A Modular Analysis of Network
Transmission Protocols

Micah Adler * Yair Bartal* John W. Byers*!
Michael Luby ¥ Danny Raz*'
TR-97-001
April 1997

Abstract
We propose a new model for the analysis of data transmission protocols in lossy
communication networks. The overall goal of a data transmission protocol is to
successfully transmit a message from the sender to the receiver. We study the per-
formance of protocols in an adversarial setting where the loss pattern and latencies
of packets are determined by an adversary.

We advocate the modular decomposition of data transmission protocols into a
time scheduling policy, which determines when packets are to be sent, and a data
selection policy, which determines what data is to be placed in each sent packet.

We concentrate on the data selection policy and require that the protocol will
achieve high bandwidth utilization in transmitting any prefix of the transmitted mes-
sage. The simple and universal data selection policy we introduce is provably close
to optimal in the following sense: For any time scheduling policy and any network
behavior, in the worst case prefix measure our data selection policy performs as well
as any other data selection policy up to a constant additive term.

Our explicit modular decomposition of a transmission protocol into two policies
should be contrasted with existing network protocols such as TCP/IP. Our result

*The International Computer Science Institute in Berkeley, California, and the University of California,
Berkeley.

'Supported in part by NSF operating grants CCR-9304722 and NCR-9416101.

tDEC/SRC, 130 Lytton Avenue, Palo Alto, California 94301. A large portion of this research was done
while still at the International Computer Science Institute in Berkeley, California. Research supported in part
by National Science Foundation operating grants CCR-9304722 and NCR-9416101, and United States-Israel
Binational Science Foundation grant No. 92-00226.

shows that the performance of the overall transmission protocol would not degrade in
performance (and could improve dramatically) if it used our universal data selection
policy in place of its own. We therefore reduce the problem of designing a data
transmission protocol to the task of designing a time scheduling policy.

i

1 Introduction

TCP/IP traffic currently accounts for over 90% of the throughput on the Internet. The
reason for TCP’s predominance stems from a the fact that TCP is a robust protocol which
has withstood the test of time in achieving both high performance and fairness across
connections. Now, however, TCP’s resilience is being tested as new environments, such as
wireless networks, and new protocols, such as real-time protocols that use UDP, become
more prevalent. The natural question then, is whether TCP is likely to continue to succeed,
as the environment in which it is used changes in unpredictable ways?

There is a clear difference in the way networking practitioners and the theory research
community tend to approach such questions. Theoretical research often introduces restric-
tions in order to be able to model the problem and to design and analyze suitable modifi-
cations to the protocol under this model. These restrictions typically include assumptions
about the input distribution on the data to be transmitted, the topology of the network,
and the capacity of the links, and other properties of the underlying network. Indeed, un-
der certain assumptions, protocols have been designed and analyzed to have nearly optimal
throughput, small latencies, etc.

However, in practice, working networks have become extremely complex and difficult to
model, since these networks can have arbitrary topologies, variable edge capacities and can
experience bursty periods of abnormally high traffic [LTWW 95, YKT 96]. Furthermore,
packets traversing these networks can be dropped by intermediate routers or can experience
unpredictable and widely varying round-trip times [Pax 96]. Therefore, drawing conclusions
about TCP based on a particular model or interpretation of the network is sharply limited
by those assumptions introduced to derive the model.

This considerable and as of today, unquantifiable, discrepancy between conditions under
which existing networks operate and conditions under which protocols have been proven to
work well motivates our work. One of our main goals is to abstract away these details of
the network, so as to avoid the contentious problem of settling on a particular model for
the network behavior and data distribution. Our abstraction models the network behavior
as arbitrary, i.e., it may drop any sequence of packets and may vary the latency on packet
transmissions arbitrarily. This is somewhat similar to the approach of recent works such as
the adversarial models of [BKR+ 95] and [AAF+ 96]. In these works the performance of
protocols on packet routing networks have been provably analyzed, even when the distribu-
tion of packet arrivals and routes is arbitrary, subject to the requirement that edge capacity
constraints are not violated.

We advocate and justify in this paper a modular approach to protocol design. This
approach has obvious advantages: It encourages the design of simple and easy to under-
stand protocols, while explicitly discouraging consideration of complex interactions between
the different parts. This notion is not new — the architects of NETBLT [CLZ 87] and the
proponents of forward acknowledgment in TCP/IP [MM 96] both advocate explicit decou-
pling of congestion control algorithms from other parts of the protocol. As in [MM 96], we
propose decomposing a transmission protocol into two parts: A time scheduling policy that
determines when the packets are to be sent, and a data selection policy that determines what
data is to be placed in each sent packet. The simple and universal data selection policy we
introduce is provably close to optimal in the following sense: For any time scheduling policy

and any network behavior, our data selection policy provably performs almost as well as
any other data selection policy when used in conjunction with the given time scheduling
policy and network behavior. This is true even when the data selection policy we compare
against is specifically designed to work with the given time scheduling policy and network
behavior.

The overall goal of a data transmission protocol is to successfully transmit a message
from the sender to the receiver. We choose to measure the performance of such a data
transmission protocol quite stringently: At each point in time, our measure is the length of
the longest message prefix acknowledged as received up to that point in time.

This choice is motivated by applications such as video and audio broadcasting, where
only the intact received prefix of the broadcast can be played back in full fidelity. Another
justification for our measure is the strategy used by commercial Internet browsers to display
pages with graphical content downloaded over the Internet: the browser incrementally
updates the image as quickly as possible as the stream arrives. In this example, there may
be only a small number of breakpoints in the stream where the image can be updated, and
thus it may be argued that a more realistic measure would only compare the progress of
policies at these breakpoints. On the other hand, since our data selection policy performs
well at any possible breakpoint, it clearly also performs well when comparisons are made
only at certain breakpoints. Thus, using our stringent performance measure ensures that
our data selection policy works well independent of where the breakpoints are within the
stream.

We analyze this performance measure for our data selection policy in the spirit of com-
petitive analysis of on-line algorithms introduced in [ST 85]. The analysis measures the
worst-case performance of our data selection policy when compared with the performance
of an optimal data selection policy, where comparisons are made at all points in time for
each possible time scheduling policy and each specification of the behavior of the network.
We use the competitive ratio, i.e., the ratio between the profit of the on-line algorithm and
the profit of the optimal algorithm (up to a constant additive term), as our performance
measure. To achieve a more refined analysis in the randomized case, where the ratio is
1, we focus on the performance measure known as the minimaz regret; i.e., we bound the
worst-case difference between the optimal profit and the on-line profit.

The design of a universal time scheduling policy that is optimal for any given network
behavior is beyond the scope of this paper. At this point, this is not even a well-defined
question, because the performance of a time scheduling policy for one user depends on the
interactions of an arbitrary set of users transmitting over an arbitrary network.

The remainder of the paper is organized as follows. In § 2, we define the model, with
particular emphasis on our design decisions, and the measure of performance for the data
selection policy. In § 3 we present a deterministic data selection policy and analyze its
competitive ratio along with a matching lower bound. In § 4 we present a randomized
algorithm and prove nearly matching upper and lower bounds on the minimax regret of
randomized data selection policies. Finally, in § 5, we summarize our results and outline
future research directions.

2 The Specification of the Model

The specification of the model which we develop is sender-centric, meaning that the protocol
is run from the sender’s perspective, based only on events which have already occurred at
the sender. The sender receives feedback about the progress of its transmissions based on
receiver-driven acknowledgments in the style of TCP, i.e. each packet arrival at the receiver
triggers an acknowledgment. However, both packets and acknowledgments may be lost,
so the algorithms which we develop must address this possibility. Assuming that packets,
acknowledgments and each of the message words can be uniquely identified, the following
is a complete list of events that may occur at the sender at a time-step:

e Transmit packet ¢ containing data w;.

e Receive acknowledgment ACK (7) (or NACK(¢)) acknowledging (or NACKing) packet

1.
e Terminate transmission.

Our model supports negative acknowledgments (NACKs), when the receiver can infer that
a packet has been lost. It can also support the use of acknowledgments which acknowledge
multiple packets, similar to the use of selective acknowledgment in TCP (see for example
[F'I" 96, JB 88]), simply by unpacking such a multiple acknowledgment into a sequence of
separate acknowledgments. Although the model implicitly permits the receiver to choose
what to acknowledge at each time-step, our algorithms will use a rather simple mechanism
for doing so.
We associate the following quantities with packet ¢:

e s;, the packet transmission time

e a;, the time at which the first (possibly negative) acknowledgment for packet i arrives
at the sender

e b;, a boolean set to 1 iff packet ¢ was positively acknowledged
® a; — 8;, the round-trip time for packet 2
e w;, the data, or payload, contained in packet 7

The time-scheduling policy determines when packets are to be transmitted, which in our
model corresponds exactly to the choice of the times s;, based on events which occur prior to
this time. The network behavior is captured by the round-trip times, which reflects network
latencies, and by the values of the b;, which specify the pattern of packet loss. We assume
that the network does not base its decisions on the contents of the packets, eliminating
dependencies between the data selection policy and the network behavior. Finally, the data
selection policy, which determines what information should be placed into each packet, is
responsible for determining the w;.

2.1 Transcripts

Our objective is to study the worst-case performance of data transmission algorithms, with
any choice of network behavior and any choice of time-scheduling policy. Together, the
network behavior and the time-scheduling policy jointly determine the s;,a;, and b; for
every packet ¢, and since we make no restrictions on the dependencies between the network
behavior and the time-scheduling policy, our data selection algorithm must perform with
any specification of these 4-tuples, which we refer to as a transcript. We define the backlog
of a transcript # at time ¢, By(#), to be the number of transmissions sent prior to time ¢
which have not yet been acknowledged, and we let By = max; B;(#). When the transcript
is understood, we frequently use the shorthand B; to specify the backlog at some time ¢.

packet
ID
sent
acked
_ Bt
I
S. t a Time

Figure 1: A sample transcript

In Figure 2.1, we provide a pictorial representation of a transcript. As time elapses
along the horizontal axis, we separately plot the transmission and acknowledgment times
of the packets. Note that in this picture, we do not specify whether the acknowledgment
was positive or negative. In this specific transcript the acknowledgments are in-order, and
therefore the vertical distance between the two plots at any time ¢ is exactly B;, the backlog
at time t. The backlog may grow (or shrink) due to network factors such as packet loss,
acknowledgment loss, and increased network latency, or because of a time-scheduling policy
decision resulting in a faster transmission rate. The larger the backlog, the greater the
challenge in choosing a data selection policy. For example, if the backlog is always fixed
at one, then the trivial policy of selecting the smallest unsent message word is optimal. In
fact, in the special case in which the transcript maintains a fixed backlog, a fairly simple
algorithm achieves a slightly better result than the more general one we describe.

2.2 Quantifying the Performance of a Data Selection Policy

To describe our performance measure, we first need some more definitions: The available
bandwidth through time t on a transcript 6 is P*(¢,0) = >, b;, taken over 7 such that
a; < t,i.e. P*(t,0) is the number of distinct transmissions which have been positively

acknowledged by time ¢. The mazimum prefiz of the message with data selection algorithm
A and transcript 8 at time ¢, denoted P4(t,8), is the largest integer w such that packets
containing message words 1 through w have all been positively acknowledged prior to t.

Intuitively, a successful data transmission algorithm is one which makes effective use
of the available bandwidth. On the other hand, we also want to ensure that the buffer
sizes required at the receivers are not too large. Therefore, there is a tradeoff involved in
sending redundant information; it limits the effectiveness of the bandwidth utilization, but
can help keep buffer sizes manageable. The measure we have chosen reflects this intuition.
Furthermore, as we described earlier, applications such as Web browsers and lossless real-
time multimedia broadcasts can only operate on a continuous prefix of the message.

Now, given any transcript 8, we can define an optimal, omniscient data selection policy,
OPT, whose maximum prefix at time ¢ is P*(¢,6), i.e. it always manages to use all of the
available bandwidth in constructing the prefix. Algorithm OPT achieves this goal simply
by transmitting packet 7 at the time of jth successful send event. This off-line optimum
forms the baseline for our comparison. For an algorithm A, let R4(t,8) = P*(t,8)/PA(t,0)
denote the ratio, and A4(t,80) = P*(t,0) — PA(t,0) denote the difference between the prefix
obtained by A and the prefix obtained by the optimal data selection policy.

2.3 Discussion and Statement of the Main Results

First, we will present a deterministic data selection policy that achieves a worst-case ratio
that tends to one as the message length m goes to infinity. We complement this result with
a proof that no deterministic strategy can achieve a ratio of 1, and therefore cannot achieve
a bounded worst-case difference. These results are stated as the following theorems:

Theorem 1 There exists a deterministic algorithm A, such that for all transcripts 8 and
for all times t,
Bylog Bg)*/?
R%um:1+<9(iiﬂiiLJ

JP (L, 0)

Theorem 2 For any deterministic algorithm A, there exists a transcript 8 and a time t,

for which
Rﬂam:1+9(

1

For randomized data selection policies, we can do better, but only on transcripts in
which successfully transmitted packets arrive in order. This natural assumption is further
supported by recent Internet measurements by Paxson [Pax 96] and others which indicate
that out-of-order packet arrivals currently occur very rarely. Under this assumption, we
can focus on bounding the minimax regret, or competitive difference. In this case, the
backlog of the transcript, By, turns out to be of fundamental importance, as it captures
an information gap between our algorithm and OPT, measuring the maximum number
of transmissions whose fate is unknown to our algorithm at any time. Our results for
randomized policies are summarized by the following theorems:

Theorem 3 There exists a randomized algorithm A, such that for all transcripts 6 and for
all times t, the following holds with high probability:

AA(t,0) = O(Bglog® By).

Theorem 4 For any randomized algorithm A, and for any sufficiently large B, there exists
a transcript 8 with Bg = B and a time t4 for which

AA(t4,0) = Q(Blog B), with constant probability.

3 An Efficient Deterministic Data Selection Policy

In this section we focus on deterministic data selection policies. In this case the transcript
uniquely determines the content of the packets. Simple algorithms such as sending the
smallest unacknowledged message word, or the fully redundant algorithm that keeps on
sending a message word until it is positively acknowledged, have poor competitive ratios.
We present a simple algorithm and prove that it has a competitive ratio that tends to one as
the message size goes to infinity. We then prove that this is the best we can hope for, since
the competitive difference for deterministic algorithms cannot be bounded by any function
of By.

3.1 A Simple Deterministic Algorithm

Our deterministic algorithm for the problem runs in a sequence of rounds. In round 7, it
succeeds in transmitting the next k; message words, where k; is a parameter to be specified
later. Let I; be the index of the smallest word sent in round 2. We say that a word of the
message is completed once the sender has received a positive acknowledgment for it. For a
word which has not been completed, we count the number of packets in the backlog which
contain that word as the payload. At each send event in round 7, the algorithm sends the
uncompleted word in [l;,[; + k; — 1] with the minimum such value, breaking ties arbitrarily.

In each round, the algorithm extends its prefix by the amount k;. We now prove that
the optimal algorithm extends its prefix in this round by at most k; + By log By.

Lemma 5 Any word which is completed while more than Bg/j words in the interval are
not yet completed is transmitted successfully at most 7 times.

Proof: Fix some j, and consider some word w which is first positively acknowledged
(and therefore completed) at time a from a transmission at time ¢. Assume further that
at least By/j words have not been completed by time a. We want to show that w could
have been retransmitted at most j times after time ¢ but before time a. Indeed, if w was
transmitted 7 + 1 times then just after the time of the j + 1st transmission, there must be
at least j X (Bg/j)+ 1 > By packets in the backlog, which is a contradiction. [

Using the lemma above, we have that all but the last By words are transmitted success-
fully exactly once. Then of the last By words, half of them are transmitted at most twice, a
quarter of them are transmitted at most four times, etc., so that in total, the last By words
are transmitted successfully at most Bs(log Bg + 1) times. Therefore, the total number of

successful transmission slots in round ¢ is at most k; + By log By, which bounds the increase
in prefix length by the optimal algorithm in round ¢.

To achieve the best worst-case ratio, we must upper bound the ratio at all times t.
Choosing t be a time in phase ¢ + 1, we must now specify the k; so as to minimize:

Y j<ip1(kj + Bglog Bg)
Yi<ikj a

kH—l + (l + 1)B5 log By
ngi k; '

RA(1,6) <

1+

Choosing k; = 1 we get

(i + 1)(B9 log By + 1)
i+ 1)2
Q(Bg log By + 1)

1

RA(t,8)

IN

1+

= 14

Now, by using P*(t,6) < @%ﬂ + (i 4+ 1)Bglog Bg we can bound the competitive
ratio, and prove Theorem 1:

4(B9 10g B@)?’/2

JP (L, 0)

3.2 The Deterministic Lower Bound

RA(,0) <1+

If the algorithm uses a deterministic strategy to place the data into the packets, then the
following adversarial strategy guarantees that A(?¢,0) grows without bound. Repeatedly
allow the algorithm to transmit two packets into the system — if they contain identical
words, admit both copies; otherwise admit only the packet containing the word with larger
index (we henceforth refer to it as the larger packet). Clearly, the backlog of the transcript
resulting from this adversarial strategy with any time-scheduling policy is at most two. The
following claim directly implies Theorem 2:

Claim 6 For any deterministic data selection policy A, and any transcript 6 resulting from
the adversarial strategy described above, there evists a time t in which RA(t,0) > 1 +

1
Ly
Proof: From the definitions, RA(t, f)=1+ %Z—g% > 14 %;’—g}. If we then fix 7 so that
P*(1,0) = 2n(n + 1), it is enough to show that A4(t,8) > n for some time ¢ < 7. Assume
that this claim is not true and A“4(¢,8) < n for all times t. Then consider an interval of
time [u, v] in which the algorithm transmits 2n packets. By the adversarial strategy, either
the smallest of those packets does not get through, or two copies of the smallest packet are
transmitted and both are admitted. If the smallest packet is not admitted, AA(‘U,H) = n,
giving a contradiction. So a duplicate packet must be transmitted in every sequence of 2n
packets, and hence, after admitting 2n x (n41) packets, A4(t,6) > n; giving a contradiction
and proving the result. [

4 An Almost Optimal Randomized Data Selection Policy

We next want to develop an even better data selection policy given a transcript 8 in which
successfully transmitted packets arrive in order. Since our lower bound for deterministic
data selection policies still applies for this case, we use randomization to achieve better per-
formance. Our goal is to define a randomized policy A which for all times ¢ and transcripts
0, has a bounded value of A4(t,0) with high probability.

4.1 Preliminaries

To precisely define such an algorithm, we must specify how it chooses to place data in
each of the packets and in each of the acknowledgments. First, we require that in a packet
sent at time ¢ the sender must transmit the size of the current backlog, B, in a field of
the header. Then, when a packet sent at time ¢ arrives at the receiver, we require that
it acknowledge all packets which were in the backlog at time ¢. This is made possible by
the fact that successfully transmitted packets are guaranteed to arrive in order, and we
incur a per acknowledgment overhead of at most By bits. This acknowledgment style is
similar to the proposal to add selective acknowledgment to TCP (see for example [JB 88]
[FF 96]), designed to improve TCP performance over lossy networks. Furthermore, this
technique handles the potentially tricky problem of dealing with lost acknowledgments by
guaranteeing that our algorithm has the following property on any transcript:

Claim 7
Vi,j s, < s; implies a; < a;

Proof: Omitted. [|

4.2 The Randomized Algorithm

To specify how our algorithm places message words into packets, we use the following
terminology. Recall that a word of the message is completed once the sender has received
a positive acknowledgment for it. We say that it is locked for the intervals of time during
which a packet containing the word is in transit (sent but not yet acknowledged). Otherwise,
the word is available. Note that the size of the backlog at time ¢, By, is exactly equivalent
to the number of locked words.

We next develop a randomized data selection policy with competitive ratio 1, and which
satisfies the conditions of Theorem 3. Again, this policy requires the assumption that those
packets which are not lost arrive at the receiver in order. A formal description of Algorithm
A is given in Figure 2. It can be summarized by the following simple rule: At the time ¢
of any send event, it sends one of the S(B;) smallest available words, chosen uniformly at
random. We refer to this set of words as V4, the set of valid words at time ¢, choosing the
function S(z) so that y; SLZ) <1 eg S(z)=[drlog(z + 1)loglog'™*(z + 1)] + 1, where
d and ¢ are appropriately chosen constants.

We can now precisely state the technical claim from which Theorem 3 immediately
follows.

Algorithm A

L ={}; /* Locked words */
C ={}; /* Completed words */
R = M; /* Other words */

While C' # M do:

Case ‘Send’:
—V = set of §(|L]) smallest indices of R.

— Choose e at random from V' and send(m.).

“R=R\{e}i L=LU{e};

Case ‘ACK(e)’:
SC=Culel; L=I\{e)

Case ‘NACK(e)’:
- R=RU{e}; L=1L\{e};

Figure 2: A near optimal data selection policy

Claim 8 For any transcript 8, any constant ¢, and any time T, let ET = maxy<, By and

define § = [4¢S(B;)In 28(B.)]. Then,
Pr[AA(r.0) > 8] < (25(B)) 7+,

Proof: Fix a transcript # and a time 7. Now define 75 be the first time (prior to
7) at which P*(75,8) = P*(7,0) — 6, and let @ = P*(715,0). By these definitions, the
optimal algorithm delivers a prefix through z by time 75; our goal is to show that our
algorithm delivers a prefix through z by time 7 with high probability. This would imply
that P4(r,8) > P*(7,0) — ¢, proving the claim.

We define word ¢ as eligible at time ¢ if it is either valid or locked at time ¢, and we
denote the set of eligible words F; = V;|J Ls. By the fact that our algorithm does not use
redundancy, some word y > z is transmitted by time 75. At the instant this word ¥ is
transmitted, there are at most B, locked words and at most S(ET) valid words. Therefore,
if we let W denote the set of eligible words smaller than z at this same instant, we have that
|| < B, + S(ET) < QS(B‘T). We now want to prove that all elements of ¥ are delivered by
time 7 with high probability, which implies that an intact prefix through z is delivered by
time 7. The first step is to show a lower bound on the probability that an eligible member
of this set is transmitted in a given time step in the interval [rs, 7].

Lemma 9 Lett be the time of a successful ‘send’ event between 75 and 7, and let y be an
arbitrary element of V.

Pr[y sent at t | y is eligible at t] > 23S(BY)’

Proof: Fix a time t satisfying the conditions of the lemma and an element y € ¥ that
is eligible at ¢t. If y is unlocked at ¢, it is sent with probability @. Let t1,t2,...tp, be
the times of the B; most recent (unacknowledged) transmissions prior to . The probability
that y is locked at ¢ is bounded by the sum of the probabilities that y was sent in one of
those B; most recent transmissions. Since the probability of y being chosen at t; is S(%ti)7

we have the following:

B
. 1
Pr[y locked at t] < .
; S(Bti)

For all 7, the transmission at time ¢; is not acknowledged until after time ¢, and hence the

backlog at t; is at least 7. Since § is monotone, ﬁ < % Therefore by the definition

of § we conclude:

I L |
Pr[y locked at] < < — < -
ZZ:; S(Btz) i1 S(’L) 2
Therefore, the probability of y being sent at ¢ is at least % X S(}St) [|

Now consider an element y € V. If y is neither completed nor eligible at a successful
send event in [75, 7|, then it must be the case that some other member of ¥ (with index
< y) is successfully delivered at that time. By our earlier bound on |¥|, this situation can
occur at most QS(ET) times. Since there are § successful transmissions in [7s, 7], ¥ must

10

therefore be eligible in at least § — QS(ET) of them, or must have been successfully delivered

by 7. By applying Lemma 6, the probability that y is not successfully delivered at time ¢
. _ 1 _ 1 e
in [75, 7] in which it was eligible is at most (1 —QS(Bt)) < <1 —QS(ET))’ so the probability
that y is not delivered by time 7 is bounded by

§—25(By) R
1— 1A < e—(2cln2$(B-,—)—1).
25(B,) =

Now by taking a union bound over the at most QS(ET) elements of W, the probability
that the algorithm does not complete the prefix through word z by time 7 is bounded by

(28(B,))~2+2, m

4.3 A Lower Bound for Randomized Data Selection Policies

We now prove a nearly matching lower bound on A(#,6) for randomized policies. The
adversary we use is oblivious, meaning that it fixes its strategy in advance of the execution
of the algorithm, and does not adapt its strategy to the random choices made by the
algorithm. We feel that in the context of our problem, oblivious adversaries are the correct
choice, since an adaptive adversary which inspects the content of packets can be thwarted
using encryption. Of course, the lower bounds we prove with oblivious adversaries also
hold for adaptive adversaries. The simple strategy our adversary employs is to admit each
packet independently with probability %, where admitting a packet is defined as successfully
routing the packet to its destination. Using this adversary, we prove the following lemma,
which implies Theorem 4 directly.

Lemma 10 For any algorithm A,

30 3t such that Pr [AA(1,0) > Deloe B S L

22 16
Proof: Fix an algorithm A and a sufficiently long message size m. The adversary then
chooses By such that Bg log2 By = m and uses transcripts in which each round of By
send events is followed by an acknowledgment for the entire round. The adversary admits
each packet into the network independently with probability % We define a phase of the
transcript to be a sequence of 10g2B9 consecutive rounds. and we let & = 2Bglog By be the
number of phases. If in a run of the algorithm, A transmits two or more copies of some

message word in any round of phase 7 of the transcript, we say that A uses redundancy in
phase 7. Then we let r; be the probability over all coin tosses of A and the adversary that
A uses redundancy in phase 1.

The r; probabilities are used to select the value for ¢ in the lemma. Intuitively, if r; is
large for all phases, the redundancy used by the algorithm will waste bandwidth, while if
some r; is small, the algorithm will have difficulty making sure that each of its transmissions
contributes to PA(¢,8) in phase 7. In particular, if r; > % for all + then we choose t to be the
time of the last send event ending phase k. Otherwise, there must exist a phase j € {1...k}

11

such that r; < %, and we choose t to be the time of the send event ending the first such
phase j.

It is left to show that the lemma holds in both of these cases for our choice of ¢ and 6.
We make frequent use of the following fact in our analysis.

Fact 11 Consider a random variable X which takes on values < D. Then for any a and
v such that 0 < o,y < 1,

1—
E[X] > aD = Pr[X > (aD)y] > —
a7

Case I: r; > 2 for all i € {1...k}.

In each phase in which A uses redundancy, the probability that two copies of the same
message word are both admitted into the network is at least %, since each copy is admitted
independently with probability % We refer to such a phase as one in which the algorithm
is caught. Fach such phase increases the redundancy and hence AA(t,O) is at least the
number of such phases in {1...k}, which we denote by C'. The expected value of C', E[C],

is at least % X %, and C' is bounded above by k, so by applying Fact 11 with a = % and
7=
3k 1 9 1
P > — X | > —> —
T[C— 32X4] =125 7 16

Using C as a lower bound on the value of A4(¢,8), and plugging in for & yields:

Pr |A%(t,6) >

B@long] > 1
22 — 16

which completes the proof for Case I.
Case II: There exists a j € {1...k} such that r; < %.

Recall that ¢ is set to be the time ending the first phase 7 in which the algorithm is
unlikely (i.e., with probability < %) to use redundancy. To show the result, we assume
first that the algorithm will not use redundancy in phase 7 and let the algorithm run on a
transcript @ up until time s, the beginning of phase j.

Let N;(0, p) denote the event that algorithm A does not use redundancy on transcript 6
with random tape p while executing phase j. We use N; when 6 and p are understood. Let
Y = P*(t,0) — P*(s,0), the random variable which measures the available bandwidth in
phase j. We first show that the available bandwidth in phase 7 must be large with constant
probability, even when conditioning on the event that our algorithm chooses not to use
redundancy. By our choice of the length of a phase and since each packet is admitted with
probability 1, E[Y] = Pel%Bs Now, since E[Y] = Pr[N;] E[Y|N;]+(1-Pr[N;]) E[Y|N,],
and Y (and E[Y]|N,]) is bounded above by Be—lgg&, we have:

1

ElY|N;]| >
[|]] = PI[L"\TJ]

(E[Y] - (1 - Pr(N;]) E[Y[N;])

12

5 BologBs [, 1) Bylog By (1)
4 Pr[N;] 10

The next step is to show that any algorithm which does not use redundancy in phase
7 makes far less progress than the optimal algorithm with very high probability. For an

algorithm G let ?G(t, 0) = max{P%(t,0), P*(s,0)}. We will show that

max E[P (t §) — P*(s,0)] < By

where the max is taken over algorithms G which do not use redundancy in phase j. Let '
denote the algorithm achieving the maximum above. Now consider a word y not admitted
prior to the beginning of the phase by C'. By the fact that C' does not use redundancy, y
is transmitted at most % times in round j. And since the adversary chooses whether
to admit each transmission independently with probability %, the probability that y is

admitted in the phase is z = 1 — (3)leeBe/2 = 1 — \/1—?. Therefore,
6

E[Fc(t,ﬁ) P*(s,0)] sz

x

:m:Bg<1—E)<39.

It follows from the fact that C' achieves the maximum expectation that

E[P"(t,0) — P*(s,0)|N,]
1

Pr[N;]

E[P(t,0) - P*(s,0)] < 8%. (2)

<

Subtracting (2) from (1) we get:

Bylog B B Bylog B
E[P(1,6) - P (1,0)|N,] > o208 Bo _ BBo , Bolog By

10 5 = 11
Since P*(t,6) — (t) < %, we may use Fact 11 with o = 5 and v = 1/2 to
obtain
Bglog B
Pr [P*(t,@) _ AL) > %“wj] >
B@long :| 1
Pr t,0 t,0 ——|N;| > —.
|0 - P02 RN >
Hence,
Bglog B 1 1
Pr [P*(t,@)—PA(t,H) > Bolog 9] >2 1.1
22 8§ 10 16

13

5 Conclusions

Our objective in this work was to provide a theoretical analysis of TCP-like protocols in a
model which strives to make as few assumptions about the network as possible. The model
we chose enables an adversary to regulate the speed at which a protocol may transmit, the
pattern with which the transmitted packets are lost, and the latency with which feedback
about transmissions propagates back to the sender. We then measure our algorithm’s
performance on this transcript in comparison to the theoretically optimum performance, to
determine the algorithm’s regret on the worst case transcript.

One of our findings is that there is substantial benefit to be derived from decoupling
a TCP-style protocol into component policies; in particular, separating out the decision of
what to transmit from other policies, such as congestion control. Qur main result develops a
universal data selection policy, which has a near-optimum performance guarantee on every
transcript, i.e. for any specification of the behavior of the network.

The most natural open question our paper poses is that of designing an optimal time-
scheduling policy, since such a policy can be designed with the knowledge that our data
selection policy is guaranteed to work well in conjunction with it. Among the difficulties are
that existing protocols (such as TCP) have fairness requirements, and act conservatively
in periods of high congestion to avoid overflowing the queues of routers. Neither of these
objectives are captured in our current model.

References

[AAF+ 96] D.M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, F.T. Leighton, Z.
Liu. Universal stability results for greedy contention-resolution protocols. In
Proc. 37th IEEFE Symposium on Foundations of Computer Science, 1996.

[BPSK 96] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A Comparison
of Mechanisms for Improving TCP Performance over Wireless Links. In Proc.

ACM SIGCOMM 96, pp. 256-269, 1996.

[BKR+ 95] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, D. Williamson. Adversarial
queueing theory. In Proc. 28th ACM Symposium on Theory of Computing 96,
1995.

[BOM 94] L. S. Brakmo, S. W. O’Malley and L. L. Peterson. TCP Vegas: New Techniques
for Congestion Detection and Avoidance. In Proc. ACM SIGCOMM °94, pp.
24-35, 1994.

[CLZ 87] D. D. Clark, M. L. Lambert, and L. Zhang. NETBLT: A High Throughput
Transport Protocol. Computer Communications Review, 17(5):353-359, 1987.

[FTF 96] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno and SACK
TCP. Computer Communications Review, 26(3), July 1996.

[Jac 88] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM
88, pp. 314-329, 1988.

14

[JB s8]

[LTWW 95]

[MM 96]

[Pax 96]

ST 85]

[YKT 96]

V. Jacobson and R. Braden. TCP Extensions for Long-Delay Paths, October
1988. RFC 1072.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the Self-
Similar Nature of Ethernet Traffic (Extended Version). IEEFE/ACM Transac-
tions on Networking, Vol. 2, No. 1, pp. 1-15, Feb. 1995.

M. Mathis and J. Mahdavi. Forward Acknowledgment: Refining TCP Conges-
tion Control. In Proc. ACM SIGCOMM °96, pp. 281-291, 1996.

V. Paxson. End-to-End Routing Behavior in the Internet. In Proc. ACM SIG-
COMM 96, pp. 25-38, 1996.

D. Sleator and R. Tarjan. Amortized Efficiency of List Update and Paging
Rules. In Communications of the ACM, 28(2):202-208, 1985.

M. Yajnik, J. Kurose, and D. Towsley. Packet Loss Correlation in the MBone
Multicast Network, In Proceedings of IEFE Global Internet °96, November,
1996.

15

