INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Automatic Induction of Finite State
Transducers for Simple Phonological
Rules

Dan Gildea and Dan Juraf sky
International Computer Science Institute and
University of Californiaat Berkeley
{gildeajurafsky} @icsi.berkeley.edu

TR-94-052
October 1994

Abstract

This paper presents a method for learning phonological rules from sample pairs of under-
lying and surface forms, without negative evidence. The learned rules are represented as
finite state transducers that accept underlying forms as input and generate surface forms as
output. The algorithm for learning them is an extension of the OSTIA agorithm for learn-
ing general subsequentia finite state transducers. Although OSTIA is capable of learning
arbitrary sf.st'sinthelimit, large dictionaries of actual English pronunciationsdid not give
enough samples to correctly induce phonological rules. We then augmented OSTIA with
two kinds of knowledge specific to natural language phonol ogy, representing a naturalness
biasfrom “universal grammar”. A biasthat underlying phones are often realized as phonet-
icaly similar or identical surface phoneswasimplemented by using alignment information
between the underlying and surface strings. A bias that phonological rules apply across
natural phonological classes was implemented by |earning decision trees based on phonetic
features on each state of the transducer. The additions helped in learning more compact,
accurate, and general transducers than the unmodified OSTIA agorithm. An implementa
tion of the algorithm successfully learns a number of English postlexical rules, including
flapping, t-insertion and t-deletion.

1 Introduction

Johnson (1972) first observed that traditional phonological rewrite rules can be expressed asregular relations
if one accepts the constraint that no rule may reapply directly to its own output. Aside from the interesting
result that the traditional formalism for expressing phonological rules is less powerful than it appears, this
finding meant that finite state transducers can be used to represent phonological rules. Since parsing with
finite state transducers is much simpler than parsing context-sensitive rewriterules, thisgreatly simplified the
problem of parsing the output of phonological rulesin order to obtain the underlying, lexical forms (Karttunen
1993).

Inthispaper weexploreanother consequence of FST model sof phonological rules: their weaker generative
capacity aso makes them easier to learn. We describe our preliminary algorithm and results on one method
of learning rules from sample pairs of input and output strings.

2 Subsequential Transducersand Phonological Rules

Since Johnson’s(1972) work, researchers have proposed a number of different waysto represent phonol ogical
rules by transducers. In order to take advantage of recent work in transducer induction, we have chosen to
represent rules as subsequential finite state transducers. Subsequentia finite state transducers are a subtype
of finite state transducers with the following properties:

1. Thetransducer isdeterministic, that is, thereisonly one arc leaving a given state for each input symbol.
2. Each timeatransitionis made, exactly one symbol of the input string is consumed.

3. A unique end of string symbol isintroduced. At the end of each input string, the transducer makes an
additional transition on the end of string symbol.

4. All states are accepting.

The length of the output strings associated with a subsequentia transducer’s transitions is not constrained.
The subsequential transducer for the Englishflapping rulein 1 isshownin Figure 1; an underlyingtisrealized
as aflap after a stressed vowel and any number of r’'s, and before an unstressed vowel.

(1) t—dx/Vr__V

The most popular formalism for represent phonol ogical rules as transducers is the two-level formalism of
Koskenniemi (1983), based on Johnson (1972) and the (only recently published) work of Kaplan & Kay (1994),
and the various implementations and extensions of the two level formalisms (summarized and contrasted in
Karttunen (1993); we will henceforth refer to Karttunen's paper for details on two-level phonology). The
most significant difference between this and our subsequential transducers is that the two-level transducers
described by Karttunen (1993) are non-deterministic. In addition, Karttunen's transducers may have only
zero or one symbol as either the input or output of an arc, and they have no specia end of string symbol.
Finally, Karttunen'stransducers explicitly include both accepting and non-accepting states; our subsequential
transducers represent the fail states only implicitly.

These representational differences between thetwo formalismslead to different ways of handling certain
classes of phonological rules, particularly those that depend on the context to the right of the affected symbol.

The subsequentia transducer does not emit any output until enough of the right hand context has been
seen to determine how theinput symbol isto berealized. Noticein the transducer in Figure 1 that no outputis
emitted upon seeing a‘t” when the machine is at state 1. Rather, the machine goesto state 2 and waitsto see
if the next input symbol is the requisite unstressed vowel; depending on this next input symbol, the machine
will emitthe’t’ or a’dx’ aong with the next input symbol when it makes thetransition from state 2 to state O.

In contrast, the non-deterministic two-level-style transducer shown in Figure 2 has two possible arcs
leaving state 1 upon seeing a't’, one with 't’ as output and one with "dx’. If the machine takes the wrong

Figure 1: Subseguential Transducer for English Flapping: Labels on arcs are of the form (input sym-
bol):(output symbol). Labels with no colon indicate the same input and output symbols. ‘V' indicates any
unstressed vowel, 'V’ any stressed vowel, ‘dx’ aflap, and ‘C’ any consonant other than ‘t’, ‘r’ or ‘dx’. ‘# is
the end of string symbol.

transition, the subsequent transitions will leave the transducer in a non-accepting state, or a state will be
reached with no transition on the current input symbol. Either way, the transduction will fail.

Generating a surface form from an underlying form is more efficient with a subseguential transducer
than with a nondeterministic transducer, as no search is necessary in a deterministic machine. Running the
transducer the other way to parseasurface into possibleunderlying forms, however, remains non-deterministic
in subsequentia transducers. In addition, a subsequentia transducer may require many more states than a
non-deterministic transducer to represent the same rule (thiswill be discussed in further detail in §7.) Our
reason for chosing subsequential transducers, then, is solely that efficient techniques exist for learning them,
aswe will seein the next section.

3 TheOSTIA Algorithm

Our phonologicd-rule induction agorithm is based on augmenting the Onward Subsequential Transducer
Inference Algorithm (OSTIA) of Oncinaet al. (1993). This section outlines the OSTIA agorithm in order
to provide background for the modifications described in the remainder of the paper. For further detail, see
Oncinaet al. (1993).

OSTIA takes as input a training set of input-output pairs. The agorithm begins by constructing a tree
transducer which covers all thetraining samples according tothefollowingprocedure: A branchisaddedtothe
tree for each input string by following a path from theinitia state of the machine with one arc corresponding
to each symbol in theinput string. When there is no move on the next input symbol from the present state, a
new branch isgrown on thetree. The entire output string of each transductionisinitially stored as the output
on thelast arc of the transduction, that is, the arc corresponding to the end of string symbol. An example of
an initia treetransducer constructed by this processis shown in Figure 3.

Asthe next step, the output symbols are “pushed forward” as far as possible towardsthe root of the tree.
This process begins at the leaves of the tree and worksitsway to theroot. At each step, the longest common
prefix of the outputson all the arcs leaving one state isremoved from the output strings of all the arcs leaving

—1<\

Figure 2: Nondeterministic Transducer for English Flapping

OO0 __ T OO0

Figure 3: Initial Tree Transducer for “ bat”, “ batter”, and “ band” with Flapping Applied ('dx’ indicates a
flap)

the state and suffixed to the (single) arc entering the state. This process continues until the longest common
prefix of the outputs of all arcs leaving each state is the null string — the definition of an onward transducer.
The result of making the transducer of Figure 3 onward is shown in Figure 4.

At this point, the transducer covers al and only the strings of the training set. OSTIA now attempts
to generalize the transducer, by merging some of its states together. For each pair of states (s,t) in the
transducer, the agorithm will attempt to merge s with ¢, building a new state with al of the incoming and
outgoingtransitionsof s and ¢. Theresult of thefirst merging operation on thetransducer of Figure4 isshown
in Figure>5.

A conflict arises whenever two states are merged that have outgoing arcs with the same input symbol.
When this occurs, an attempt is made to merge the destination states of the two conflicting arcs. First,
all output symbols beyond the longest common prefix of the outputs of the two arcs are “pushed back” to
arcs further down the tree. This operation is only allowed under certain conditions which guarantee that
the transductions accepted by the machine are preserved. The push back operation allows the two arcs to
be combined into one and their destination states to be merged. An example of a push back operation and
subsequent merger from a dightly extended domain than the earlier examples is shown in Figure 6. This
method of resolving conflicts repeats until no conflicts remain, or until resolution isimpossible. In the latter

Figure 4: Onward Tree Transducer for “ bat” , “ batter” , and “ band” with Flapping Applied
\@ _ O

Figure5: Result of Merging States 0 and 1 of Figure 4

case, the transducer is restored to its configuration before the merger causing the origina conflict, and the
algorithm proceeds by attempting to merge the next pair of states.

4 ProblemsUsing OSTIA to learn Phonological Rules

The OSTIA agorithm can be proven to learn any subsequentia relationin the limit. That is, given an infinite
sequence of valid input/output pairs, it will at some point derive thetarget transducer from the samples seen so
far. However, when trying to learn phonological rules from linguistic data, thisresult may be too weak. The
necessary number of sample transductionsmay be several timesthesize of any natural language' s vocabulary,
or the necessary sample may require strings that are not found in the language. In particular, systematic
phonological constraints such as syllable structure may make it impossible to obtain the set of examples that
would be necessary for OSTIA to learn the target rule. For example, given atraining set of examples of
English flapping, the algorithm may induce a transducer that realizes an underlying't’ as'dx’ either in the
environment Vr*__V or after any sequence of six consonants. Thisis possible since such a transducer will
accurately cover the training set, as no English words contain six consonants followed by a’t’. The OSTIA
algorithmisavery genera one, making no assumptions about the input or output a phabets of the transducer,

Figure 6: Example Push Back Operation and Sate Merger

or about the target rel ation, beyond the requirement of subsequentiality. Thusthe a gorithm does not have the
language bias which would alow it to avoid such an unnatural transducer.

#:t

Figure 7: Final Result of Merging Process on Transducer from Figure 4

Another unnatural aspect to the transducers produced by OSTIA is their tendency toward “clumping”.
Thisisillustrated by thearcswith out “b ag” and “nd” inthetransducer in Figure 7, or even Figure4. Because
OSTIA moves al the output symbols asfar as possibletowardsthe root of the initial tree, its default behavior
isto emit theremainder of the output string for atransduction as soon as enough i nput symbol s have been seen
to uniquely identify the input string in the training set. While the push back operations performed during the
process of merging states will cause most of the clumps of output symbolsto be spread out, many will remain
unlessthetraining set covers all possible sequences of input symbolsrelatively densely. Using datafrom the
lexicon of anatural language, such dense coverage is not likely. The clumping of output symbols resultsin
machines which may, seemingly at random, insert or delete sequences of four or five phonemes, something
which is linguigtically implausible. In addition, the incorrect distribution of output symbols prevents the
optimal merging of states during the learning process, resulting in large and inaccurate transducers.

OSTIA'slack of language bias aso leads to cases in which it is unable to generalize from the input data.
or generalizesin an unnatural manner, causing it to perform poorly on thetest set. Anexample of an unnatural
generaization is shown in 7, the final transducer induced by OSTIA on the three word training set of Figure
3. While this transducer does correctly handle the training examples, it is linguistically unnatural, and we
expect it to do poorly on any test set. For example, the transducer of Figure 7 will insert an’ae’ after any 'b’,
and delete any 'a€’ from the input. Perhaps worse, it will fail completely upon seeing any symbol other than
"er’ or theend of string symbol after a’t’. Whileit might be unreasonableto expect any transducer trained on
three samplesto be perfect, the transducer of Figure 7 illustrates on asmall scale a number of waysin which
the generdizations of OSTIA agorithm may be made more natural linguistically.

In a number of other cases, OSTIA is unable to generdize at all. For example, a large number of the
errors encountered when running transducers learned by OSTIA on test data are ssimply cases of falling off
the transducer, that is, having no next arc for the next input symbol. For example the transducer of Figure 7
will fail on any word that does not begin with'b’, "a€’, 'n’, or 't’. Again, the induced transducers must have
away to guess the next move in such cases by generdizing from observed data.

Similarly, if the OSTIA agorithmis training on cases of flapping in which the preceding environment is
every stressed vowel but one, thealgorithmhas noway of knowingthat it can safely generalize the environment
to dl stressed vowels. The algorithm needs knowledge about classes of phonemes (i.e., the concepts ‘ vowel’
or ‘stressed vowe’) to fill in accidental gapsin training data coverage.

The next two sections summarize our work in adding two kinds of language bias to OSTIA. Alignment
informationisused to avoid the unnatural clumping phenomena, and phonol ogical feature informationisused
to generalize rulesin a phonological natural way.

5 Using Alignment I nfor mation

Our first modification of OSTIA was to add the bias that, all things being equal, the surface string of phones
should resembl e the underlying string of phones. That is, as a default, a phoneme isredized asitself, or asa
phonologically similar phone.

This bias is a natura one for phonological strings; besides two-level phonology, this bias was also a
fundamenta tenet of natura phonology. As §4 discussed, OSTIA lacks such a bias by default since the
technique of pushing the output symbols of the initial tree transducer as far forward as possible makes no
assumptions about the correspondence between symbolsin the input and output strings, although the merging
process will often push the output symbols back to their correct places in the transducer.

In order to add thisinformation, the al gorithm guesses the most probabl e phoneme to phoneme alignment
between theinput and output strings, and uses thisinformationto more sensibly distribute the output symbols
among the arcs of theinitial tree transducer.®

The modification proceeds in two stages. First, a dynamic programming method is used to distribute
output symbols among the arcs of the tree transducer built at the start of the learning process. This is
demonstrated for the word “importance” in Figures 8 and 9.

s
s

Figure 8: Alignment of “importance” with flapping, r-del etion and t-insertion

:ih:ih:1 m:EC2> p:F@oalzoa»l@r:(T@t:dxCGah:E@ n:F@s:t.s@

Figure9: Resultinginitial transducer for “importance’

ih m p oal r t

T /T

ih m p oal dx

t

The alignment uses the a gorithm of Wagner & Fischer (1974), which cal culates the insertions, del etions,
and substitutionswhich make up the minimum edit distance between the underlying and surface strings. The
costs of edit operations are based on phonetic features; we used 26 binary articulatory features. The cost
function for substitutionswas equal to the number of features changed between the two phonemes. The cost
of insertions and deletions was 6 (roughly one quarter the maximum possible substitution cost). From the
sequence of edit operations, a mapping of output phonemes to input phonemes is generated according to the
followingrules:

e Any phoneme maps to an input phoneme for which it substitutes

¢ Inserted phonemes map to the input phoneme immediately following thefirst substitution to the left of
the inserted phoneme

Second, when adding a new arc to the tree, all the unused output phonemes up to and including those
which map to thearc’s input phoneme become the new arc’s output, and are now marked as having been used.
When walking down branches of the tree to add a new input/output sample, the longest common prefix, n, of
the sampl€’'s unused output and the output of each arc iscalculated. The next n symbols of the transduction’s
output are now marked as having been used. If the length, |, of the arc’s output string is greater than n, itis

1By using the new distribution of output symbols along the arcs of the initial tree transducer, we are no longer guaranteed that it
is onward. The onwardness of the transducer is an invariant of the unmodified algorithm, as indicated by the name OSTIA (Onward
Subsequential Transducer Inference Algorithm). However, onwardnessis not essential to the correctness of the algorithm, and even the
final transducersinduced by our new method tend to be onward.

necessary to push back the last | —n symbols onto arcs further down the tree. A tree transducer constructed
by thisprocess is shown in Figure 10, for comparison with the unaligned version in Figure 4.

Figure 10: Initial Tree Transducer Constructed with Alignment Information: Note that output symbols have
been pushed back across state 3 during the construction

Results of our alignment algorithm are summarized in §7. The distribution of output symbols resulting
from the alignment constrains the merging of states early in the merging loop of the algorithm by making it
less likely that the output symbolsof conflicting arcs can be pushed back. Interestingly, preventing the wrong
states from merging early on allows more merging later, and resultsin more compact transducers.

6 Generalizing Behavior With Decision Trees

In order to alow OSTIA to make natural generalizationsin itsrules, we added a decision tree to each state of
the machine, describing the behavior of that state. For example, the decisiontree for state 2 of the machinein
Figure 1lisshownin Figure 11. Notethat if the underlying phoneisan unstressed vowel ([-cons,-stress]), the
machine outputs aflap, followed by the vowel, otherwiseit outputsa‘t’ followed by the underlying phone.

cons
/\
stress 2

1 2

Outcomes:

1: Output: dx [], Destination State: 0

2: Output: t [], Destination State: 0

3: On end of string: Output: t, Destination State: 0

Figure11: Example Decision Tree: This tree describes the behavior of State 2 of the transducer in Figure 1.
[] inthe output string indicates the arc’s input symbol (with no features changed).

The decision trees describe the behavior of the machine at a given state in terms of the next input symbol
by generalizing from the arcs leaving the state. I1n order to to this, we need a way of describing the output
of an arc in terms of itsinput symbol. Thisis quite straightforward if, for example, the output consists of
one phoneme, identical to the input phoneme. Often, however, because of insertions or deletions or mere
context dependencies, the output phoneme on an arc corresponds not to the arc’s input phoneme but rather

to some position earlier in the string. The arc may aso have null output, or may have an output string of
several phonemes. In such cases, we wish to make generalizations such as “at this state, on any consonant
input phoneme, emit 'a followed by the input consonant, and jump to state number 7.

Such generalizations are made more easily by using the alignment information generated in the first step
of the training process. Each arc is marked when it is created with the index of the output phoneme (if any)
to which the input phoneme corresponds in the output string. During the merging step of the algorithm, the
merging of otherwisesimilar arcswith different stored indicesisdisallowed. (In practice, the other constraints
generally prevent thisfrom happening anyway.)

For each state, the arcs leaving the state were classified into groups that agree on each of the following
features:

e theindex i of the output symbol corresponding to the input symbol
o thedifference of the phonetic feature vectors of the input symbol and symbol i of the output string
o theprefix of lengthi — 1 of the output string

the suffix of the output string beginning at positioni + 1

After the process of merging states terminates, a decision tree is induced at each state to classify the
outgoing arcs. The branches of the decision tree are labeled with phonetic feature values of the arc’s input
symbol, and the leaves of the tree correspond to the groups described above. The same 26 binary phonetic
features used in calculating edit distance was used to classify phonemes in the decision trees. Arcs whose
input isthe end of string symbol are not included in the decision trees, but rather simply left asis.

Using phonetic features to build a decision tree guarantees that each leaf of the tree represents a natural
class of phonemes, that is, aset of phonemes that can be described by specifying values for some subset of the
phonetic features. Thus if we think of the transducer as a set of rewrite rules, the decision tree expresses the
preceding context as a regular expression of natural classes of preceding phonemes. Because these classes
are expressed in terms of phonetic features, the transducers augmented with the decision treeswill generaize
to new contexts which share phonetic features with the training contexts.

Some induced transducers may need to be generalized even further, since the input transducer to the
decisiontreelearning may have arcswhich areincorrect merely because of accidental prior structure. Consider
again the English flapping rule, which appliesin the context of a preceding stressed vowel. Our algorithm
first learned a transducer whose decision treeis shown in Figure 12. In thistransducer al arcs leaving state
0 correctly lead to the flapping state on stressed vowels, except for those stressed vowel s which happen not
to have occurred in the training set. For these unseen vowels (which consisted of the rounded diphthongs
‘oy’ and ‘ow’ with secondary stress), the transducers incorrectly returnsto state 0. In this case, we wish the
algorithm to make the generalization that the rule applies after all stressed vowels.

Thistype of generalization can be accomplished by pruning the decisiontrees at each state of the machine.
Pruningisdone by stepping through each state of the machine and pruning as many decision nodesas possible
at each state. The entiretraining set of transductionsis tested after each branch is pruned. If any errors are
found, the outcome of the pruned node’sother childistested. If errorsare still found, the pruning operationis
reversed. This process continuesat thefringe of the decision tree until no more pruningispossible. Figure 13
shows the correct decision tree for flapping after pruning.

The process of pruning the decision trees is complicated by the fact that the pruning operations allowed
at one state depend on the status of the trees at each other state. Thusit is necessary to make several passes
through the states, attempting additiona pruning at each pass, until no more improvement is possible. In
addition, testing each pruning operation against the entiretraining set is expensive, but in the case of synthetic
datait gives the best results. For other applicationsit may be desirable to keep a cross validation set for this
purpose.

1/ re\se
>

\2

rounded
- +
w-offglide y-offglide
AN AL
2 prim—stress high 1
_/ \+ —, \

outcomes: 1 2 2 prim-stress
1: Output: [], Destination State: O _/ \+
2: Output: [], Destination State: 1
On end of string: Output: nil, Destination State: 0 1 2

Figure 12: Decision Tree Before Pruning: The initial state of the flapping transducer

stress
/ \
1 2
Figure 13: The Same Decision Tree After Pruning

7 Resultsand Discussion

We tested our induction algorithm on a synthetic corpus of 49,280 input/output pairs. Each pair consisted of
an underlying and a surface pronunciation of an individua word of English. The underlying string of each
pair was taken from the phoneme-based CMU pronunciation dictionary. The surface string was generated
from each underlying form by mechanically applying the one or more rules we were attempting to induce in
each experiment.

In our first experiment, we applied the flapping rulein (2) to training corporaof between 6250 and 50,000
words. Figure 14 shows the transducer induced from 50,000 training samples, and Figure 15 shows some
performance results.

2 t—dae/Vr VvV

As can be seen from Figure 15, the use of alignment information in creating the initia tree transducer
dramatically decreases the number of states in the learned transducer and the performance on test data. The
improved algorithm induced a flapping transducer with the minimum number of states with as few as 6250
samples. The use of alignment information a so reduced the learning time; the additional cost of calculating
alignments is more than compensated for by quicker merging.

The algorithm al so successfully induced transducers with the minimum number of statesfor thet-insertion
and t-del etion rules bel ow, given only 6250 samples.

For the r-deletion rule in (3), the algorithm induced a machine which was not the theoretical minimal
machine, as Figure 16 shows. We discuss these results bel ow.

3 r — 0/ [+vocalic] — [+consonantal]

Figure 14: Flapping Transducer Induced from 50,000 Samples

OSTIA w/o Alignment OSTIA w/ Alignment

Samples | States % Error | States % Error
6250 19 2.32 3 0.34
12500 257 16.40 3 0.14
25000 141 4.46 3 0.06
50000 192 314 3 0.01

Figure 15: Results Using Alignment Information on English Flapping

In our second experiment, weapplied our learning a gorithmto amore difficult problem: inducingmultiple
rules at once. Setting r-deletion aside for present, a data set was constructed by applying the t-insertion rule
in (4), thet-deletion rulein (5) and the flapping rule already seen in (2) one after another. Asthese rulesdo
not affect one another’s environment, the order of their application is not significant. The minimum number
of states for a subsequential transducer performing the composition of the three rulesis five. Asisseen in
Figure 17, atransducer of minimum size was obtained with 12500 or more sample transductions.

4 0—t/n—s

+vocalic
©) t—0/n— [—stress]

The effects of adding decision tress at each state of the machine for the composition of t-insertion, t-
deletion and flapping are shown in Figure 18. By making it impossible to fall of the transducer, errors are
reduced by about 80%. Pruning the decision trees further reduces errors to under one in 10000.

Figure 19 showsthefinal transducer induced from this corpus of 12,500 wordswith pruned decision trees.

An anaysis of errors in the induction suggests three separate ways in which the induction agorithm
could be improved. Our first problem was the difficulty of inducing a transducer for r-deletion. The problem
was not deletion per se, since our algorithm successfully learns the t-deletion rule. Rather, we believe that
the difficulty with r-deletion is the broad context in which the rule applies: after any vowel and before any

consonant. Since our phoneme set distinguishesthree degrees of stressfor each vowel, the a phabet sizeis72;

R-deletion
Samples | States % Error
6250 4 0.48
12500 3 0.21
25000 6 0.18
50000 35 0.30

Figure 16: Results on R-deletion using Alignment Information

10

OSTIA w/Alignment

Samples | States % Error
6250 6 0.93
12500 5 0.20
25000 5 0.09
50000 5 0.04

Figure 17: Results on Three Rules Composed

Method | States % Error
OSTIA 329 22.09

Alignment 5 0.20
Add D-trees 5 0.04
Prune D-trees 5 0.01

Figure 18: Results on Three Rules Composed 12,500 Training, 49,280 Test

we believe thiswas simply too large for the a gorithm without some prior concept of ‘vowel’ and ‘ consonant’.
While our decision tree augmentation adds these concepts to the algorithm, it only does so after the initial
transducer has been induced, and so cannot help in building the initial transducer. We need some method of
interleaving the generdization of phonemes into classes, performed by the decision trees, and the induction
of the structure of the transducer by merging states. Making generalizations about input phonemes would in
effect reduce the alphabet size on the fly, making structure-learning easier.

An examination of thefew errors (three samples) in the induced flapping and three-rul e transducers points
out another flaw in our model. While the learned transducer correctly makes the generalization that flapping
occurs after any stressed vowdl, it does not flap after two stressed vowelsin a row. Upon seeing a stressed
vowel at theinitial state, a transition is made to the state from which flapping can occur. However, from this
state, seeing another stressed vowel causes a transition back to the initial state. Thisis possible because no
sampl es containing two stressed vowelsin arow (or separated by an 'r’) immediately followed by aflap were
in thetraining data.

This transducer will thusflap a’t’ after any odd number of stressed vowels, rather than simply after any
stressed vowel. Such a rule seems quite unnatura phonologically, and makes for an odd context-sensitive
rewriterule. Any sort of simplest hypothesiscriterion applied to a system of rewriteruleswould prefer arule
such as)

t—de/V_V

toarulesuch as o

t—=de/V(VVY'_V
which is the equivaent of the transducer learned from the training data. Such arule, however, is perfectly
natural for atransducer. Thissuggeststhat, although thetraditional formalism of context-sensitiverewriterules
may be no more powerful than finite transducers, it containsimplicit generalizations about how phonol ogical
rules usualy work that are not present in the transducer system. We hope that further experimentation will
lead to away of expressing this language bias in our induction system.

Finally, subsequential transducers are an inefficient representation of some sorts of rules. While all the
rules discussed above can be represented with transducers of two or three states, rules applying to an entire
class of phonemes can lead to an explosion in the number of necessary states. Thisis because the transducer
must wait to see theright hand context of arulebefore emitting therul€ s output, and must theref ore remember
what that output isto be. One example isword-fina devoicing of obstruents:

[+obstruent | — [—voiced | /— #

11

Figure 19: Three Rule Transducer Induced from 12,500 Samples

Inthiscase, aseparate state must be created for each obstruent subject to devoicing. Thetransducer would
jump to the one of these states, without emitting any output, upon seeing the appropriate obstruent. Upon
seeing the end of word symbol at this state, the corresponding unvoiced obstruent will be emitted. Upon
seeing any other next symbol, the original voiced obstruent will be emitted.

One way around this would to add a memory to the model. The transducer could keep track of the input
symbols seen so far. Just as the generalized arcs can now specify one of their output symbols as being the
input symbol with certain phonetic features changed, they would be able to reference previousinput symbols.
This method would achieve best results if used with an algorithm that interleaves the merging of states and
generalizations of arcs, so that atransducer with alarge number of states would not have to befirst correctly
learned before merging states by using the memory mechanism.

8 Redated Work

Recent work in the machine learning of phonology includes agorithms for learning both segmental and
non-segmenta information. Non-segmental approachesinclude those of Daglemans et al. (1994) for learning
stress systems, as well as approaches to learning morphology such as Gasser's (1993) system for inducing
Semitic morphology, and Ellison’s (1992) extensive work on syllabicity, sonority, and harmony. Since our
approach learns solely segmental structure, amore relevant comparison iswith other algorithmsfor inducing
segmental structure; thisincludes SPE phonologica rules as well as modern autosegmental association rules.

Johnson (1984) gives one of the first computational algorithms for phonological rule induction. His
algorithm worksfor rules of theform

6) a—b/C

where C is the feature matrix of the segments around a. Johnson’s algorithm sets up a system of constraint
equations which C must satisfy, by considering both the positive contexts, i.e.,, al the contexts C; in which
ab occurs on the surface, as well as all the negative contexts C; in which an a occurs on the surface. The
set of all positive and negative contexts will not generally determine a unique rule, but will determine a set
of possible rules. Johnson then proposes that principles from universal grammar might be used to choose
between candidate rules, athough he does not suggest any particular principles.

12

Johnson’s system, while embodying an important insight about the use of positive and negative contexts
for learning, did not generalize to insertion and deletion rules, and it isnot clear how to extend his system to
modern autosegmental phonological systems. Touretzky et al. (1990) extended Johnson’sinsight by using the
version spaces agorithm of Mitchell (1981) to induce phonological rules in their Many Maps architecture.
Rulesin their architecture resemble a three-level version of the two-level rules of Koskenniemi (1983). Like
Johnson'’s, their system | ooks at the underlying and surfacerealizations of single segments. For each segment,
the system uses the version space algorithmto search for the proper statement of the context. The model also
has a separate agorithm which handles harmonic effects by looking for multiple segmenta changes in the
same word, and has separate processes to deal with epenthesisand deletion rules. Touretzky et al.’s approach
seems quitepromising; our useof decisiontreesto generalize each stateisasimilar useof phonological feature
information to form generalizations. We hope that in making our generalization operator more on-line, we
can make use of some of the negative context evidence that helps Johnson’s and Touretzky et al.’s systems
converge.

Riley (1991) and Withgott & Chen (1993) propose a decision-tree approach to segmental mapping. A
decision tree is induced for each phoneme, classifying possible redizations of the phoneme in terms of
contextual factors such as stress and the surrounding phonemes. The technique's major advantages are its
probabilistic and data-driven nature, as well as its ability to generalize based on phonological information.
The disadvantage of the decision-tree technique by itself is that it misses generalizations about the behavior
of similar phonemes; the decision treefor each phonemeislearned separately. In addition, no generalizations
are made about similar context phonemes. In a transducer based formalism, generalizations about similar
context phonemes naturally follow from generalizations about individua phonemes' behavior, as the context
is represented by the current state of the machine, which in turn depends on the behavior of the machine on
the previous phonemes.

Thedecisiontreeframework a so makes |ong distance dependencies harder to | earn than doesatransducer-
based framework. To model rules with more distant contexts, such as vowel harmony rules, one must add
more distant phonemes to the features used to learn the decision tree. This complicates the learning process
and makes theresulting trees unwieldy. To represent such avowel harmony rule, atransducer can enter a new
state upon seeing the trigger for the harmony and remain in this state, or a set of related states, for aslong as
the effects of the harmony last.

9 Conclusion

Inferring finite state transducers seems to hold promise as a method for learning phonological rules. Both of
our initial augmentations of OSTIA to biasit toward phonologica naturaness improve performance. Using
information on the alignment between input and output strings allows the algorithm to learn more compact,
more accurate transducers. The addition of decision trees at each state of the resulting transducer further
improves accuracy and resultsin phonologically more natural transducers. We believe that further and more
integrated uses of phonological natural ness, such as generalizing across similar phenomena at different states
of the transducer, interleaving the merging of states and generalization of transitions, and adding memory to
the model of transduction, could help even more.

Our current algorithm and most previous algorithms are designed for obligatory rules. These agorithms
faill completely when faced with optional, probabilistic rules, such as flapping. This is the advantage of
probabilistic approaches such as the Riley/Withgott approach. One area we hope to investigate is the
generalization of our agorithm to probabilistic rules with probabilistic finite-state transducers, perhaps by
augmenting PFST induction techniques such as Stol cke & Omohundro (1994) with insi ghtsfrom phonol ogical
natural ness.

Besides aiding in the development of a practical tool for learning phonological rules, our results point to
the use of constraints from universal grammar as a strong factor in the machine and possibly human learning

13

of natura language phonol ogy.

Acknowledgments

Thanks to Jerry Feldman, Isabel Galiano-Ronda, Jose Oncina, Andreas Stolcke, Gary Tajchman, Lauri Karttunen,
and Eric Fosler. Thiswork was partially funded by ICSI.

References

DAELEMANS, WALTER, STEVEN GILLIS, & GERT DURIEUX. 1994. The acquisition of stress: A data-oriented
approach. Computational Linguistics 208.421-451.

ELLISON, T. MARK, 1992. The Machine Learning of Phonological Sructure. University of Western Australia
dissertation.

GASSER, MICHAEL, 1993. Learning wordsintime: Towardsamodular connectionist account of theacquisition
of receptive morphology. Draft.

JOHNSON, C. DoUGLAS. 1972. Formal Aspects of Phonol ogical Description. The Hague: Mouton.

JOHNSON, MARK. 1984. A discovery procedure for certain phonological rules. In Proceedings of the Tenth
International Conference on Computational Linguistics, 344—-347, Stanford.

KAPLAN, RONALD M., & MARTIN KAY. 1994. Regular models of phonological rule systems. Computational
Linguistics 20.331-378.

KARTTUNEN, LAURI. 1993. Finite-state constraints. In The Last Phonological Rule, ed. by John Goldsmith.
University of Chicago Press.

KOSKENNIEMI, KiMMO. 1983. Two-level morphology: A general computational model of word-form recog-
nition and production. Publication No. 11, Department of General Linguistics, Univ of Helsinki .

MITCHELL, ToM M. 1981. Generalization assearch. In Readingsin Artificial Intelligence, ed. by BonnieLynn
Webber & NilsJ. Nilsson, 517-542. Los Altos: Morgan Kaufmann.

ONCINA, JOSE, PEDRO GARCIA, & ENRIQUE VIDAL. 1993. Learning subsequential transducers for pattern
recognition tasks. |EEE Transactions on Pattern Analysis and Machine Intelligence 15.448-458.

RILEY, MICHAEL D. 1991. A statistical model for generating pronunciation networks. 1n IEEE ICASSP-91,
737-740.

STOLCKE, ANDREAS, & STEPHEN OMOHUNDRO. 1994. Best-first model merging for hidden Markov model
induction. Technica Report TR-94-003, International Computer Science Institute, Berkeley, CA.

TOURETZKY, DAVID S, GILLETTE ELVGREN 111, & DEIRDRE W. WHEELER. 1990. Phonological ruleinduction:
An architectural solution. In Proceedings of the 12th Annual Conference of the Cognitive Science Society
(COGSCI-90), 348-355.

WAGNER, R. A., & M. J. FIsCHER. 1974. The string-to-string correction problem. Journal of the Association
for Computation Machinery 21.168-173.

WITHGOTT, M. M., & F. R. CHEN. 1993. Computation Models of American Speech. Center for the Study of
Language and Information.

14

