the source which is of course independent of the manner in which the source is defined or parameterized.

For a DJ regulator, it is easy to show that the following holds:

\[
ET^{k+1}_i - ET^k_i = AT^{k+1}_0 - AT^k_0 \quad \forall k, i \geq 0
\]

This leads to the following proposition:

Proposition 2 Consider a connection traverses a cascade of RCSP servers with DJ regulators. If deterministic delay bounds can be provided at the scheduler of each RCSP server, the traffic pattern of the connection at output of each rate-controller is exactly the same as the traffic pattern of the connection at the entrance to the network.

This proposition is more general than Proposition 1. It applies to any traffic specification, rather than just \((r, T)\) smoothness. In the original discussion of RCSP [27], the traffic model \((X_{min}, X_{ave}, I, S_{max})\) is used. In [15], a more elaborate deterministic Bounding Interval Dependent or BIND model is used. Which traffic model to use affects the admission control algorithm. We will show in Section 5 that the RCSP’s flexibility of allowing the use of more sophisticated traffic models will increase the number of connections that can be admitted into the network.

The second component of a RCSP server is the scheduler. The scheduler services packets using a non-preemptive static-priority discipline: which non-preemptively chooses packets in FCFS order from the highest-priority non-empty queue. Non-real-time packets are serviced only when there are no real-time packets; their order is not specified.
3.4 Framing vs. Decoupling of Rate-Control and Scheduler

There are many similarities between Stop-and-Go and RCSP. As shown in the previous section, both disciplines maintain traffic characteristics throughout the network by holding packets inside the network and both disciplines employ multiple priority levels to meet diverse QoS requirements for different connections. Also, as will be shown in Section 4, both disciplines, when used with associated connection admission control algorithms, can guarantee end-to-end delay and delay-jitter bounds in networks of arbitrary topology. However, an important difference between the two disciplines is that Stop-and-Go uses one mechanism, a framing mechanism, to allocate both bandwidths and delay bounds. Alternatively, RCSP decouples the two functions by using two components, a rate-controller and a scheduler. In this section, we discuss the implications and tradeoffs of this important difference.

As shown in [29], both Stop-and-Go and RCSP belong to a class of non-work-conserving disciplines called rate-controlled service disciplines. A rate-controlled server has two components: a rate-controller and a scheduler. Various rate-controllers and schedulers can be used. Different combinations of rate-controllers and schedulers will result in different rate-controlled disciplines. RCSP is one instance in this class with delay-jitter-controlled regulators and static priority scheduler. Stop-and-Go can be implemented using rate-controlled service discipline as defined in Proposition 3. By casting Stop-and-Go into the same framework of rate-controlled service disciplines, it is easier to see the similarities and differences between Stop-and-Go and RCSP.

Proposition 3 A Stop-and-Go server with n frame sizes \(T_1 < T_2 < ... < T_n \) can be implemented by a rate-controlled service discipline with a variation of delay-jitter controlling regulators, which we call DJ, regulators, and an n-level static priority scheduler. In a DJ, regulator, the eligibility time for packet \(k \) at
the i^{th} switch along the path is defined as follows:

$$ET_i = AT_i + \text{Ahead}_{i-1} + \theta$$

(4)

where Ahead_{i-1} is the amount of time the packet is ahead of schedule in switch $i - 1$, and θ is the synchronization time between the framing structures on the input and output links. Each pair of input and output links in a switch may have a different value of θ. In the static priority scheduler, the delay bound associated with level m is T_m, $1 \leq m \leq n$.

Although the above implementation of Stop-and-Go is very similar to RCSP, there are also important differences. Figure 4 shows a RCSP server and a Stop-and-Go server. As can be seen, in a RCSP server, there is a regulator for each connection, and the regulated traffic on each connection can be assigned to any priority level in the scheduler. While in a Stop-and-Go server, regulators are associated with priority levels in the scheduler. In fact, there is a one-to-one correspondence between the regulator and the priority level. Packets from one regulator can only go to the queue of the corresponding priority level. This introduces a coupling between the allocations of bandwidth and delay bounds. The traffic has to be specified with respect to the frame size that corresponds to the priority level the connection is assigned to. Since the frame size is also the local delay bound, the coupling between traffic specification and the delay allocation implies that admission control algorithm has to be based on a busy period argument, which tends out to produce looser bounds when compared to more elaborate analysis [4, 28]. This will be discussed in more detail in Section 4.3.

Because of the framing, there are dependencies among the local delay bounds at each priority level in a Stop-and-Go server. In particular, $T_{m+1} = K_m T_m$ must hold, with $1 \leq m < n$, and K_m being an integer. In addition, the delay bound allocations for each connection in different switches are coupled with one another. In [9], a connection has to have the same frame size in all the switches. In [31], a looser requirement is presented: the frame times of a connection along the path should be non-decreasing. None of these restrictions apply to RCSP. The impact of flexibility of allocating delay bounds inside the network on network utilization was studied in [19].

4 Admission Control Conditions and End-to-End Delay Properties

As discussed in Section 2, a service discipline alone cannot provide performance guarantees. Admission control algorithms are also needed to ensure that the network has enough resources to meet the performance requirements of all the connections. Different service disciplines have different corresponding admission
control conditions. In this section, we first review the admission control conditions Stop-and-Go and RCSP. We then compare the conditions by using deterministic fluid model analysis developed in [4].

4.1 Stop-and-go

In Stop-and-Go, the connection admission control algorithm needs to ensure that all packets from an incoming frame of an input link will always go out on the next departing frame of the output link. The following theorem gives the condition.

Theorem 1 Consider a Stop-and-Go server of n priority levels with frame sizes T_1, \ldots, T_n. Let C_q be the set of the connections at level q, and the j^{th} connection in C_q satisfies the traffic specification (r_j^q, T_q). Also assume that the maximum link speed is l, and the maximum size of a packet that can be transmitted over the link is S_{max}. If

$$\sum_{q=1}^{m} \sum_{j \in C_q} r_j^q T_m + S_{max} \leq l T_m$$

all the packets coming in a T_m frame will be serviced before the next T_m expires.

The theorem is proven in [9]. Intuitively, $\sum_{q=1}^{m} \sum_{j \in C_q} r_j^q T_m$ is the maximum of bits that can arrive during an interval of length T_m from all connections with priority equal to or larger than a connection at T_m level, and lT_m is the maximum number of bits that can be transmitted during a interval of length T_m. The inequality ensures that the maximum busy period of packets with a priority equal to or larger than level m is less than T_m. The theorem then follows directly from a busy period argument: the maximum busy period is an upper bound on the delay of any work-conserving policies (notice that the service policy for all eligible packets is work-conserving).

The next theorem gives the end-to-end delay property of a connection in a network of Stop-and-Go servers.

Theorem 2 Consider a connection traverses n Stop-and-Go switches connected in cascade with π_i being the link delay between the $i-1^{th}$ and the i^{th} switch. If the connection is assigned to the frame of size T and Theorem 1 holds for the T-sized frame at all switches, the end-to-end delay and delay jitter of the connection is bounded by $D + \sum_{i=2}^{n} \pi_i$ and T, where $nT \leq D \leq 2HT$ holds.

The proof is given in [9].

4.2 RCSP

In RCSP, the admission control algorithm needs to ensure that local delay bounds can be guaranteed for each connection at the scheduler. In order to perform admission control tests, the traffic characteristics must be specified for each connection traversing the server. As mentioned in Section 3.3, many traffic models can
be used. In [27, 28], admission control conditions were given for the \((X_{\text{min}}, X_{\text{ave}}, I, S_{\text{max}})\) model. The following theorem gives the algorithm control condition for RCSP using a general traffic constraint function \(b(\cdot)\), where \(b_j(u)\) is defined to be the maximum number of bits that can arrive on connection \(j\) during any interval of length \(u\). Different bounding traffic models such as \((X_{\text{min}}, X_{\text{ave}}, I, S_{\text{max}})\) and \((\sigma, \rho)\) have different corresponding traffic constraint functions.

Theorem 3 Assume a Static Priority scheduler has \(n\) priority levels. Let \(C_q\) be the set of the connections at level \(q\), and the \(j^{\text{th}}\) connection in \(C_q\) satisfies the traffic constraint function \(b_{q,j}(\cdot)\). Also assume that the link speed is \(l\), and the size of the largest packet that can be transmitted onto the link is \(S_{\text{max}}\). The maximum delay of any packet at priority level \(m\) is bounded above by \(d^m\), where

\[
d^m = \max \{ u : u \geq 0, b'_m(u) \geq l \times u \}
\]

and \(b'_m(\alpha)\) is defined for all \(\alpha\) by

\[
b'_m(\alpha) = \max_{\beta \geq 0} \left[S_{\text{max}} + \sum_{j \in C_m} b_{m,j}(\beta) + \sum_{q=1}^{m-1} \sum_{j \in C_q} b_{q,j}(\alpha + \beta) - l \times \beta \right]
\]

(6)

The proof is by extension of the results of [4]. Details may also be found in [26].

The end-to-end delay of a packet consists of the link delays the packet experienced and the residence times of the packet in each of the switches along the path. The residence time of a packet in a switch with rate-controlled servers has two components: the holding time in the regulator and the waiting time in the scheduler. Theorem 3 only bounds the waiting time in the scheduler. The next theorem, proven in [29], states that the end-to-end delays of all the packets on a connection can be bounded, as long as the delays on the links and the delays at each of the schedulers can be bounded. Holding in the rate controllers will not increase the end-to-end delay bound of the connection.

Theorem 4 Consider a connection passing through \(n\) switches connected in cascade, with \(\bar{\pi}_i\) and \(\tilde{\pi}_i\) being the upper and lower bounds on the delay of the link from the \(i-1^{\text{th}}\) to \(i^{\text{th}}\) switch. Assume that the scheduler of \(i^{\text{th}}\) switch can guarantee that the delays of all the packets on the connection be bounded by \(d_i\) as long as the connection’s input traffic to the scheduler satisfies the given \(b_j(\cdot)\) constraint. If the traffic on the connection obeys the \(b_j(\cdot)\) constraint at the entrance to the first switch, the end-to-end delay and the delay jitter of each of the connection’s packets is bounded by \(\sum_{i=1}^{n} d_i + \sum_{i=2}^{n} \bar{\pi}_i\) and \(d_n + \bar{\pi}_1 - \bar{\pi}_i\), respectively.

Notice that in the theorem, we assume a model of links with bounded, but possibly variable delay. This is important for an internetwork environment, in which a link may be a subnetwork such as ATM or FDDI networks. It is possible to bound delay over these subnetworks; however, the delays for different packets will be variable.
4.3 Admission Control and Fluid Model Analysis

The admission control criteria above may be compared intuitively for the simple case when there is only one priority level. As described below, for the case of one priority level, the fundamental difference between the admission control bounds and thus the resulting network utilization is that Stop-and-Go relies on a busy period bound while RCSP relies on a backlog bound.

![Graph showing backlog and busy period](image)

Figure 5: Backlog and Busy Period

Figure 5 illustrates this difference. The horizontal axis is time and the vertical axis is bits. The upper curve represents the total number of bits that have arrived in the queue by time \(t \) and the lower curve represents the total number of bits transmitted by time \(t \). The difference between the two curves is the number of bits currently in the queue, or the backlog function. When the backlog function returns to zero (the two curves meet) there are no bits in the queue and thus a busy period has ended. Two key observations follow [4]:

1. the maximum busy period provides an upper bound on any work-conserving server;
2. the maximum backlog divided by link speed provides an upper bound on delay for a FCFS server.

Delay bounds for other policies can also be expressed as the function of the two curves [1, 4, 20].

The admission control criteria of Stop-and-Go relies on a bound on the busy period. That is, Stop-and-Go ensures that a busy period is bounded by a frame time so that during each frame time, all packets that arrived in the previous frame are guaranteed to be served. Note that in this case, to ensure that the busy period is bounded by \(T \), the admission control criteria is that the total number of bits that arrive on all connections in an interval of length \(T \) is less than \(T \) times the link speed, as in (5).
Alternatively, since RCSP decouples the rate-controller and the scheduler, tighter analysis can be applied on the scheduler. For the case of one priority level, the delay bound is the maximum backlog divided by the link speed. For the case of multiple priority levels, the delay bound is a function of the link speed and the traffic constraint function as shown in (6). Notice that in both cases, the resulted delay bound is tighter than the bound based on the busy period because the maximum busy period is an upper bound on any work-conserving server.

In order to derive delay bound, a deterministic constraint is needed on each traffic source so that the total number of bits that arrive at the queue by a given time also has a deterministic bound. Since RCSP decouples the rate-controller and the scheduler, rate-controller can implement any regulating functions, which means that different traffic models can be used. A tighter model will result in a lower constraint curve and thus a smaller backlog bound and hence a smaller delay bound since the maximum delay bound is simply the maximum backlog times the link speed. In Section 5, we will show quantitatively that, for RCSP, using a tighter deterministic Bounding Interval Dependent (BIND) model will result in a higher network utilization than using the \((X_{\text{min}}, X_{\text{ave}}, I, S_{\text{max}})\) model. In Stop-and-Go, since the traffic specification is tied to the framing structure, a more informative traffic model does not help. For example, knowledge of the total number of bits that arrive in an interval of length less than \(T\) will not affect the busy period calculation.

4.4 Buffer Space Requirement

The maximum size buffer needed by a connection to prevent packet loss at a switch can be determined using the maximum residence time of packets at the switch and the maximum rate packets can arrive. In Stop-and-Go, for a connection with the \((r, T)\) specification, an amount of \(2rT\) buffer is needed. In RCSP, for a connection with constraint function \(b(\cdot)\), an amount of \(b(d_i + d_{i-1} + \pi_i - \bar{\pi}_i)\) buffer is needed, where \(d_i\) and \(d_{i-1}\) are local delay bounds for the current and the immediate upper stream switches respectively; \(\pi_i\) and \(\bar{\pi}_i\) are upper and lower bounds on the delay of the link between the two switches. In particular, if \((X_{\text{min}}, X_{\text{ave}}, I, S_{\text{max}})\) traffic model is used and if the link delay is constant, the amount of buffer space required is \(\frac{d_{\text{max}} + d_i}{X_{\text{min}}} S_{\text{max}}\).

Notice that the buffer space requirement for a connection in Stop-and-Go and RCSP depends only on the local delay bounds at the current and the previous switches (in Stop-and-Go, they are both \(T\)). In contrast, for work-conserving policies, more buffer space is needed at downstream nodes due to the potential accumulated distortion to the traffic inside the network. For example, if a Delay-EDD scheduler is used, and the \((X_{\text{min}}, X_{\text{ave}}, I, S_{\text{max}})\) traffic model is adopted, the amount of buffer space required at the \(i^{th}\) switch along the path traversed by the connection is \(\sum_{k=1}^{i} \frac{d_k}{X_{\text{min}}} S_{\text{max}}\), where \(d_k\) is the local delay bound at the \(k^{th}\) switch [6, 31].

Stop-and-Go and RCSP require less buffer space not only inside the network, but also at the destination.
node. In order to provide an isochronous service, $b(J)$ amount buffer space is needed at the destination where $b(\cdot)$ is the traffic constraint function, and J is the maximum end-to-end delay jitter. The end-to-end delay-jitters for Stop-and-Go and RCSP are the frame time and the last hop local delay bound respectively, while the end-to-end delay jitters for work-conserving policies are usually much larger.

5 Utilization Comparison with MPEG Traffic Traces

In this section, we use two 10 minute MPEG video traces to investigate the switch utilizations that are achievable with the various algorithms. The two traces were chosen in that they likely represent the extremes in the spectrum of video types: one trace is taken from a series of advertisements where scenes are constantly and quickly changing in colorful, fluctuating surroundings. The second trace is taken from a lecture that has only two monotonous alternating scenes: a speaker and his transparencies. When the camera is focused on the speaker, there is some movement as the speaker moves slowly about, but the background is static and the speakers movements are limited. When the camera is focused on the transparencies, the transparency may change or be written on by the speaker in which case, motion of the hand, pen, and ink alter the scene.

A short segment of the advertisement sequence is shown in Figure 6. The figure shows the instantaneous bit rate vs. frame number. The bandwidth of this trace is smaller than for many others because of the small frame size (a temporary hardware limitation) of 160 by 120. The general shape of the traces may be explained in terms of the mechanisms used in the MPEG standard. The coder generates three types of frames: I frames that use only Intraframe compression, and P and B frames that are transmitted between I frames and use interframe compression. While P frames (Predicted frames) are coded based on only past frames, B frames (Bidirectional frames) are coded based on both past and a future frame. With P and B frames, higher compression ratios can be achieved since the interframe coding makes use of motion compensation techniques. More details of the MPEG algorithm may be found in [7].

It is assumed that the entire frame is transmitted per frame time (as opposed to introducing additional delay by smoothing over several frames) so that Figure 6 is simply the frame size multiplied by the frame rate (30 fps). Additionally, it is assumed that each frame is fragmented into 48 byte ATM cells with the cells being transmitted at equally spaced intervals over the frame time ($\frac{1}{30}$ of a second).

From the traces, we calculate the deterministic characterizations for the various traffic models of Section 3.1. We then calculate the maximum number of channels that can be multiplexed on a T3 (45 Mbps) line with the given characterization. We consider three combinations of schedulers and traffic models (abbreviating Stop-and-Go as SG): RCSP/BIND, RCSP/Xmin, and SG/BIND. For RCSP, as noted in Section 4, a tighter source model can result in more accepted channels and thus higher network utilization. For this reason, for RCSP we investigate the maximum number of channels that can be accepted for both the
(Xmin, Xave, I, Smax) model of [6] as well as the tighter BIND model of [15]. Alternatively, for Stop-and-Go, the admission control analysis can only make use of information on the maximum number of bits that a source will transmit in an interval of length T, where T is the frame time. Since the maximum delay bound for Stop-and-Go is also T (2T including the regulation frame), we use the BIND model for Stop-and-Go for the following reason. Although the BIND model gives information regarding the maximum number of bits that can be transmitted by a source for a family of interval lengths rather than a single interval length, in order to see the effect of an increasing delay bound (increasing T), the additional information is needed. When actually calculating the bound, the RCSP/BIND model is using the entire B(I) curve for the bound, the RCSP/Xmin model is using a single interval length I (and the corresponding maximum number of packets in I or 1/Xave), and the SG/BIND model uses a single point from the B(I) curve, but this point is chosen optimally from the entire curve, i.e., it uses the best (r, T) pair.

Figures 7(a) and 7(b) show the maximum number of channels that can be accepted for the advertisement sequence and the lecture sequence under the various scheduling schemes. The horizontal axes show the delay bound and the vertical axes show the maximum number of channels that can be multiplexed given the delay bound constraint. The three curves represent the three combinations of servers and traffic models described above.

Focusing first on the lecture sequence of Figure 7(a), there are several things to note. First, the general trend of the curves is that with an increasing delay, more channels can be accepted. Also, not shown is the fact that a peak-rate allocation scheme would result in 29 channels accepted. The ratio of the number of accepted channels to 29 what is termed in [15] as the deterministic multiplexing gain (DMG). That is, even though all packets are deterministically guaranteed to meet their loss and delay bounds, sources may
be multiplexed beyond their peak rate. For the RCSP/BIND curve, even for small delay bounds, DMG's significantly greater than 1 are achievable. For example, for a delay bound of 10 msec, 38 channels may be multiplexed for a DMG of 1.31. By 40 msec the DMG is 2.24 and the max is achieved at 63 msec for a DMG of 2.79.

The RCSP/Xmin curve is based on the \((X_{min}, X_{ave}, I, S_{max})\) specification with \(I\) chosen to be 3 frame times or 100 msec. Note that this \(I\), and the entire specification is fixed for all delay bound calculations. That is, for the SG calculations, we allow the admission control algorithm to choose the optimal value of \(I\) \((X_{ave} and r should be viewed as functions of I)\). Thus, the RCSP/Xmin curve uses the bound in [28]. Once again, as the delay bound increases, so does the number of channels accepted until the point of scheduler saturation. The maximum DMG for this traffic specification and scheduler is 2.41 achieved at a queuing delay bound of 58 msec. As expected, the RCSP/Xmin curve is below the RCSP/BIND curve since the difference is that the BIND curve uses a better (tighter) source model with the same scheduler and analysis techniques.

Finally for Figure 7(a), we explain the shape of the SG/BIND curve which represents the maximum number of channels that can be accepted by a SG scheduler for a given frame size or queuing delay bound \(T\). First, note that the SG scheduler is not able to do better than peak-rate allocation (29 accepted channels) until the frame time \(T\) is greater than 33 msec. This may be explained in the following manner. Since the video frame rate is 30 fps, sources can send at their peak rate for 33 msec, 1/30th of a second, until the entire video frame is transmitted (again, the peak rate represents transmission of the largest video frame). Thus, if 29 channels are multiplexed, the busy period bound for FCFS will be 33 msec. However, the analysis of RCSP shows that the maximum backlog of the queue will result in a much smaller delay bound. Thus, by a
delay bound of \(33\) msec, RCSP/BIND has accepted 59 channels. SG cannot accept a 30th channel until the SG frame time \(T\) is greater than \(1/30\)th of a second. The intuitive reason for this is that the largest video frame (and peak rate) is caused by transmission of a large I frame. Since I video frames are immediately followed by B video frames which tend to be much smaller, for a \(T\) greater than \(1/30\)th of a second, \(r\) is decreasing allowing SG to accept more channels. The DMG is therefore at most 1 for delays less than \(1/30\)th of a second and at 63 msec, where the RCSP/BIND DMG peaks at 2.79, the SG/BIND DMG is lagging behind at 1.72.

Thus, the RCSP scheduler with the BIND model is more efficient than the RCSP scheduler with the Xmin model since the former represents a tighter constraint on the source. However, both techniques result in higher network utilizations than is achievable for SG/BIND. The reason for this is that the framing strategy of SG/BIND requires a busy period bound rather than the more elaborate backlog bound.

Figure 7(b) shows the same sequence of curves for the advertisements sequence. As expected, the trends are the same as for Figure 7(b) but the DMG is less. The reason for this is that the intense action and colors of the advertisement sequence results in a very bursty deterministic traffic specification (see [15] for further details). Thus, this source is more difficult to multiplex. The maximum achievable DMG for RCSP/BIND is 1.33. Even though this DMG is not as high as that for the lecture sequence, a 33% increase over peak rate reservation may still be considered sizable.

6 Implementation Issues

To implement Stop-and-Go, mechanisms are needed at both the link level and at the queue management level. At the link level, a framing structure is needed, and there is a synchronization requirement such that the framing structure is the same at both the sending and the receiving ends of the link. At the queue management level, two FIFO queues are needed for each priority level, one storing the eligible packets ready to be transmitted, the other storing the packets that won’t be eligible until the end of the current frame time. Mechanisms are needed to swap the two FIFO queues at the start of each frame time. Also, the set of FIFO queues with eligible packets need to be serviced according to a non-preemptive static priority policy.

As shown in Figure 3, the RCSP server has two components: a rate controller, and a static priority scheduler. The scheduler consists of multiple prioritized FCFS queues, and the rate controller consists of a set of regulators corresponding to each connection.

Notice that the conceptual decomposition of the rate controller into a set of regulators does not imply that there must be multiple physical regulators in an implementation; a common mechanism can be shared by all logical regulators. Each regulator has two functions: computing the eligibility times for incoming packets on the corresponding connection, and holding packets till they become eligible. Eligibility times for
packets from different connections are computed using the same formula with different parameters; holding packets is equivalent to managing a set of timers. One mechanism for managing timers is the calendar queue [3]. An implementation of RCSP which is based on the calendar queue and requires constant number of processing steps per packet is proposed in [27]. Another implementation based on a two-dimensional shifters is proposed in [18].

Both Stop-and-Go and RCSP needs a mechanism to service packets according to a non-preemptive static priority policy, which is easy to implement in high speed switches. In fact, even early implementations of commercial ATM switches have at least two priority levels [2]. Experimental ATM switches have more priority levels. In the Xunet switch, 16 priority levels are supported [12].

The difference between Stop-and-Go and RCSP is that RCSP requires the computation of the eligibility time to be performed on a per packet basis while Stop-and-Go needs only per frame processing. Regardless, delay jitter control may still be feasible. For example, a 1 Gbps link sending out 53 byte cells must process cells at the rate of approximately 2.4 million cells per second. A 50 MIPS processor is thus allowed 20 instructions per cell, which is more than enough to compute the eligibility time of a cell. As well, RCSP could utilize simpler regulators such as the dual leaky bucket mechanism described in Section 3.

7 Related Work

There have been a number of new service disciplines proposed to support Quality of Service in the context of high speed networks. These service disciplines may be classified as either work-conserving or non-work-conserving.

Jitter-EDD [25], which uses the two-component structure with delay-jitter-control regulators and the Earliest-Due-Date scheduler, is one of the first non-work-conserving disciplines proposed. It has many of the desirable properties possessed by Stop-and-Go and RCSP. For example, Jitter-EDD provides per-connection end-to-end delay and delay-jitter bounds and allows the buffer space requirements to be uniformly distributed across the network. However, it is unclear how to implement an EDD scheduler efficiently. In [24], another rate-controlled discipline is proposed with a First-Come-First-Served scheduler. Though much simpler than EDD, a FCFS scheduler provides only one delay bound and thus cannot efficiently support the diverse QOS requirement in the future integrated services networks. Hierarchical Round Robin [11] is a service discipline that also uses a multi-level framing strategy. It differs from Stop-and-Go in that it does not use synchronized framing structure across links, thus it cannot provide tight end-to-end delay-jitter bounds.

Among the work-conserving disciplines proposed are: Virtual Clock [32], variations of the Earliest-Due-Date algorithms [6, 13], and Generalized Processor Sharing [20]. All of them use a sorted priority queue mechanism [31], which make it difficult to implement in high-speed switches. Also, in a network with work-
conserving disciplines, more resources such as buffer space are needed in downstream switches due to traffic pattern distortions inside the network. As well, more buffer space is needed at the destination to provide an isochronous service [22, 26].

8 Conclusion

This paper compares two packet service disciplines proposed to support guaranteed performance service in a connection-oriented packet switched network: Rate-Controlled Static Priority (RCSP) and Stop-and-Go. There are many similarities between these two disciplines: both disciplines maintain certain traffic characteristics throughout the network; both disciplines employ multiple priority levels to allocate multiple local delay bounds to different connections; both disciplines, when used with their corresponding admission control algorithms, can provide end-to-end delay and delay-jitter guarantees in networks of arbitrary topology; and both disciplines require less buffer space both inside the network and at the destination node. The main difference between the two disciplines is that Stop-and-Go uses one framing strategy to allocate delay bounds and bandwidth while RCSP decouples the server into two components: a rate-controller and a scheduler. Such a decoupling in RCSP allows more flexible allocation of bandwidth and delay bounds, which results in higher link utilizations. Two MPEG video traces were used in the paper to quantitatively compare the efficiency of Stop-and-Go and RCSP in terms of link utilization. The analysis showed that because Stop-and-Go's framing strategy requires the busy period to be less than a frame time, the RCSP server can multiplex more connections for a given delay bound.

References

