

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. @ Suite 600 o Berkeley, California 94704-1198 e (510) 643-9153 e FAX (510) 643-768

Explicit and Implicit
Indeterminism: Reasoning About
Uncertain and Contradictory
Specifications of Dynamic
Systems

Sven-Erik Bornscheuer and Michael Thielscher
TR-96-009
February 1996

Abstract

A high-level action semantics to specify and reason about dynamic systems is presented
which supports both uncertain knowledge (taken as explicit indeterminism) and contra-
dictory information (taken as implicit indeterminism). We start by developing an action
description language for intentionally representing nondeterministic actions in dynamic
systems. We then study the different possibilities of interpreting contradictory specifi-
cations of concurrent actions. We argue that the most reasonable interpretation which
allows for exploiting as much information as possible is to take such conflicts as implicit
indeterminism.

As the second major contribution, we present a calculus for our resulting action seman-
tics based on the logic programming paradigm including negation-as-failure and equational
theories. Soundness and completeness of this encoding wrt the notion of entailment in
our high-level action language is proved by taking the completion semantics for equational
logic programs with negation.

* Address of the first author: Wissensverarbeitung, Informatik, TU Dresden, 01062 Dresden (Germany). The
second author is currently on leave from FG Intellektik, TH Darmstadt.

i

1 Introduction

Uncertainty is a general challenge which comes with different faces. If an agent reasons about a
given representation of a dynamic system, he might be uncertain about the effects of particular
actions; one possible reason for such an uncertainty is the designer of this representation has
intentionally specified these actions to have nondeterministic effects. There are good reasons for
doing this: the designer might not know the exact causal relationship between the action and
the observed effects, or the action might be chaotic, etc. In the very first part of this paper,
we develop a high-level representation language and semantics which allows for intentionally
specifying nondeterministic actions with randomized effects.

Our language is based on the Action Description Language A [Gelfond and Lifschitz, 1993],
which is appealing because of the simple, elegant and natural way in which the effects of actions
are described. A formal introduction to this language can be found in the next section, 2, and
our extended language dealing with explicit indeterminism, Ay , is then developed in Section 3.

Aside from being faced with explicitly represented indeterminism, an agent might also be
uncertain about a given specification when it turns out to be contradictory. Intelligent beings
are most often able to evaluate contradictory information to an appropriate extent. For instance,
imagine yourself asking two passers-by for the shortest way to the train station. The first one
answers: “Turn right, and you will get there in five minutes,” while the second one answers:
“Turn right, and you will get there in ten minutes.” Reasoning about these answers, you find
out that they are contradictory; the provided information is inconsistent and, hence, cannot be
true. However, since both passers-by are in agreement with their recommendation to turn right,
you would assume this part of the information to be sound; you are only left with uncertainty
about the time it takes to reach the station.

One should be aware of the difference between uncertain information explicitly stated as such,
like “you will arrive in five or in ten minutes,” and contradictory information like the two answers
above. Contradictory information cannot be true, so it has to be interpreted appropriately if
nonetheless some benefit shall be derived from it. Surely, any such interpretation may become
delicate and, therefore, has to be carefully selected in view of the application at hand. When
machines are used to reason about complex domains, it is highly likely that an inconsistency
occurs in the corresponding formal specification; e.g., we know from Software Engineering that
in general formalizations of non-trivial scenarios are incorrect. Therefore, if a reasoning system
detects an inconsistency in the information that has been provided, this only gives certainty
about circumstances which had to be assumed anyway. But it still has to be decided how this
system has to act in such a situation.

A typical field where contradictory specifications have to be expected is reasoning about the
concurrent execution of actions in dynamic systems. Most complex dynamic systems include
some kind of concurrency, which is why the ability of describing simultaneous actions is of central
interest in Al. For instance, to open a door locked by an electric door opener an autonomous
robot has to press a button and to push the door concurrently. Hence, knowing the effects of the
separate execution of these actions only is not sufficient to be able to open the door. Since it is of
course impractical to define the effects of the concurrent execution of each possible combination
of actions explicitly, it is necessary to infer these effects from the various descriptions of the
individual actions that are involved. In certain cases, some of these descriptions may however
propose contradictory effects. The crucial question then is how to interpret such contradictions.

This question will be discussed in Section 4. To this end, we use a recent extension of the
Action Description Language A which is called Ag and supports representing and reason-

ing about the concurrent execution of actions [Baral and Gelfond, 1993]. In Subsection 4.1,
we discuss different explicit methods which enable the designer of a representation to prevent
the aforementioned conflicts by providing more specific information regarding particular con-
currently executed actions. We will argue that Ao uses the most expressive way and, hence,
is most suitable as a basis for our further discussions. The language Ac is recapitulated in
Subsection 4.2.

In Subsection 4.3, we then examine the various possibilities to interpret contradictory infer-
ences caused by combining action descriptions. Suggesting a different point of view than the one
implicitly underlying A¢ , we present a new language called Axce , which combines our preced-
ing development regarding explicit indeterminism, the language Ay , with Ac and defines a new
way of successfully reasoning about inconsistent specifications of concurrently executed actions.
The crucial idea is to interpret such contradictions as implicit indeterminism. To this end, we
consider uncertain the pieces of information which cause the contradiction, while all effects on
which the involved action descriptions agree are assumed to occur as specified. Thereby, our
language enables us to still infer reasonable information from contradictory descriptions, while
such inferences are neither possible in A nor in A¢ .

As the second major contribution of this paper, we then present a sound and complete
translation from domains specified in our high-level action language Ancc into logic pro-
grams. Our translation follows an approach originally introduced in [Hélldobler and Schnee-
berger, 1990], which is based on the reification of entire situation descriptions by formally
treating them as terms. In contrast to situation calculus [McCarthy, 1963; McCarthy and
Hayes, 1969], where situation terms are abstract objects, the former approach employs sit-
uation terms consisting of an explicit collection of those fluents which hold in the situation
being represented. Executing actions is then modeled by manipulating such collections of
fluents, which is why we call the underlying method fluent calculus, FC.?> An equational
logic program suitable for encoding Awncc, consequently named FCnce, is developed in
Subsection 5.1. In Subsection 5.2, we analyze the semantics of this program given by its
completion, and in Subsection 5.3 we prove its soundness and completeness wrt the high-
level action semantics given by Ance . Finally, in Subsection 5.4 we discuss an adequate
computation mechanism four our program, namely, SLDENF-resolution [Shepherdson, 1992;
Thielscher, 1996a), which is based on SLD-resolution but with the standard unification proce-
dure replaced by a special equality unification algorithm and negation-as-failure used to treat
negative subgoals.

Our translation allows automated reasoning about dynamic systems following the concepts
captured by Ancc . Moreover, the translation of such high-level languages into different ap-
proaches designed for reasoning about dynamic systems, actions, and change allows to compare
the possibilities and limitations of these approaches in a precise and uniform way. As ar-
gued in, e.g., [Gelfond and Lifschitz, 1993; Sandewall, 1993; Sandewall, 1994; Thielscher, 1994;
Thielscher, 1995b], doing this is in favorable contrast to the traditional way of justifying new
approaches with reference to a few standard examples such as the blocksworld or the famous
“Yale Shooting Scenario” and its enhancements. To this end, translations of A and some of
its extensions, for instance, into a number of existing action calculi have recently been used for
the purpose of comparison and to study their range of applicability (see, e.g., [Gelfond and Lifs-
chitz, 1993; Dung, 1993; Kartha, 1993; Denecker and de Schreye, 1993; Baral and Gelfond, 1993;

! Ax means “action formalism supporting nondeterministic (N') actions based on the Action Description
Language (A),” and Ancc is as Ax but in addition supports concurrent actions and conflict solving.
We are grateful to Stuart Russell for suggesting this name.

Kartha and Lifschitz, 1994]).

2 Describing Simple Action Scenarios

We briefly review the concepts underlying the Action Description language A as defined in [Gel-
fond and Lifschitz, 1993].

Definition 1 A domain description D consists of two disjoint and non-empty sets of symbols
Fp and Ap called fluent names and unit actions, respectively. A fluent literal is a fluent name
or its negation, the latter of which is denoted by f.
Furthermore, D consists of a set Vp of value propositions (v-propositions, for short), which
are expressions of the form
¢ after [ai,...,an) (1)

where aq,...,a, (m > 0) are unit actions and ¢ is a fluent literal.
Finally, D includes a set Ep of effect propositions (e-propositions, for short), which are
expressions of the form
a causes { if ¢1,...,¢, (2)

where @ is a unit action and ¢ as well as ¢1,...,¢, (n > 0) are fluent literals.]

A v-proposition (1) should be interpreted as: ¢ has been observed to hold after having executed

the sequence of unit actions [ay,...,a;]. In case m =0, (1) is usually written initially /.
An e-proposition (2) should be read as: Executing unit action a causes £ to hold in the resulting
state provided the conditions ¢q,...,¢, hold in the current state.

Example 1 The Yale Shooting domain [Hanks and McDermott, 1987] can be modeled using
the fluent names Fp, = {loaded, alive} denoting the state of a gun and a turkey, respec-
tively. The effects of the unit actions Ap, = {load, wait, shoot} are specified by these three
e-propositions:

load causes loaded

shoot causes loaded (3)

shoot causes alive if loaded

In words, loading the gun causes it to be loaded, shooting with the gun causes it to become
unloaded and also shoots the turkey provided the gun was loaded. Waiting is assumed to have no
effects at all. The following two v-propositions then encode the Stanford Murder Mystery [Baker,
1989]:

initially alive (4)
alive after [wail, shoot]
In words, the turkey was alive at the beginning but not after having executed wait followed by
shoot . [

Given a domain description D, a state o is simply a subset of the set of fluent names Fp .
Forany f € Fp,if f € o then f is said to hold in o, otherwise f holds. For instance, alive
and loaded hold in the state o = {alive} .

The given effect propositions implicitly determine the causal behavior of the dynamic system
being modeled:

Definition 2 Let D be a domain description in A. Furthermore, let ¢« € Ap be a unit
action, £ € FpU{f|f € Fp} a fluent literal, and ¢ C Fp a state. Then we say that «

causes [in o iff Fp contains an e-proposition a causes { if ¢q,...,¢, such that each of
€1,...,¢, holds in o. Let
B¢(a,0) = {f€ Fp|a causes fin o} (5)
B¢(a,0) = {f € Fpla causes f in o}

and let ® be a mapping from pairs consisting of a unit action and a state into the set of states,
that is, ® : A x 20 — 2Fp Then ® is a transition function for D iff, for each a € A and
oCFp,

1. Bg(a,0)N Bf(a,0) = {} and
2. ®(a,0)= (o \ Bf(a,0))U Bf(a,0).

In words, By(a,0) contains all fluent names that some e-proposition claims to become true
when executing @ in o while Bf(a,0) contains all fluent names that become false. Apart from
considering new truth values for these affected fluent names, the assumption of persistence is
applied to all remaining fluents.

Example 1 Given the e-propositions in (3), we have, for instance, Bj(load,{alive}) =
{loaded} and Bjy(load,{alive}) = {}; hence, ®(load,{alive}) = {alive, loaded} . The follow-
ing definition provides a complete description of the transition function for the Yale Shooting
scenario according to Definition 2:

@(wait, O') = o
®(load,0c) = o U {loaded} (6)
®(shoot,0) = { o\ {loaded, alive}, if loade.d €o
g, otherwise.

Based on the concept of transition, the semantics for A provides a notion of entailment given
a domain specification:

Definition 3 Let D be a domain description in A. A structure M 1is a pair (og,®)
where oy C Fp—called the initial state—and ® : A x 2> — 2D | Let Mlaraml 1o an
abbreviation for ®(a,, ®(am—1,...,P(a1,00)...)) then a v-proposition f after [a1,...,a,] is
true in structure M iff f holds in the state M[e1:-maml

A structure M = (0g,®) is then called a model of D iff ® is a transition function for D
and every v-proposition in Vp is truein M . A v-proposition v is entailed by D iff v is true
in every model of D . |

Example 2 Let @& be as in (6). Then both structures M; = ({alive},®) and M, =

[wait,shoot

({alive, loaded}, ®) are models of the first v-proposition in (4). Since M; J = {alive} ,
our second v-proposition in (4) is not true in My , whereas JWQ[MM’SMM] = {} shows that M,
is (the only) model for our entire example domain. Since 1\/12[] = {alive, loaded} , this domain

entails, among others, the v-proposition initially loaded , and so can be taken as a solution
to the Stanford Murder Mystery. |

3 Nondeterministic Actions: The Language Ay

A basic assumption underlying A is that the effects of an action are always completely known
and deterministic. As argued in the introduction, one cannot adhere to this idealistic view
of the real world in general since it is impossible to refine descriptions of the world until the
effects of an arbitrary action can always be explicitly computed. The ability of humans to
handle uncertainty, indeterminism, surprising effects etc. very flexibly contrasts sharply with
the necessity of completely determining the effects of actions. This insight has recently led to
several proposals for integrating nondeterministic actions into existing frameworks, e.g. [Briining
et al., 1993; Sandewall, 1994; Kartha and Lifschitz, 1994; Kartha, 1994; Baral, 1995; Lukaszewicz
and Madalinska-Bugaj, 1995). In this section we extend the action description language A so
that indeterminism can be explicitly represented; we call the resulting dialect Ay .

To begin with, the possibility to express nondeterministic actions requires an extended notion
of effect propositions:

Definition 4 Let Fp be a set of fluents and Ap a set of unit actions. An effect proposition
is either of the form
a causes e if e¢1,...,cy

(in what follows called strict e-proposition) or of the form

a alternatively causes ej,...,€, if c1,...,¢y
(in what follows called alternative e-proposition) where @ € Ap and e, eq,..., e, as well as
€1,...,¢, are fluent literals (m,n > 0). [

Example 2 We marginally extend the Russian Turkey scenario as formalized in [Sandewall,
1994] and take this as the running example of this section. To this end, the set of unit actions
used in Example 1 is augmented by an action called spin . The intended meaning is that spinning
causes the gun to become randomly loaded or unloaded regardless of its state before, and if it
becomes unloaded then the person operating it becomes nervous.? The latter is represented by
the additional fluent name nervous. The effects of the new unit action can be specified in Apn
using these two alternative e-propositions:

spin alternatively causes loaded

(7)

spin alternatively causes loaded, nervous

The intended meaning of a set of alternative e-proposition is as follows: If @ is a unit action
and o a state then let

¢ alternatively causes F; if ()

(8)

¢ alternatively causes F; if C(}

be the set of all alternative e-propositions describing a such that Cy,...,(C} simultaneously
hold in o, where each of Fy,Cy,..., E, Cy is a finite (possibly empty) sequence of fluent

3 For sake of simplicity, we assume the gun’s cylinder consist of two chambers, exactly one of which contains a
bullet. Furthermore, executing the action load shall be interpreted as manually selecting the chamber that

is loaded.

literals. Now, if @ is executed in o then nondeterministically one E; € {Fy,..., Fr} becomes
true in the resulting state (that is, all fluent literals e;1,...,€;,, = E; hold in this state). For
instance, if spin is executed in state {alive, loaded} then, following (7), either loaded or else
both loaded and nervous will be true afterwards. Hence, the possible resulting states are
{alive, loaded} and {alive, nervous} , respectively.

Recall that a set of e-propositions in the language A determines a unique transition function
® . Now, however, the possibility of alternative effects forces a redefinition of this notion. At first
glance one might suggest allowing the existence of several different transition functions, each of
which models one of the various alternative effects of an action. Each particular model (og, ®)
would then have to select among these possibilities. E.g., given the e-propositions (7), ® could
be designed such that either ®(spin,0) = o U {loaded} or @(spin,o) = (o \ {loaded}) U
{nervous} , separately for each . However, if ® is such a transition function in a particular
model then the result of spinning the gun will be fixed forever regarding a particular state; e.g.,
it would be impossible to find a model where initially loaded , loaded after [spin]|, and
loaded after [spin, spin] are simultaneously true. This is of course unintended.

For this reason, we adapt a standard concept for dealing with multiple possible successor
states in dropping the idea of ® being a function and using the notion of ® as a relation
between a pair of states and a unit action name instead such that (o,a,0’) € & whenever the
application of a to ¢ might yield ¢’. The following definition of transition in Ay formalizes
the intended treatment of domains involving nondeterministic actions:

Definition 5 Let D be a domain description in Ay and let ® C 2fp x Ap x 2P be a
relation. Then & is a transition relation for D iff the following conditions are satisfied for each
state ¢ C F'p and each unit action a € Ap:

If

¢ alternatively causes F; if ()

(9)

¢ alternatively causes F; if C(}

is the set of all alternative e-propositions in Fp with unit action name @ and which are
applicable in ¢ (that is, each fluent literal occurring in C; holds in o, for each 1 < ¢ < k),
then

1. If £ =0 then wesay that a causes a fluent literal e in o iff Fp contains an e-proposition

a causes e if ¢q,...,c¢, such that each of ¢q,...,¢, holdsin o . Define
By(a,0) = {f € F|acauses fin o}
B(a,0) := {f€ F|a causes fin o}

then Bj(a,0) N Bf(a,0) must be empty,* and we have (0,a,0') € ® iff o' = (o
Bg(a,0))U Bf(a,0).

2. If k>0 then for each A € {1,...,k} we say that a causes a fluent literal e wrt X in o
iff e occursin FE, or Ep contains an e-proposition a causes e if c¢y,...,c¢, such that
each of ¢y,...,¢, holds in o. Define

Bs(a,N\,0) = {f€ F|acauses f wrt Ain o}
Bi(a,M\,0) = {f€ F|acauses f wrt Ain o}

* Otherwise no transition relation for D exists.

then Bf(a,\,0)N Bf(a,\,0) must be empty for each A € {1,...,k},% and we have
(0,a,0") € ® iff there exists some A € {1,...,k} such that o' = (o \ Bs(a,\,0))U
Bs(a, X, 0).

In words, a possible successor state is constructed by accounting for each strict e-proposition; by
selecting one collection of effects Fy (where A € {1,...,k}) among the applicable alternatives,
(9); and by applying the persistence assumption to all remaining fluents.

Example 3 For the Russian Turkey scenario we obtain the following transition relation @ :

(o,spin,o’) € & iff o' = o U{loaded} or o' = (o \ {loaded})U {nervous}
(o, wait,o’) e ® iff o' =0
(o,load, o’y e ® iff o' =0 U {loaded} (10)
(0, shool, o'y € & iff o = { o\ {loaded, alive}, if loade.d €Eo
o, otherwise.

The reader is invited to verify that this relation satisfies the conditions of Definition 5 wrt the
e-propositions (2) and (7).]

Having defined the notion of transition, we now concentrate on defining the concept of a
model in Ap . The purpose of models is, in general, to provide a possible view of the real
world according to given knowledge. In A, where no indeterministic and randomized effects are
allowed, models differ only in their initial state once a transition function is fixed. Now, however,
each concrete model needs additionally state which particular effect occurs whenever alternatives
exist. An additional component for each model, namely, a function ¢ , serves this purpose. More
precisely, ¢ maps action sequences [ay,...,a,] to states, stating that the actual outcome of
applying [a1,...,a,] to the initial state in the model at hand is ¢([a,...,a,]). For instance, if
the initial state is known to be {alive} and we are interested in the consequences of executing the
sequence of unit actions [load, spin, shoot] then the set of models of this domain can be divided
into two classes: Either the gun remains loaded after spinning, or it becomes unloaded. This
is formally captured by requiring that each model have either ¢([load, spin]) = {alive, loaded}
or else ¢([load, spin]) = {alive, nervous} . Now, if we additionally observe that the turkey is
as lively as before after loading, spinning, and shooting then no model of the former class can
explain this. Thus, it is reasonable to conclude that the gun was necessarily unloaded and the
hunter became nervous after [load, spin]. This is illustrated in Figure 1. Note that we would
be unable to obtain this conclusion without ‘recording,” by using ¢, the actual outcome of the
nondeterministic action, spin .

Definition 6 Let D be a domain description in Ay . A structure is a triple (o9, ®,¢) where
oo C Fp, & C 2Fp % Ap x 2Fp and @ A 2Fp guch that®

1. ¢([]) = oo and

2. (e(lar, ...y an]), angr, e([ar,...,an, an41])) € ® for each ay,...,ap,a,41 € Ap (n >
0).

® If not then, as before, no transition relation for D exists.
5By A% we denote the set of all finite lists, including the empty one, whose elements are chosen from Ap .

{alive, loaded} — {}
{alive} —— {alive, loaded}
{alive, nervous}— {alive, nervous}

load spin shoot

Figure 1: Two possible developments in the Russian Turkey scenario given the initial state
{alive}. On the basis of the additional observation that the turkey is alive after loading,
spinning and shooting, we can exclude the upper branch and, thus, safely conclude that the gun
was unloaded after [load, spin] .

A v-proposition { after [ai,...,a,]| is true in such a structure iff ¢ holds in ¢([ay,...,a,)])
(n > 0). Such a structure is a model of D iff & is a transition relation for D and all v-

propositions in Vp are true. A v-proposition v is entailed by D iff v is true in every model
of D. |

In words, the third component ¢ both respects the transition relation ® and is now used to
validate the given v-propositions. We call a domain description in Apx consistent if it has a
model.

Example 4 A structure (o, ®,¢) is a model of (2) and (7) along with the two v-propositions

initially alive

(11)

alive after [load, spin, shoot]

iff ® is as in (10), ¢ satisfies clause 1 and 2 of Definition 6, and alive € oy as well as
alive € @([load, spin, shoot]). Then loaded € ([load, spin]) holds in each such model; hence,
loaded after [load, spin| is entailed (see again Figure 1).]

As does A, our extended language supports reasoning about so-called counterfactual action
sequences due to the fact that the model component ¢ is defined for any sequence of unit
actions. To illustrate this, consider the following extension of Example 2, motivated by a scene
in a Pierre Richard movie [Richard etal., 1988].7 An additional fluent name, broken , is used
to describe the state of a vase. Furthermore, the action shoot is replaced by the unit actions
shoot-at-pierre and shoot-at-vase , respectively, along with the e-propositions

shoot-at-pierre causes loaded

shoot-at-pierre causes alive if loaded (12)
shoot-at-vase causes loaded
shoot-at-vase causes broken if loaded

" The scene is as follows: Pierre Richard pretends to intend to commit suicide with a, as he believes, toy gun.
To show 1t was just a joke, he aims at a vase and pulls the trigger. The vase shatters, and Pierre faints—he
obviously drew a conclusion about a counterfactual action sequence.

Now, assume given the v-propositions

initially alive
initially broken (13)
broken after [spin, shoot-at-vase]

According to the e-propositions in (12), each model (og, ®,¢) requires loaded € ¢([spin]) since
otherwise the vase could not have been destroyed. Hence, it is plausible to conclude that had we
shot at Pierre instead then he would not have survived this. Definition 6 supports this conclusion
formally: The reader is invited to verify that the domain consisting of e-propositions (7) and (12)
plus the above v-propositions, (13), entails

alive after [spin,shool-at-pierre] (14)

Since the two action sequences used in this v-proposition and in (13), respectively, are incom-
patible, this example shows that and how reasoning about counterfactuals is supported.

4 Concurrent Actions and Solving Conflicts

Since the problems we discuss in this section become more obvious in the context of the simul-
taneous execution of actions, we first extend our view to concurrency. We will present different
ways of interpreting descriptions of actions which may be executed concurrently. To illustrate
our exposition, we use the terms of A (and, later on, A); nevertheless, the differences we
identify provide a classification of other languages describing possibly concurrent actions as well.

4.1 Explicit Information about Concurrent Execution

Suppose a rather complex description of a part of the world has to be constructed, where
arbitrary unit actions may be executed concurrently. Because of the combinatorial explosion
it is obviously impractical to describe the effects of all possible combinations of unit actions.
Therefore, it is necessary to infer the effects of compound actions from the descriptions given
separately for the various actions involved. Combining these action descriptions may however
yield a contradiction among their effects.® In terms of the Action Description Language A this
means that for the corresponding sets Bf N Bf # {} holds (c.f. Definition 2).

There are several ways of dealing with and inferring the effects of a compound action from
descriptions of the involved actions which propose contradictory effects. Therefore, languages
describing actions can be classified according to the explicit and implicit methods, respectively,
they use to draw these conclusions.

Explicit methods provide further information of the effects of certain compound actions; they
are also used to state the difference between the actual effects of a concurrent execution of
several actions and the effects of these unit actions when executed alone. In terms of the Action
Description Language, additional e-propositions may

1. add a fluent to By or By : obviously, the set Bf N Bs will remain nonempty and, hence,
no conflicts will be solved;

8 This problem might of course occur even without concurrency involved, namely, if several descriptions, i.e.,
e-propositions, of the same unit action are used to infer the effects of this single action. If such an inference
yields a contradiction, the semantics of A and Ay , for instance, define the whole domain description to be
inconsistent as it does not admit a proper notion of transition.

2. remove a fluent from By or B_f: this allows to remove predicted conflicts, but not to
redefine facts not mentioned by the unit action descriptions (the approach in [Lin and
Shoham, 1992] uses this method by “cancelling” effects in specific cases),

3. add or remove a fluent from Bjs or Bj: this enables one to arbitrarily modify Bf and
By (used, for instance, in A, our language Ancc , and in State Event Logic [Grofie,
1994]).

Since an extension of A to concurrent actions, called A , has recently been introduced [Baral
and Gelfond, 1993], which uses the latter, most powerful method for stating differing effects of
actions as regards their concurrent execution, we use this approach to illustrate our following
discussion and adopt it when extending our approach to deal with concurrency.

4.2 The Language Ac

We briefly review the concepts underlying the language Ac as defined in [Baral and Gelfond,
1993] by pointing out the corresponding extensions of A . In either e- or v-propositions of a
domain description, actions are now represented by non-empty, finite subsets of the given set of
unit actions Ap , with the intended meaning that all of the elements are executed concurrently.
Such actions are called compound actions to distinguish them from the unit actions.

Example 3 Assume you can open a door by running into it if at the same time you activate
the electric door opener; otherwise, you will hurt yourself by doing this. A dog sleeping beside
the door will wake up when the door opener is activated. You can close the door by pulling it. To
formalize this scenario in Ac , we take the twosets Ap, = {activate, pull, run_into} and Fp, =
{open, sleeps, hurt} . The initial situation shall be partially described by the v-proposition
initially sleeps , and the effects of the actions can be specified by the e-propositions

{activate } causes sleeps
{run_into} causes hurt if open
{pull} causes Open (15)

{activate ,run_into} causes open
{activate ,run_into} causes hurt if hurt

Informally, the last e-proposition is needed to limit the application of the second one (this way
of restricting applicability of (less specific) e-propositions is called to overrule an e-proposition).
Let D3 denote the domain description given by these propositions. |

Overruling more general action descriptions by more specific ones is formalized by modifying
Definition 2 as follows:? If @ is an action, £ a fluent literal and o a state then we say that a
causes [in o iff there is an action b such that a causes £ by b in 0. We say that @ causes

£ by b in o iff
1. 6Ca;

2. there is an e-proposition b causes { if c¢y,...,¢, such that each of ¢q,...,¢, holds in
o ; and

? The following definition differs slightly from the definition given in [Baral and Gelfond, 1993], which is circular;
we assume that our’s is what the authors actually intended.

10

3. there is no action ¢ such that b C ¢ and a causes £ by ¢ in o.

If but 3. holds then the e-proposition in 2. is said to be overruled (by action ¢).

Now, if, based on this extended notion, Bj(a,0) and Bf(a,0) are defined accordingly (c.f.
Definition 2) and share elements then the corresponding transition function ® is taken to be
undefined for the argument (a,o); otherwise, ®(a,0) = (c\ Bf(a,0))U B(a,0), as before.

Example 5 The transition function determined by the e-propositions in our domain descrip-
tion Ds, (15),is defined as follows. Let o be an arbitrary state then

o({},0) =0

S ({run_into },0) =0, if open € o
d({run_into },0) = o U {hurt}, if open € o
a({pull},0) = o\ {open}

d({activate }, o) = o\ {sleeps}

d({activate, pull}, o) = o \ {sleeps, open}

S ({run_into, pull}, o) =0, if open € o
S ({run_into, pull}, o) = o U {hurt}, if open € o
d({activate , run_into }, o) = o \ {sleeps} U {open }

d({activate , run_into, pull},o) is undefined

D3 has four models, viz

({sleeps}, @) ({open, sleeps }, ®) (16)
({sleeps, hurt},®) ({open,sleeps, hurt }, ®)

If, for instance, v-proposition hurt after {run_into} is added to D3 then the only remain-
ing model is ({open,sleeps},®) since for all other structures in (16) we find that hurt €
®({run_into },00) . Hence, for example, the v-proposition initially open is entailed by this
extended domain. |

Note that our example domain can be modeled only by adding and removing fluents from By
or B; (c.f. Subsection 4.1):

Example 6 Let o be an arbitrary state in the domain of our Example 3. The e-proposition
{activate , run_into } causes open adds the fluent open to theset Bf({activate, run_into},o)°
while the e-proposition {activate,run_into} causes hurt if hurt removes the fluent hurt
from By({activate, run_into},o) by overruling {run_into} causes hurt if open . [

4.3 TImplicit Indeterminism: Interpreting Contradictions

After having introduced our basic concept for (explicitly) representing indeterminism in Section 3
and having adopted an adequate formalism for representing concurrent actions, we are now able
to discuss and solve the problem of contradictory specifications of dynamic systems. Suppose
the effects are not defined explicitly for all possible compound actions. In this case, as argued
above, it may happen that certain actions still are proposed to have contradictory effects.

1% Note that fluent name open is not mentioned by either of the descriptions {activate} causes sleeps and
{run_into} causes hurt if open .

11

From the point of view underlying A¢ , this indicates that these actions are not executable
in the world. A typical example employed to justify this interpretation of contradictions is as
follows: The door is open after it has been opened, and the door is not open after it has been
closed; since a door cannot be open and not open at the same time, it is impossible to simul-
taneously open and close the door. The implicit assumption underlying this argument is that
e-propositions do not describe concrete actions but assign (action-) names to the achievement
of effects: “to open” means to do something that results the door being open. Hence, “to open”
does not refer to a concrete action but to the achievement of a certain effect—then, of course,
it is impossible to have both simultaneously.

In contrast, our idea is that e-propositions describe concrete actions, and that all actions (i.e.,
in the end, the decision to execute an action) can be performed concurrently in any situation,
sometimes, maybe, without being successful in achieving a certain effect. From this point of
view, the occurrence of actions which are proposed to have contradictory effects when executed
simultaneously indicates that the descriptions of their effects are incorrect.!! Of course, the
formal description of an existing complex scenario may be incorrect or incomplete. In many
applications, however, it is not desirable that an intelligent agent stops reasoning as soon as he
detects an error in the description of the scenario he is acting in (e.g., if he uses the semantics
of Ac and observes a compound action—or is aksed about the effects of it—which is defined
to be impossible in the semantics).

To illustrate this, recall our domain description Djs. The e-propositions describing the ef-
fects of the elements of {activate, pull, run_into} claim both open and open . In such cases,
depending on the chosen interpretation and the extent of certainty required, one has to regard
as unreliable

1. the whole domain description (as in State-Event Logic [Grofie, 1994]),
2. the whole situation,

3. the effects of the conflicting actions, or

4. the contradictory fluents.

It is the latter, weakest condition which we propose in this paper. This follows the idea of still
believing in all information which do not cause the contradiction.

Example 7 Of course, it is conceivable that the door opener is activated, the door is pulled,
and somebody runsinto it at the same moment. The domain description D3 proposes both open
and oper to be an effect of the corresponding compound action, {activate, pull,run_into} .
Hence, D3 is incomplete with respect to the world it describes. In fact, without further in-
formation we cannot say whether the door will be closed after executing this action or not.
However, it is reasonable to assume the dog will not sleep afterwards since we know that
{activate } causes sleeps and there is no proposition contradicting this. Using the semantics of
Ac it cannot be inferred that the dog does not sleep after executing {activate , pull, run_into }
since no successor state ¢’ exists.]

In general, whenever a local inconsistency occurs, this causes the entire set of simultaneously
executed actions to be contradictory. As an extreme case, imagine two agents in Germany

! In our example, running into the door, activating the door opener, and pulling the door concurrently might
be regarded as a nondeterministic action wrt the truth value of open ; hence, involving (implicit) uncertainty.

12

executing the above action and, concurrently, another agent in China switching off a light.
Again, by A¢ it cannot be inferred that the light is switched off in China because the description
used proposes contradictory states of a door somewhere in Germany. Yet it seems reasonable to
draw some conclusions about the resulting state instead of declaring it to be totally undefined.
Preventing global inconsistency in case of local conflicts is our underlying intention here.

We therefore weaken the basic assumption which says that ®(a, o) is undefined whenever the
corresponding sets Bf(a,o0) and Bf(a,c) share one or more elements. To this end, we adopt
the concept of nondeterminism developed in the preceding section. Informally, if no conflicts
occur wrt ¢ and o then there is only one possible resulting state, which should be exactly
as in A¢g . If, on the other hand, there are conflicts, that is, if the corresponding intersection
B¢(a,0) N Bf(a,0) is not empty, then each combination of truth values of the controversial
fluent names determines exactly one possible successor state.

The following definition of the language Ancc makes these ideas manifest. Syntactically,
domain descriptions in our new language are specified using a combination of Ay and Acg;
that is, we take the syntax of Ay and extend it by allowing to formalize compound actions.
Then the formal definition of transition is as follows:

Definition 7 Let D be a domain description in Ancc and let & C 2Fp x 240 x 2FD be a
relation. Then & is a transition relation for D if for each 0,6’ C Fp and a C Ap we have
(0,a,0") € ® iff the following holds:

For each b C a let

b alternatively causes FE if (!

b alternatively causes Ei if Ci
b b

be the set of all alternative e-propositions in Ep for action b and which are applicable in o
(that is, each fluent literal occurring in C;’ holds in o, for each 1 < 7 < k). Furthermore,
let by,...,b, be all actions b; C a which satisfy kbj > 0. Then we can find a selection
A =Xy, Ay, where Ay € {1,..., Kk} (1 <j < m),such that the following holds:

Let e be a fluent literal. We say that a causes e wrt A in o if there is an action b C Ap
such that a causes e by b (wrt A in o). We say that a causes e by b wrt A in o iff

1. 6Ca;
2. e occursin Ef’\b (in case ky > 0)or Ep contains an e-proposition b causese if ¢q,...,¢,
such that each of ¢y,...,¢, holds in o; and

3. there is no action ¢ such that b C ¢ and a causes € by ¢ wrt A in o.

Define

Bf(a,A,0) = {f€F|acauses fwrt Ain o}
Bi(a,A,0) := {f€F|acauses fwrt Aino},

then there exists some Bf(a,A,0) C By(a,A,0)N By(a,A,0) such that

o' = (0\Bf(a,A,0)) U (Bg(a,A,0)\ BY(a,A,0)). (17)

13

In words, a possible successor state is obtained by first randomly selecting among the applicable
alternative e-propositions, separately for each compound action b C a. Afterwards, we proceed
as in A¢ but in case a conflict occurs, where we take any truth value distribution B?(a, A, o)
among the disputed fluent names when computing a possible o’ via (17).

The notion of model and entailment are adopted from our language Ay (c.f. Definition 6):

Definition 8 Let D be a domain description in Axcc . A structure is a triple (o, ®,¢)
where 09 C Fp, ® C 2FD % 240 % 2Fp and @ (QAD)* — 2D such that!?

1. ¢([]) = oo and

2. (¢(lat,- s an]), @ng1, @([a1, ..., an,an41])) € ® for each ay,...,a,,a,41 € 240 (n >
0).
A v-proposition { after [ai,...,a,]| is true in such a structure iff ¢ holds in ¢([ay,...,a,))

(n > 0). Such a structure is a model of D iff & is a transition relation for D and all v-
propositions in Vp are true. A v-proposition v is entailed by D iff v is true in every model

of D. n

Example 8 If our domain description D3 is augmented by either one of the v-propositions
open after {activate, pull, run_into} or open after {activate,pull, run_into} then both ex-
tended domains have models (with different functions ¢) according to the semantics of Ancc .
On the other hand, if D3 is augmented by sleeps after {activate, pull, run_into} then there is
no model wrt Axce . Hence, as intended we can conclude our domain entails the v-proposition
sleeps after {activate , pull, run_into } . [

Note that Axcc does not distinguish between intentionally expressed nondeterminism of
actions and our interpretation of contradictory specified actions. For instance, D3 could be
augmented by the e-propositions {activate} causes bark and {activate} causes bark for de-
scribing that the dog possibly starts or stops barking when the door opener is activated. The very
same is expressed by the two alternative e-propositions {activate } alternatively causes bark

and {activate } alternatively causes bark . In fact, for someone reasoning about a domain
description it makes no difference whether the designer of this domain description was aware of
the uncertainty of the described effects or not.

5 Translating Aycc into FCycc

In the second part of this paper, we show how domain descriptions in our new language Ancc
may be encoded as logic programs. While in the preceding sections the sets of elements under-
lying a domain description were of arbitrary, possibly infinite size, we need to restrict ourselves
to finite sets of fluent names, unit actions, and e- and v-propositions in order to obtain a finite
logic program. The approach we follow here is based on the reification of complete situation
descriptions by treating them as terms [Hélldobler and Schneeberger, 1990]. To this end, each
atomic fluent that holds in a state is formally represented by a term (a so-called fluent term),
and these fluent terms are connected by a special binary function symbol, written o. For in-
stance, the term (open o sleeps) o hurt describes the state wrt Example 3 where the door is
open, the dog is sleeping, and the protagonist has hurt himself. Intuitively, the order in which

12 The set (ZAD)* contains all finite lists whose elements are finite, non-empty subsets of Ap .

14

the various fluent terms are connected is irrelevant as regards the state to be represented. Hence
our connection function has some special properties, which are formalized using the following
equational theory [Hélldobler and Schneeberger, 1990]:

VX, Y,Z. (XoY)oZ = Xo (Y oZ) (associativity)
VX,Y. XoY = YoX (commutativity)
VX. Xof) = X (unit element)

where the constant () denotes a unit element for o, which corresponds to an empty collection of
fluent terms. These three axioms (AC1, for short) are used as the underlying equational theory
for our logic program.'® Therefore, the special function symbol o will be referred to as the
AC1-function, and a term consisting of fluent terms that are connected by this function will be
referred to as an ACI-term. In what follows, we use the equality predicate =sc1 in program
clauses to illustrate that equality should always be related to the axioms above. Due to the law
of associativity, we can omit parenthesis on the level of o in any AC1-term.

On the basis of representing a situation by a collection of fluent terms, the execution of actions
is modeled by manipulating such collections. For this reason, we call the underlying approach
fluent calculus. Aside from being closely related, in its basic form, to the Linear Connection
Method [Bibel, 1986] and reasoning about actions based on Linear Logic [Girard, 1987; Masseron
et al., 1993], the fluent calculus has recently been shown to successfully deal with the ramification
problem [Thielscher, 1995a; Thielscher, 1996b].

In the following subsection, 5.1, we describe how to construct a logic program corresponding
to a domain description in Aycc . In Subsection 5.2, we discuss the semantics of the resulting
program by applying the standard completion procedure [Clark, 1978] augmented by a special
treatment of the underlying equational theory [Jaffar et al., 1984; Shepherdson, 1992]. In Subsec-
tion 5.3, we then prove soundness and completeness of the equational logic program (by taking
the extended completion semantics) wrt the semantics of Ancc . Finally, in Subsection 5.4 we
discuss the applicability of a special resolution variant, namely, SLDENF-resolution [Shepherd-
son, 1992; Thielscher, 1996a), to our logic program. We assume the reader be familiar with the
basic concepts of normal logic programs (i.e., logic programs augmented by negation-as-failure)
as described, e.g, in the textbook [Lloyd, 1987]. We use a PROLOG-like syntax in denoting con-
stants and predicates by lower case letters and variables by upper case letters. Moreover, free
variables are assumed to be universally quantified and, as usual, the term [A|t] denotes a list
with head h and tail ¢.

5.1 The Equational Logic Program

Let D be a domain description in Aycc based on fluent names Fp . For a proper representation
of negative fluent literals, we introduce a unary function whose application to a term representing
a fluent name indicates the negation of the latter. We will denote this function illustratively by
a bar on top of its argument, like negation has been denoted in the action description languages.
Formally, we employ a function 7 mapping sequences of fluent literals to AC1-terms as follows:

o) =
T(f) = 7(f)
T(l1,....0,) = T(l1)o...0o7(Ly,)

13 While it suffices to consider these axioms in view of a suitable resolution procedure (see Subsection 5.4),
the standard axioms of equality plus axioms allowing to derive inequalities are additionally required when
discussing an adequate semantics for our program (see Subsection 5.2).

15

where f€ Fp, £; € FpU{f|f € Fp}, and in case m = 0 the function value of 7 is the unit
element) of o.
States over a fixed set of fluent names Fp are represented by an AC1-term as follows:

Yo{fis-o s fm}) == fio...0fmo frug10...0 fu, (18)

where {f1,....fu} = Fp .
Finally, we also employ our AC1-function to represent compound actions, viz by simply con-
necting the unit action names, taken as terms:

p({ar,...,ax}) := ayo---oag (19)

where {aq,...,a;} C Ap.

We are now prepared for translating domain descriptions in Axce into a set of logic program
clauses. To begin with, we introduce, for each fluent name f € Fp, a separate unit clause to
relate it to its counterpart f:

FLUENTp := { complement(7(f,f)).| f€ Fp} (20)

Let Ep be a given set of e-propositions then for each strict e-proposition we use an instance
of the ternary predicate eprop stating the action name, the effect, and the conditions:

FEPROPp := {eprop(u(a), (), 7(c1,...,¢n)).| (21)
a causes (if ¢1,...,¢, € Ep}
Analogously, alternative e-propositions describing possible effects of nondeterministic actions
are encoded using the ternary predicate alteprop :

ALTEPROPp = {alteprop(p(a), 7(€1,...,€m),T(c1,...,¢n)). | (22)
a alternatively causes ey,...,€, if ¢1,...,¢, € Ep}
Example 4 Let D, denote the amalgamation of the two domains described in Exam-
ple 2 and Example 3, respectively. We then have, e.g., 7(sleeps,open) = sleeps o open ,
7D, ({alive, sleeps, open }) = alive o sleeps o open o loaded o mervous o hurt , and, for a compound
action, up,({activate, run_into }) = activate o run_into .

The program clauses FLUENTp, U EPROPp, U ALTEPROPp, are as follows:

loaded o loaded) .
alive o alive) .
nervous o Mervous) .
sleeps o awake) .
hurt o hurt).

open o open) .

complement
complement
complement
complement
complement
complement

P

eprop (load, loaded, () .

eprop (shoot, loaded, () .

eprop (shoot, alive, loaded) .
alteprop (spin, loaded, () .

alteprop (spin, loaded o nervous, () .

16

eprop (activate , awake , () .

eprop (run_into , hurt , opemn) .

eprop (pull , opem, D) .

eprop (activate o run_into, open ().
eprop (activate o run_into , hurt , hurt) .

To encode the concept of transition of Ancc, we use a ternary predicate action(i,a,h)
stating that executing action « in state ¢ possibly yields state h. Following Definition 7, a
possible successor state is obtained by taking into account all applicable, strict e-propositions
and a set consisting of exactly one element of each set of applicable alternative e-propositions
describing an identical subset of a. The action predicate is defined as follows:

action(I,A,H) <« setofalternatives(A,S,I),
—impossible(H,I, A, S
—unfounded (H,1,A, S

—inconsistent(H).

)7
) (23)

The intended meaning of this clause is the following: Let ¢ be an AC1-term representing a state
(c.f. (18)) and @ be an AC1-term representing a (compound) action (c.f. (19)).1

1. Let s be an ACl-term of the form (by,e1,¢1)0...0 (by,€m,¢n) where each subterm
(bj, e, ¢;) represents an alternative e-proposition b; alternatively causese; if ¢;. An
instance setofalternatives(a,s,i) is then intended to be true if s represents a complete
collection of alternative e-propositions wrt state ¢ and action a as required in Definition 7.
To this end, we introduce the following program clause:

setofalternatives(A,S,I) — -overrepresented(S),

—underrepresented (A, S, 1) . (24)

In words, the middle argument of setofalternatives contains a representation of not more
than and also at least one element of each set of applicable alternative e-propositions. The
predicates overrepresented and underrepresented are defined as follows:

overrepresented ((A, U, X)o(A,V,Y)o R).

underrepresented(Ao B,S,C oJ) « alteprop(A, E,C), (25)
—represented(A, S) .
represented(A, (A, E,C)o R).

In words, overrepresented(s) is true if s contains two (or more) alternatives for the
same action, A, while underrepresented(a o b,s,t) is true if there exists an applicable

' For sake of readability, in the following description we sometimes identify a term t which represents a state
(or a sequence of fluent literals or a compound action, respectively) with the state ~v5'(t) itself (or with
71 () or pT'(t), respectively).

17

(wrt state 7)!° alternative e-proposition for action a but s does not include a triple
representing an alternative for this particular action.

2. Aninstance impossible(h,i,a,s) is intended to be true if &, which is intended to represent
a possible successor state of 7 wrt a, contains a fluent literal which is claimed to be true
by some overruled e-proposition (either a strict one, or an alternative one that has been
selected via s) while the negation of this fluent literal is claimed by some non-overruled
e-proposition. (In case both a fluent literal and its negation are claimed to be true by two
non-overruled e-propositions (strict or selected), either of them can be true in a resulting
state. The latter encodes our way of solving conflicts, as formalized in Definition 7):

impossible(F o H I, A,S) — overruled(F,I,0,A,S),
complement (F o G) , (26)
—overruled (G, 1,0,A,5).

An instance overruled(h,i,b,a,s) is intended to be true if A contains a fluent literal that
is supposed to be true by some applicable (wrt state 7) e-proposition (either a strict one, or
one that has been selected via s) which is overruled by a (strict or selected) e-proposition
for some action ¢ such that ¢ D b and ¢ C a. The clauses defining overruled follow
Definition 7:

overruled(F o H,CoJ AjAoBoD,JS)
— eprop(AoB,G,C),
B #ac1 0,
complement(F o G),
—overruled(G,CoJ,Ao BjAo BoD,S).

overruled (F o H,CoJ,A;Ao BoD,(Ao B,Go FE,C)oR)
— B#an 0,
complement(F o G),
—overruled(G,C o J,Ao B,AoBoD,(Ao B,Go E,C)oR).

In words, the particular effect /' of an action A is overruled by an eprop (first clause)
or an alteprop that has been selected (second clause) postulating the effect G = F of an
action Ao B D A if this e-proposition is not overruled itself.

3. Aninstance unfounded(h,t,a,s) isintended to be trueif A contains a fluent literal whose
negation holds in ¢ but there is no (strict or selected via s) e-proposition wrt state ¢ and
action a that induces this change. The definition of this predicate is as follows:

unfounded(F o H,GoI,A,S) — complement(FoG), (28)
—overruled (G,Go I,(,A,S).

In words, a change from fluent literal G = F to F is unfounded if there is no (strict or
selected) e-proposition that overrules G continue to be true.

4. An instance inconsistent(h) is intended to be true if ACl-term A does not represent a
state (c.f. (18)), that is, if A contains some fluent term twice or more, or it contains a

!5 Note that applicability means the conditions ¢ are true in i, which is guaranteed if the terms co J and i
are ACl-unifiable (see Lemma 12 below).

18

fluent name along with its negation, or there is some fluent name f € Fp such that neither
f nor f occur as subterm. These three criteria are encoded by the following clauses:

inconsistent(GoGo H) — G #ac1 0.
inconsistent(F o) — complement(I').
inconsistent(H) — complement(F o (),
F#ac1 0, G#ac1 0,
—holds(F,H), —holds(G,H).
holds(F,H o F).

Having encoded the transition relation, we now show how to model the application of an
action sequence [ay,...,a,;] to some initial state. Since the resulting state, Mlaram] g
model-dependent and, in particular, determined by the associated function ¢, we need to find
a way to encode the latter within the model generation process. To this end, we first introduce
the notion of an action tree serving as a (minimal) basis for the set of v-proposition underlying
the domain description at hand:

Definition 9 Let D be a domain description with action names Ap and v-propositions Vp .
An action tree is a tree B whose nodes are finite lists over 242 such that

1. the root of B is [] and

2. if [ay,...,@mn,@pmy1] is a node in B then its predecessor is [ay,...,a,], where m > 0.
Such a tree 9B is called basis for D iff for each v-proposition ¢ after [aq,...,a,,] in Vp the
sequence [ay,...,a,] is a node in B . Moreover, the minimal basis for D is the basis with a
minimal number of nodes. |

As an example, assume given the v-propositions {(13),(14)}, then Figure 2(a) depicts the
minimal basis for the corresponding domain. Note that for any finite set of v-propositions a
unique minimal basis exists and is finite.

The purpose of the minimal basis is to indicate which arguments of the model component ¢
are of interest—regarding the underlying v-propositions—when searching for models. Now, to
record the actual values of ¢ in a particular model, we assign variables to the basis, which are
intended to be substituted by states, as follows. Let Bp be the minimal basis for D containing
B+ 1 nodes (8 > 0). Furthermore, let Xy,..., Xg be pairwise different variables assigned on-
to-one to the edges of the tree, then each node [aq,..., @, amy1] in Bp (m > 0) is replaced
by the sequence of pairs [(a1, X4), ..., (@m, Xs), (@mt1,X;)] where

1. the predecessor has been replaced by [(a1,X4),-..,(@m, Xs)] and
2. the edge from the predecessor to the node itself is labeled with X .

A possible labeling of our example tree is depicted in Figure 2(b).

We are now in a position to represent the notion of models in our logic program. To
this end, we first introduce the ternary predicate result , whose intended meaning is that
result (Yp(oo), [(1(ay), 1), . . ., (@), ho)], yp(ML#022m1)) is true iff the application of the se-
quence [ay,...,a,] to gg yields M*1»-m] in a model which satisfies ¢([a1,...,a;]) = 751(.&2')
for each 1 <7 < m—where it is required that h; represents a possible successor state of apply-
ing a; to the preceding state, according to the underlying transition relation. Thus, the clauses

19

[|]
(a) [{spin}]
/_/\

[{spin}, {shoot-at-pierre}] [{spin}, {shoot-at-vase}]

[|]
(b) [({spin}, X1)]
///X_;_//X\

[({spin}, X1), ({shoot-at-pierre}, Xo)[({spin}, X1), ({ shoot-at-vase}, X3)]

Figure 2: (a) An action tree describing two directions of development, which forms a minimal
basis for domains with v-propositions {(13),(14)}, and (b) the same tree augmented by variables
to record the outcomes in a concrete model.

defining result are as follows:

result(1,[]

L[,I).
result (I, [(

vl
AH)|P,G) — action(I, A, H), (30)
result(H, P,G).

In words, MU is og, and in case m > 0, M#-m] is obtained by computing a successor

state H = 751(h1) of executing @y in oy and applying the remaining sequence [ag,..., @]
to this state.
Finally, to encode the given v-propositions, Vp = {{; after[a;1,...,aim;] |1 <1 < n}, weuse

the following clause defining the predicate model . The construction of this clause is grounded
on a given minimal basis Bp augmented by variables for the domain under consideration:

model (I, X1,. .., Xp)
— ~inconsistent(I) ,

result (Iv [(N(all)v Xaq)? RS (:u(alﬂh)v X51)]7 T(gl) 0 Gl)) (31)

result (I, [(p(an1), Xa,,), - - .,‘(u(anmn), Xs,)], 7(ln) 0 Gp).

where Xy,...,Xg are the variables assigned to Bp and, for each 1 < i < n, the variables
Xo;y...,Xs; are chosen according to the corresponding node in the labeled basis Bp . Hence
the intended meaning is that model(i, hq, ..., hg) is trueif 7 represents a consistent initial state
such that all v-propositions in Vp are satisfied wrt the execution results Aq,...,hg.

20

[]
/_f_l,///’x\

[({load}, X1)] [({activate , run_into }, X4)]

| %2

[({load}, X1), ({spin}, X2)]

| X

[({load}, X1), ({spin}, X2), ({shoot}, X3)]

Figure 3: A suitable labeled action tree for encoding the v-propositions in (32).

Example 9 Given the four v-propositions

alive after [{load}]
alive after [{load},{spin},{shoot}]
initially sleeps

(32)

hurt after [{activate,run_into}]

these are encoded by the following program clause if we take the suitably labeled basis shown

in Figure 3:

mOdEl(I,Xl,XQ,Xg)

—

—inconsistent(1),
result (I,[(load, X1)], alive 0 Gy) , (33)
result(I,[(load, X1), (spin, X3), (shoot, X3)], alive o G3) ,
result (I,[], sleeps o G3) ,
result (I, [(activate o run_into, X4)], hurt o Gy).
(]

To summarize, a domain description D in Angc is translated into the set of clauses
Pp = FLUENTp U EPROPp U ALTEPROPp U {(23)-(31)}. The resulting equational logic
program is denoted by (Pp,AC1), and the class of resulting equational logic programs is de-
noted by FCncc . One should observe that the major part of this program, clauses (23)-(30),
is domain independent and constitutes an intuitive and direct translations of Definition 7 and 8.

5.2 The Completion Semantics

The equational logic program developed in the previous subsection contains negative literals
in the body of some clauses. These negative literals are intended to be treated by the (non-

monotonic) negation-as-failure principle. An adequate semantics for such programs which is

based on classical first-order logic is obtained by applying an extension of Clark’s completion
procedure [Clark, 1978] to the program: The idea is to consider the set of program clauses

which define a predicate p as a complete description of the positive information regarding p.
Formally, the completion procedure applied to a set of clauses P is as follows:

21

Definition 10 Let p(ty,...,t,) < L1,..., L, be a program clause in P, and let Y denote
a sequence of all variables which occur in this clause. Let Xy,..., X, be pairwise different vari-
ables not in Y then the rectified form of this clause is the formula p(Xi,..., X,) « IV (X; =
WA ANX,=t,NL1AN...NLy). Let p be an arbitrary predicate symbol and

p(Xl,...,Xn) — D1

p(X1,...,X,) «— Dy

be all clauses in P defining p in rectified form (k& > 0). The completed definition of p in P
is the formula
VXl,...,Xn (p(Xl,,Xn) Ad D1 V \/Dk)

(In case k = 0 this reduces to V(—=p(Xy,...,X,))). The completion P* of P is the conjunction
of the completed definitions of all predicate symbols occurring in the underlying alphabet except
for the equality predicate =. |

Given a domain description D in Ancc , the entire completion of the corresponding program
clauses Pp , written Pj, ,is shown in the appendix.

Aside from completing the program clauses, a logic program with an underlying equational
theory requires a special kind of completion for the equality predicate since axioms are needed
which allow for proving inequalities in order to derive negative information. K. Clark added
some axiom schemata to the completed formula which allow for proving inequality of two terms
whenever these are not syntactically unifiable [Clark, 1978]. The concept of unification com-
pleteness [Jaffar et al., 1984; Shepherdson, 1992] generalizes these axiom schemata for arbitrary
equational theories.

Prior to stating the formal definition, we need to introduce some notions and notations related
to unification theory, taken from the survey article [Baader and Siekmann, 1993]. The standard
azioms of equality are Y(X = X) (reflexivity), V(X =Y =Y = X) (symmetry), V(X =Y A
Y = Z— X = Z) (transitivity), V(X; = Y — f(X1,..., X4, ..., X)) = f(Xq,....Y, ..., X,))
(substitutivity for functions), Y(X; = Y —=[p(X1,..., X, ., X)) = p(Xq,...,Y, ..., X))
(substitutivity for predicates). If F is an equational theory then two terms s,f are called
F-equal if the formula s =t is a logical consequence of F and the standard equality axioms.
Two terms s,t are said to be F-unifiable if there exists a substitution 6 such that s and
t@ are F-equal; in which case 8 is called an F-unifier for s,t. A complete set of F-unifiers
cUg(s,t) for two terms s,t is a set of E-unifiers for s,¢ such that each FE-unifier for s,t is
subsumed by at least one element in cUg(s,1?).

As in [Shepherdson, 1992], given a substitution 6 = {X; — #1,..., X, — t,} we use eqn(f)
to denote the formula X; =t A...AN X, =1,

Definition 11 Let £ be an equational theory. A consistent set of first-order formulas E*
is called wunification complete wrt F if it consists of the axioms in £, the standard equality
axioms, and a number of equational formulas, i.e., formulas with = as the only predicate, such
that for any two terms s and ¢ with variables X the following holds:

1. If s and ¢ are not E-unifiable then E* = =3X.s=1.

2. If s and t are FE-unifiable then for each complete set of E-unifiers cUg(s,1)

E* = VX (s=1— \/ Y. eqn(8)) (34)

6ecUg(s,t)

22

where Y denotes the variables which occur in eqn(6) but not in X .

In [Holldobler and Thielscher, 1995], we have proved the existence of such a unification complete
theory AC1* for the equational theory AC1 used in FCncc . Since we do not intend to compute
with AC1*, we are only interested in the properties of this theory as given by Definition 11; its
actual design is irrelevant for our analysis. Given a domain description D in Aycc , we take
the formulas Pj5 U AC1* as the semantics of the corresponding logic program (Fp,AC1).

5.3 Soundness and Completeness of the Translation

Based on the completion semantics, we now prove soundness and completeness of our equational

logic program wrt the entailment relation defined for Aycc . We start with a number of lemmas
concerning specific parts of our program.

Lemma 12 Let D be a domain description with fluent names Fp , and let then cq,...,¢p
be a sequence of fluent literals over Fp (m > 0) and o C Fp be a state. Then each c¢;
(1 <i<m) holds in o iff 7(c1,...,¢cm)0V and ~yp(o) are ACI-unifiable (where V is an
arbitrary variable).

Analogously, let Ap be the set of unit actions and a,b C Ap two actions then b C a iff
u(b)oV and p(a) are AC1-unifiable.

Proof: In case n = 0, DoV and vyp(o) are always ACI-unifiable using
the substitution {V +— vp(o)}. Otherwise, associativity and commutativity of o
imply that the two term are ACl-unifiable iff each subterm 7(¢;) occursin yp(o),

which contains exactly the fluent literals that hold in ¢ . The second claim follows
analogously.

Moreover, unification completeness of AC1* ensures
ACI* |= W.t(c1,...,¢cm) 0V #p(o)

whenever some ¢; does not hold in o .

In what follows, a notation like (20*) refers to the completed definition(s) of the clause(s)
in (20), which are all listed in the appendix.

Lemma 13 Let D be a domain description in Ancc . Furthermore, let ¢ C Fp be a
state and a C Ap an action. If b),...,b!, are actions and €},... e, and c},...,c both are
sequences of fluent literals (n > 0) then

PLUACT =
setofalternatives(p(a), (u(b)), 7(€})), 7(c})) o ...o(u(bl), 7(el,), 7(ch)), vp(0))

iff the following holds:

For each b C a let {b alternatively causes Elb if C'Zb| 1 <1 < ky} be the set of all
e-propositions in FEp for action b such that each element occurring in Czb holds in o, for
each 1 < i < ky; and let by,...,b, be all actions b; C a which satisfy ks, > 0. Then
there exvists a selection A = Ap,,..., A, (where Ny, € {1,...,kp }) such that there is a one-
to-one correspondence between the triples (u(b)),7(e}),7(c})),. .., (u(b,),(e,),7(cl)) and the

n

23

elements of A such that if (u(b}),(e;),7(cl)) corresponds to Xy, then b =b;, 7(el) = FE
b
and 1(¢;) = C/\]bj
Proof: Let s = (u(b1),7(e1),7(c1))o...0(u(b,),7(es), 7(¢cy)). From (25*) and
(22*) in conjunction with Lemma 12 it follows that underrepresented(u(a),s,vp(7))
is entailed iff there exists some b C @ such that &k, > 0 but no subterm (u(b),1,12)
occurs in s. Conversely, according to (25%), overrepresented(s) is entailed iff
s includes two subterms (u(b),?1,t2) and (u(b),t3,t4). Thus, for each subterm
(u(bi), m(e),7(ci)) in s we can find some b; € {by,...,b,,} and, hence, some A,
in A such that b, = b; —and vice versa. Moreover, (25*) in conjunction with

(22*) ensures that 7(e}) = Eijb and 7(¢;) = C’ijb . The claim then follows from
J J
(24%) e P .

[
The following lemma describes the connection between our definition of predicate overruled
and the notion of causes in Definition 7:

Lemma 14 Let D be a domain description in Ancc . Furthermore, let eq,...,e, be a
sequence of fluent literals (n > 1), o a state, a,b actions such that b C a, and s an ACI-

term representing a complete selection of applicable alternative e-propositions wrt o and a, as
defined in Lemma 13. Then

PLUACT* |= -overruled(r(e1,...,e,),7D(0),b,a,s) (35)
iff there is no e; (1 <1i<mn)suchthat a causes €& by some ¢ such that ¢ Db and ¢Ca.

Proof: From b C a we know |b| < |a|. The proof is by induction on n = |a|—|b] .
In case n = 0 (i.e., @ = b), no such ¢ can possibly exist. Correspondingly, the
literal B #c1 @ in both disjuncts of (27*) guarantees (35) to hold.

In case n > 0, from (27*) in conjunction with (20*) and (21*) and Lemma 12 we
know that (35) is false iff there exists some e; (1 < ¢ < n)such that

PLUACTE* | -overruled(r(€;),vp(0), ¢, a,s) (36)

where ¢ Db and ¢ C a. Since |b] < |¢| < |a|, we have 0 < |a| — |¢| < n. Hence,
the induction hypothesis is applicable and ensures (36) be true iff a causes & by
some ¢’ such that ¢’ D¢ and ¢ C a. Due to ¢’ D b, this proves the claim.

|
Finally, we need an adequate definition of consistency of AC1-terms that are intended to
represent states:

Lemma 15 Let D be a domain description with fluents Fp and 1 an AC1-term then
P5UACT* | —inconsistent (1)

iff for each fluent name f € Fp either f or else f occurs in i, and i does not contain any
fluent term more than once.

24

Proof: In conjunction with Lemma 12, the first disjunct in (29*) ensures that no
fluent term occurs twice or more in 7, the second disjunct ensures that 7 does not
contain a fluent name along with its negation, and the third disjunct ensures that
each fluent name is represented affirmatively or negatively.

[
The following theorem concerning transition of states forms the basis of our soundness and
completeness result:

Theorem 16 Let D be a domain description in Axycc . If ® is a transition relation for Ep
then for each 0 C Fp, a C Ap, and each AC1-term h

PHLUACT* |= action(yp(o),u(a),h) (37)

iff (0,a,0") € ® where h represents state o' .

Proof: From Lemma 15 and from (23*) € P, and Lemma 13 it follows that
(37) holds iff A represents a state and there exists some term s that represents a
complete selection of alternative e-propositions (wrt ¢ and a) and

PLUACT = —unfounded(h,yp(o), u(a),s) A —impossible (h,vp(o), u(a), s)
holds. Following (28*), (26*) and Lemma 14 this is true iff

1. for each fluent literal £ that is truein o but false in ¢’ thereis some applicable
(strict or selected in s) e-proposition postulating ¢ and

2. there is no fluent literal ¢ true in o' such that a causes ¢ in o but not
a causes £ in o .16

Following Definition 7, this is equivalent to (o,a,0’) € ®.

[
Based on this theorem, we can prove soundness and completeness of our equational logic
program wrt the semantics of Axcc as given by Definition 8. More precisely, we will prove
that a v-proposition {after[ay,...,a,] is entailed iff no model can be found—based on (31*)—
that contradicts this v-proposition. To this end, recall Definition 9, where we introduced the
concept of an action tree to encode the model component ¢ . In order to test entailment of
a v-proposition using the literal result(i,[(a1,X1),...,(@m, Xm)],7(£) o G), we have to take
into account the underlying labeled action tree that has been used to construct clause (31).
Let k£ be maximal in {0,...,m} such that [aq,...,ax] occurs in this tree then we use the &
variables X,,..., X5 assigned to the actions in this node plus pairwise different, new variables
Xi,..., X} _, forthe tail [ap41,...,a,] of the action sequence. As before, X7,..., Xz denotes
the entire sequence of variables assigned to the underlying action tree:

Theorem 17 Let D be a domain description in Ayncc . If v = { after [ay,...,a,] is a
v-proposition then v is entailed by D iff
PLUACT |= -31,X (model(I, Xy,...,X5) A
result (I, [(p(a1), Xa), ..., (pulag), Xs), ~
(N(ak+1)7 X{)a SRR (:u(am)7 v;n—k)L T(E) o G))
where X = Xy, X, X1, 00X L

16 Note that if @ causes both £ and £ then the corresponding fluent name belongs to B?(a, o), that is, either
value can be truein o’ .

25

Proof: Let & be a transition relation for D . From Lemma 15, (31*), (30)*and
repeated application of Theorem 16 it follows that model(t, hq,...,hg) is entailed
iff (o0, ®,¢) satisfies every v-proposition in D, that is, if it is model for D —

where 7 represents state oy and hq,...,hg correspond to ¢ in the sense that each
h; (1 < j <) represents the state ¢([a},...,a]]) where variable X; has been
assigned to the vertex ending in node [a},...,aj] in the underlying labeled action

tree. The claim then follows from (30*) and the fact that v is entailed iff there is
no model (a9, ®,) for D in which £ holds in ¢([a1,...,a,]).

5.4 SLDENF-Resolution

Our equational logic programs FCncc are based on a special equational theory, viz ACI,
and they also contain negation in the body of some program clauses. In the preceding sub-
section, we have taken the completion of these programs as an adequate semantics when neg-
ative literals are to be treated by negation-as-failure. An adequate computation mechanism
for programs including equality and (nonmonotonic) negation is SLDENF-resolution, which
is based on SLD-resolution (see, e.g., [Lloyd, 1987]) but with the standard unification pro-
cedure replaced by an F-unification algorithm and negation-as-failure used to treat negative
subgoals. A formal introduction to this resolution principle can be found in [Shepherdson, 1992;
Thielscher, 1996a). In [Shepherdson, 1992], soundness of SLDENF-resolution wrt the completion
semantics (including the use of unification complete theories) has been proved for arbitrary equa-
tional logic programs with negation. More precisely, let P be a set of normal program clauses,
FE an equational theory, and <« Lq,..., L, a query. If there exists an SLDENF-refutation for
this query wrt P with computed answer substitution 6 then

P*UE* E V(I1AN...NL,)8

Combining this result with Theorem 17 proves that SLDENF-resolution can be applied as a
sound proof procedure for the entailment relation defined in Ancc .

In [Thielscher, 1996a), we have discussed completeness of SLDENF-resolution. As already
known from the special case of programs with negation and the empty equational theory, com-
pleteness cannot be guaranteed in general [Clark, 1978; Apt et al., 1987]. The classical com-
pleteness result for SLDNF-resolution is restricted to so-called hierarchical and allowed pro-
grams [Clark, 1978; Apt et al., 1987]. In a hierarchical program, every SLDNF-derivation is
guaranteed to be finite, and the allowedness criterion prevents so-called floundering: Since by
definition of SLD(E)NF-resolution negative subgoals can be selected only if they are ground,
a derivation might end up with only non-ground negative subgoals. In such cases, the proof
procedure does not come to a conclusion.

In [Thielscher, 1996a)], we have lifted the aforementioned classical result to logic programs with
equational theories. We have shown that this is possible only in case the underlying equational
theory FE meets two further restrictions: It should be finitary (that is, for each two terms s
and ¢ there exists a finite complete set of F-unifiers) to ensure finiteness of derivations in
hierarchical programs, and it should also be regular (that is, for each equation s =¢ € E the
set of variables occurring in s equals the set of variables occurring in ¢) to avoid the problem
of floundering in allowed programs. See [Thielscher, 1996a] for a more detailed and formal
discussion.

26

The equational theory used in this paper, AC1, is known to be both finitary [Stickel, 1975]
and, obviously, regular. Nonetheless the result presented in [Thielscher, 1996a] cannot be applied
since the program developed in Subsection 5.1 is neither hierarchical nor allowed. We therefore
have to perform a more detailed and specific analysis of our program.

Although the programs FCncc are not hierarchical, it can be shown that all SLDENF-
derivations we are interested in to decide entailment wrt Ayce are necessarily finite. Since
no mutual recursion involving two or more program clauses occurs, the only crucial clauses are
direct recursive ones, that is, where the predicate in the head also occurs in the body.

There are three clauses of this kind, shown in (27) and (30), respectively. As regards the two
definitions of overruled in (27),it is easy to see that each recursive call increases the size (viz the
number of subterms) of the third argument, A. Moreover, the body of the first (resp. second)
clause can only be satisfied if there exists a strict e-proposition (resp. a selected alternative
e-proposition) for an action that includes A. Since there are only a limited number of such
proposition in a concrete domain, the recursive calls eventually stop, provided a fair selection
rule is used.

Analogously, the number of recursive calls of result , c.f. (30), is limited by the size of the sec-
ond argument, provided it is (partially) instantiated. This is indeed the case in both clause (31)
and the query used to decide entailment of an additional v-proposition (c.f. Theorem 17).

While it is easy to show finiteness of derivations, we cannot in general prove non-floundering.
In fact, whenever we try to decide entailment of a v-proposition fafter|a, ...,a,,]| by creating
the clause

satisfiable — model(],)?), ~ (38)
result (I, [(p(a1), X1), ..., (plam), Xm)], 7(£) 0 G).

(see Theorem 17) and we use the query <« satisfiable then the derivation flounders after
clause (31) has been applied—to solve the subgoal model(I,X)—since —inconsistent(I) can-
not be selected as [is a variable. Analogously, whenever clause (30) has been applied such that
a subgoal of the form action (I, A, H) occurs then this can only be resolved using clause (23).
This, however, requires I and H be fully instantiated if the derivation is not to flounder.'”
Moreover, whenever a suitable set S of alternative e-propositions is selected via clause (24)
then this additionally requires S5 to be instantiated.

There are two ways of solving this problem. First, one could define an extension of the
SLDENF-resolution principle that supports a proper treatment of non-ground, negative sub-
goals, such as the concept of constructive negation, which is a well-known technique to avoid
floundering in case of non-equational logic programs [Chan, 1988; Przymusinski, 1989]. This,
however, requires a new formal definition of an extended calculus, and then soundness and
completeness have to be proved again.

Here, we follow a simpler and more straightforward way. It is possible to rewrite some program
clauses such that the crucial variables become instantiated early enough during the derivation to
avoid floundering. To this end, we provide all possible collections of fluent literals of the length
|Fp|, where Fp denotes the underlying set of fluent names of domain D . These combinations
are obtained by the following clause:

7 The variable A always becomes instantiated when deciding entailment wrt Ancc since action sequences in
v-propositions are fixed.

27

sterm(I) « [=4c1 Hyo...0oHppp,,
complement(Hy 0 .Jy),

complement (H g, 0 J|rp)) -

where Hq,J1,..., Hipp|,J|F,| are pairwise distinct variables.
The new predicate sterm can then be used to instantiate the crucial arguments in advance
and, thus, helps to avoid floundering. The following clause is a modification of (30):

result(I,[],1).

result(I,[(A, H)|P],G) « sterm(H),
action(1,A, H),
result(H, P,G).

This clause can be used instead of (31) given a set of v-propositions:

model (I, X4,...,Xg)
— sterm(I),
—inconsistent (1),

result (L [(:u(all)’ Xaq)’ SRS (N(a17n1)7 X51)]7 T(ﬁl) o Gl))

result (I, [(#(a1); Xow)y -+ (1@) X5)] 7(6n) 0 Gin) -

Finally, to avoid floundering after clause (24) has been applied, by the following clause we
provide all suitable instances for a variable that contains a collection of triples each of which
represents an alternative e-proposition:

eterm (0) .
eterm((A, E,C)o S) — alteprop(A, E,C),
eterm (.5).

Clause (24) is then modified as follows:

setofalternatives (A, S, 1) — eterm(S5),
—overrepresented(S) ,
—underrepresented(A, S, 1).

To summarize, employing the modified equational logic program avoids the problem of deriva-
tions that flounder. Moreover, all derivations that occur when deciding entailment of a v-
proposition via (38) are guaranteed to terminate. Hence, SLDENF-resolution can now be ap-
plied as a sound and complete calculus for the equational logic program encoding domains
represented in Anxcc . Furthermore, finiteness of derivations shows that we have obtained a
decision procedure for entailment in our high-level action semantics.

6 Summary

We have presented formalisms for intentionally specifying actions so as to have nondeterminis-
tic effects, and for extracting as much as possible consistent and reasonable information from

28

contradictory representations of dynamic systems by interpreting them so as to be implicitly
nondeterministic. Qur resulting language Axncc allows the representation of nondeterministic
concurrent actions in dynamic systems and the resolution of conflicts. Furthermore, we have
developed a sound and complete encoding of representations in Ancc in terms of equational
logic programming and, thereby, have provided an instrument for automated reasoning about
such representations.

Our formalisms are based on the Action Description Language A. Two recent extensions
of A, namely, first-order-fluents [Dung, 1993] and indirect effects [Kartha and Lifschitz, 1994],
are not subsumed by our approach. Yet the fluent calculus, which we used here, has already
been extended to successfully cope with the ramification problem [Thielscher, 1995a; Thielscher,
1996b]. Hence we have good reasons to assume that the logic program presented in this paper
can be extended to form an adequate encoding of a high-level action semantics including Aycc
and indirect effects.

Acknowledgments. The first author acknowledges support from the German Research Com-
munity (DFG) within project MPS under grant no. Ho 1294/3-3.

A The Completed Equational Logic Program

Let D be a domain description in Axcc , and let (Pp,AC1) be the corresponding equational
logic program. The completion Pj, of Pp consists of the following first-order formulas.
Let Fp be the underlying set of fluent names then

VX (complement(X) < \/ X=fof) (5.20%)
feFp

completes FLUENTD .
Let {a; causes ¢; if C;| 1 <7 <k} be the set of all strict e-propositions in Ep (k >0)
then

VA, E,C (eprop (A, E,C) < \/le (

Il
=

(a;)
()
(Ci)

(5.21%)

Q& =
l
49

—_ > >

completes FPROPp .
Let {a; alternativelycauses F; if C;| 1 < ¢ < k} be the set of all alternative e-
propositions in Ep (k> 0) then

VA, E,C (alteprop (A, E,C) « \/f_l (A
E=1(E;) A (5.22%)
C=r

completes ALTEPROPp .
The completion of clause (23) and (24) is as follows:

VI,AH (action(1,A, H) < 35 (setofalternatives(A, S, 1)
—impossible(H, I, A S)YA
—unfounded(H,1,A,S) A

ﬁznconszstent)

A
(5.23%)

29

VA, S, I (setofalternatives(A,S,I) < —overrepresented(S) A

—underrepresented (A, S, 1)) (5.247)
The three clauses shown in (25) are completed by
VS (overrepresented(S) «
JA R, UV, X, Y. 5= (A,U,X)o (A, V,Y)o R)
VX,S5,Y (underrepresented (X, S5,Y) <
E|147B7CV7J7‘E7(X:AOBA (525*)

Y=ColJA
alteprop (A, E,C) A
—represented (A, S)))

VA, S (represented(A,S) — IE,C,R. S =(A,E,C)oR)
The completion of impossible is

VX, 1,A,S (impossible(X,I,A,S) <
G H(X =FoH A
overruled (F, 1,0, A,5) A (5.26%)
complement (F o G') A
—overruled (G,1,0,A,5)))

and the completion of the two clauses for overruled is the formula

VA,S,X,Y,Z(overruled(X,Y, A, Z,5)
3B,C, D, F,G,H,J(X=FoH A
Y=ColJA
Z=AoBoDA
eprop(Ao B,G,C) A
B#0A
complement (I o G') A
—overruled(G,C o J,Ao BjAo BoD,6S)) (5.277)
V

3B,C, D, E,F,G,H,J,R(X =FoH A
Y=ColJA
Z=AoBoDA
S=(AoB,GoE,C)oR A
B#0QA
complement (I o G') A
ﬁoverruled(G,CoJ,AoB,AoBoD,S)))

Completing (28) yields

VX,Y, A, S (unfounded(X,Y, A, S)
G H,I(X =FoH A
Y =GolA (5.28%)
complement (F o G') A
—overruled (G,G o I,0,A,S5)) >

30

The four clauses used to express consistency are completed as follows:

VI(inconsistent(I) o 3G, H(I=GoGoH N G#0)

Vv
AF,G([=FoGA
complement (I))
\% *
3F,G (complement(F oG) A (5:297)
F£OANG#DA
—holds (F,I) A =holds(G,I)))
VF,T (holds(F,T) — 3H. = HoF)
Clause (30) is completed by
VI, L,G (result(I, L,G) < L=[]AI=CG
\
JAH, P (L =[(AH)P]A (5.30%)
action(I, A, H) A
result(H, P,G)))
Finally, let {{; after [a;1,...,@im,]| 1 < @ < n} be the set of all v-propositions in Vp

(n>0) then

VI, Xq,...,Xg (model(1,X4,...,Xg) <
—inconsistent (1) A (5.31%)

/\?:1 result([, [(N(ail)a Xaz‘)7 ERRE (M(aimi)7 X5i)]7 T(gi) o Gi))

completes (31).

References

[Apt et al., 1987] Krzysztof R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In J.
Minker, editor, Foundations of Deductive Databases and Logic Programming, chapter 2, pages 89—148. Morgan
Kaufmann, 1987.

[Baader and Siekmann, 1993] Franz Baader and Jorg H. Siekmann. Unification theory. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming.
Oxford University Press, 1993.

[Baker, 1989] A. B. Baker. A simple solution to the Yale Shooting problem. In Proceedings of the International
Conference on Knowledge Representation and Reasoning, pages 11-20, 1989.

[Baral and Gelfond, 1993] Chitta Baral and Michael Gelfond. Representing concurrent actions in extended logic
programming. In R. Bajcsy, editor, Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 866871, Chambéry, France, August 1993. Morgan Kaufmann.

[Baral, 1995] Chitta Baral. Reasoning about actions: Non-deterministic effects, constraints and qualification.
In C. S. Mellish, editor, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 2017-2023, Montreal, Canada, August 1995. Morgan Kaufmann.

[Blbel, 1986] Wolfgang Bibel. A deductive solution for plan eneration. New Generation Computmg, 4115*132,

31

runing et al., 1993] Stefan Bruning, Steffen Holldobler, Josef Schneeberger, te Sigmund, an ichae

[Briini l] Stefan Briini Steffen Holldobl Josef Schneeb Ute Si d d Michael
Thielscher. Disjunction in resource-oriented deductive planning. In D. Miller, editor, Proceedings of the In-
ternational Logic Programming Symposium (ILPS), page 670, Vancouver, Canada, October 1993. MIT Press.
(Poster).

[Chan, 1988] David Chan. Constructive negation based on the completed database. In R. Kowalski and K. Bowen,
editors, Proceedings of the International Joint Conference and Symposium on Logic Programming (IJCSLP),
pages 111-125. MIT Press, 1988.

[Clark, 1978] Keith L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
g
pages 293-322. Plenum Press, 1978.

[Denecker and de Schreye, 1993] Marc Denecker and Danny de Schreye. Representing incomplete knowledge
in abductive logic programming. In D. Miller, editor, Proceedings of the International Logic Programming
Symposium (ILPS), pages 147-163, Vancouver, October 1993. MIT Press.

[Dung, 1993] Phan Minh Dung. Representing actions in logic programming and its applications in database
updates. In D. S. Warren, editor, Proceedings of the International Conference on Logic Programming (ICLP),
pages 222-238, Budapest, June 1993. MIT Press.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic
programs. Journal of Logic Programming, 17:301-321, 1993.

[Girard, 1987] Jean-Yves Girard. Linear Logic. Journal of Theoretical Computer Science, 50(1):1-102, 1987.

[GroBle, 1994] Gerd GroBe. Propositional State-Event Logic. In C. MacNish, D. Peirce, and L. M. Peireira,
editors, Proceedings of the European Workshop on Logics in AI (JELIA), volume 838 of LNAI pages 316-331.
Springer, 1994.

[Hanks and McDermott, 1987] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence Journal, 33(3):379-412, 1987.

[Holldobler and Schneeberger, 1990] Steffen Hélldobler and Josef Schneeberger. A new deductive approach to
planning. New Generation Computing, 8:225-244, 1990.

[Holldobler and Thielscher, 1995] Steffen Hélldobler and Michael Thielscher. Computing change and specificity
with equational logic programs. Annals of Mathematics and Artificial Intelligence, 14(1):99-133, 1995.

[Jaffar et al., 1984] Joxan Jaffar, Jean-Louis Lassez, and Michael J. Maher. A theory of complete logic programs
with equality. Journal of Logic Programming, 1(3):211-223, 1984.

[Kartha and Lifschitz, 1994] G. Neelakantan Kartha and Vladimir Lifschitz. Actions with indirect effects. In
J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 341-350, Bonn, Germany, May 1994. Morgan Kaufmann.

[Kartha, 1993] G. Neelakantan Kartha. Soundness and completeness theorems for three formalizations of actions.
In R. Bajcsy, editor, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
724-729, Chambéry, France, August 1993. Morgan Kaufmann.

[Kartha, 1994] G. Neelakantan Kartha. Two counterexamples related to Baker’s approach to the frame problem.
Artificial Intelligence Journal, 69(1-2):379-391, 1994.

[Lin and Shoham, 1992] Fangzhen Lin and Yoav Shoham. Concurrent actions in the situation calculus. In Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, pages 590-595, San Jose, California, 1992.
MIT Press.

[Lloyd, 1987] John W. Lloyd. Foundations of Logic Programming. Series Symbolic Computation. Springer,
second, extended edition, 1987.

32

[Lukaszewicz and Madalifiska-Bugaj, 1995] Witold Lukaszewicz and Ewa Madalifiska-Bugaj. Reasoning about
action and change using Dijkstra’s semantics for programming languages: Preliminary report. In C. S. Mellish,
editor, Proceedings of the International Joint Conference on Artificial Intelligence (1JCAI), pages 1950-1955,
Montreal, Canada, August 1995. Morgan Kaufmann.

[Masseron et al., 1993] M. Masseron, Christophe Tollu, and Jacqueline Vauzielles. Generating plans in linear
logic 1. Actions as proofs. Journal of Theoretical Computer Science, 113:349-370, 1993.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. Machine Intelligence, 4:463-502, 1969.

[McCarthy, 1963] John McCarthy. Situations and Actions and Causal Laws. Stanford Artificial Intelligence
Project, Memo 2, 1963.

[Przymusinski, 1989] Teodor C. Przymusinski. On constructive negation in logic programming. In E. L. Lusk
and R. A. Overbeek, editors, Proceedings of the North American Conference on Logic Programming (NACLP),
Cleveland, October 1989. (Insertion).

[Richard etal., 1988] Pierre Richard etal. A gauche en sortant de I’ascenseur. Renn Productions, 1988.

[Sandewall, 1993] Erik Sandewall. The range of applicability of nonmonotonic logics for the inertia problem. In
R. Bajcsy, editor, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
738-743, Chambéry, France, August 1993. Morgan Kaufmann.

[Sandewall, 1994] Erik Sandewall. Features and Fluents. Oxford University Press, 1994.

[Shepherdson, 1992] John C. Shepherdson. SLDNF-resolution with equality. Journal of Automated Reasoning,
8:297-306, 1992.

[Stickel, 1975] Mark E. Stickel. A complete unification algorithm for associative-commutative functions. In
Proceedings of the International Joint Conference on Artificial Intelligence (1JCAI), pages 71-76, Thilisi, USSR,
1975.

[Thielscher, 1994] Michael Thielscher. An analysis of systematic approaches to reasoning about actions and
change. In P. Jorrand and V. Sgurev, editors, International Conference on Artificial Intelligence: Methodology,
Systems, Applications (AIMSA), pages 195-204, Sofia, Bulgaria, September 1994. World Scientific.

[Thielscher, 1995a] Michael Thielscher. Computing ramifications by postprocessing. In C. S. Mellish, editor,
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1994-2000, Montreal,
Canada, August 1995. Morgan Kaufmann.

[Thielscher, 1995b] Michael Thielscher. The logic of dynamic systems. In C. S. Mellish, editor, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pages 1956-1962, Montreal, Canada, August
1995. Morgan Kaufmann.

[Thielscher, 1996a] Michael Thielscher. On the completeness of SLDENF-resolution. Journal of Automated
Reasoning, 1996. (To appear Fall '96).

[Thielscher, 1996b] Michael Thielscher. Ramification and Causality. Technical Report TR-96-003, ICSI, Berkeley,
CA, 1996.

33

