Multilayered Extended Semantic Networks –
The MESNET Paradigm

Hermann Helbig
International Computer Science Institute, Berkeley CA
hermann@ICSI.Berkeley.edu and hermann.helbig@fernuni-hagen.de
and
Marion Schulz
University Hagen
Applied Computer Science/Artificial Intelligence
D-58084 Hagen
marion.schulz@fernuni-hagen.de

March 7, 1997

\[^1\]This is a slightly extended version of a paper which has been accepted for the AAAI Spring Symposium on Ontological Engineering, Stanford CA, March 1997.
Abstract

Semantic Networks (SN) have been used in many applications, especially in the field of natural language understanding (NLU). The multilayered extended semantic network MESNET presented in this paper on the one hand follows the tradition of SN starting with the work of Quillian [13]. On the other hand, MESNET for the first time consequently and explicitly makes use of a multilayered structuring of a SN built upon an orthogonal system of dimensions and especially upon the distinction between an intensional and a preextensional layer. Furthermore, MESNET is based on a comprehensive system of classificatory means (sorts and features) as well as on semantically primitive relations and functions. It uses a relatively large but fixed inventory of representational means, encapsulation of concepts and a distinction between immanent and situative knowledge. The whole complex of representational means is independent of special application domains. At the same time, it is fine grained enough to allow for the differentiation of all important nuances of meaning in the knowledge representation. MESNET has been especially developed for natural language understanding in question answering systems (QAS). A first prototype is successfully used for the meaning representation of natural language expressions in the system LINAS 1. In this paper, MESNET is presented in its double function as a cognitive model and as the target language for the semantic interpretation processes in NLU systems.

Subject Areas

Natural Language Understanding, Knowledge Representation, Extended Semantic Networks, Question Answering Systems, Multilayered Representation, Classification of Concepts, Taxonomic Knowledge

1 A Natural Language Interface to Bibliographic Database Systems
1 Introduction

The knowledge representation framework MESNET has been designed for an adequate
semantic representation of natural language information. A fundamental goal during
the development of MESNET had been the achievement of a cognitively adequate
model of representation. The overall design goals or criteria to be fulfilled by the
expressional means of a knowledge representation system (henceforth abbreviated by
KRS) can be summarized as follows:

- **Universality** - Independence of application domain
- **Homogeneity** - Applicability for the description of word senses, sentence mean-
ing and text or dialogue meaning
- **Cognitive adequacy** - Concept or object centered representation
- **Interoperability** - Usability in all components of a NLU system (lexicon, gram-
mar, inferences, generation etc.)
- **Communicability** - Intuitive understandability of the description of semantic
primitives and of construction principles
- **Automatizability** - Allowance for automatic (or at least computer assisted)
knowledge acquisition.

There is another type of criteria aiming at the internal logical properties of the repre-
sentational means which have to be met by a KRS:

- **Completeness** - There is no meaning which can not be represented by the system
- **Differentiatedness** - Different meanings can be described by different representa-
tions
- **Consistency** - No contradictions are derivable
- **Multidimensionality** - It must be possible to represent the different aspects of
semantics within different layers (see section 2.2)
- **Interpretability** - Each elementary construct (especially nodes and links in a
network representation) must have its own context independent interpretation
and has to be connected with general logical devices (inference rules, inheritance
principles etc.).

Speaking about KRS, there is an important question which has been already discussed
by Brachman [3]. It is the question about the area represented by that system. Figure
1 illustrates which parts of the world have to be dealt with in knowledge representa-
tion systems. At the bottom there is the real world comprising all existing entities
(objects, facts etc.). Following the philosophical tradition it is called the **extensional
level**. As a more or less complete mapping of the latter the **cognitive level** comprises
the concepts of human thinking (in contrast to Brachman we don’t see any difference
between the cognitive and the epistemological levels proposed by him). In contrast to the extensional level, the cognitive level contains also virtual or hypothetical concepts like *unicorn* which have no counterpart in the real world. The top level is that of natural language (NL). It contains expressional means describing the mental concepts of the speaker as well as explicit references to the real world (assertions about truth or existence and others). The level of knowledge representation (shadowed area in figure 1) which will be the focus of this paper is situated between the cognitive level and the level of natural language. On the one hand, it can be seen as the result of cognitive modelling (in the AI sense) and on the other hand as a formal layer to describe the meaning of natural language. Because human beings are able to refer to the real world explicitly by means of NL-expressions (as for instance by the aforementioned existential assertions or in speaking about cardinalities and set inclusion) it is necessary to integrate also extensional aspects in the knowledge representation itself. This requirement is met in MESNET by introducing the intensional and preextensional layers representing different aspects of meaning which are also distinguished from each other by different representational means (see section 2). With respect to application, the level of representation can be seen as a target language for natural language analysis in NLU. The expressiveness of the representational framework provided by MESNET is well-suited for structuring and representing the world knowledge as well as the lexical knowledge used in a QAS. MESNET also provides the expressional means for the word–agent–based syntactic-semantic analysis of natural language in the system LINAS².

²A Natural Language Interface to Bibliographic Database Systems – Literturrecherche in natürlicher Sprache, for details see [7]
2 The Representational Means of MESNET

MESNET is based on the assumption that each concept of the cognitive level (cf. figure 1) has to be modelled by an object in the sense of an object-oriented representation. Therefore, all concepts: those mirroring things, facts, properties and others are represented as nodes in a semantic network. Consequently, the interrelations between concepts have to be modelled by the arcs of the SN. The relations labelling the arcs have to be linguistic and epistemic universals defined on a meta level with respect to the concepts. The logical properties of the relations are specified by means of predicate logic expressions (see section 2.3.1). In that, the approach presented here is clearly distinguished from KL–ONE–like systems, see for example [4], where no sharp criteria are given to decide which cognitive concept has to be represented as a ‘concept’ or as a ‘role’ in the technical sense of KL–ONE. We also believe that the MESNET approach is superior to DRT [12] and GQT [2] with regard to the cognitive adequacy, the interoperativity and the homogeneity criteria specified in section 1.

In this section, sorts and features will be discussed which are organized in hierarchical or polyhierarchically structural structures respectively. Besides of that, additional classificatory means are introduced which are organized along specific orthogonal dimensions spanning a space of semantic characteristics. These expressional means are used to classify the nodes of MESNET in a very fine-grained way. Finally, typical semantic relations and functions of the MESNET paradigm are explained which represent fundamental and universal classes of semantic interrelations between concepts (i.e. between the nodes of the SN).
2.1 Sorts and Features

Sorts are classes of concepts which can be characterized by epistemic-ontological terms being part of a taxonomy of about 35 categories. Typical elements of this taxonomy are entity [ent] - object [o] - concrete object [c] - substance [s] in the object branch of the taxonomic tree or entity [ent] - situation [si] - dynamic situation/event [dy] - action [da] in the situative branch of this tree (see left side of fig. 3). The sorts are a prerequisite for the formal definition of all semantic relations and functions and constitute the fundamental taxonomic knowledge which is independent of any application field. The assignment of a sort to a certain representative of a concept is a categorical one holding in each context. Besides sorts, features are introduced to characterize typical properties of concepts which are especially important for the description of selectional restrictions of actions. Typical examples of the features used in MESNET are animate, movable or artifact. In contrast to sorts, features are combinable, they don’t express categorical but prototypical information (defaults) and they are organized in a polyhierachie (see right side in fig. 3).

Sorts and features are the base for the lexical definition of valencies and allow in a NLU system for an efficient consistency check of selectional restrictions during analysis. They also provide the starting point for choosing the appropriate part of speech during the generation of natural language expressions from a semantic network. In spite of that, the taxonomies of sorts and features are not powerful enough to differentiate concepts like Mt. Everest and the Himalayas – both are concrete objects and bear the feature animate(-). To explain and represent differences of this kind, further classificatory means discerning for instance between the semantic representatives of collective nouns and non-collective nouns are needed which in MESNET are provided by special semantic dimensions.
2.2 The System of Classificatory Dimensions

2.2.1 The Basic Layers – Intensional vs. Extensional Aspect.

The distinction of intensional and extensional aspects in the semantic interpretation of natural language expressions has been widely discussed in the philosophy of language, e.g. by Carnap [5]. Nevertheless there are only few attempts to include these aspects into AI knowledge representation systems themselves (cf. Janas, Schwind [10] or Allgayer, Reddig [1]). MESNET consequently takes this distinction into account by introducing an intensional and a preextensional layer as a representational device. We call the second layer 'preextensional' instead of 'extensional' because the extensional aspect can be modelled only by mediation of the cognitive level. Also with human beings, sets or classes of objects are represented by a small number of sample elements or by a single representative (cf. [11]).

The necessity for explicitly introducing an intensional and a preextensional layer can be seen on the base of the following considerations. Hearing the sentence Nearly all girls in the class love a boy nobody would care to figure out how many girls are denoted by Nearly all or if it is the same boy they love. Also nobody discerns during the first spontaneous understanding between distributive and collective reading in sentences like Three archeologists discovered nine amphoras. Nevertheless, the competent speaker/hearer is able to figure out the appropriate reading in a given context (e.g. if he is asked for). Consequently, the intensional layer provides only a condensed representation of the meaning of the natural language sentence, to be more exact, the intensional part of it, containing all information possibly needed for further extensional interpretation. The latter is carried out only if it becomes necessary. In that case, the information corresponding to the extensional aspect of semantic interpretation will be represented on the preextensional layer. Thus for instance, generalized quantifiers like several, more than a half, almost all etc. on the intensional layer have a correspondence in form of cardinalities on the preextensional layer (e.g. \(\leq 10 \), \(\geq 20 \), 50 etc. depending on the quantified concept). According to that, the nodes of the intensional layer are characterized by the quantification attribute QUNT with the values \(\text{QUNT} \in \{ \text{NIL}, \ AN, \ \text{SEVERAL, FEW, HALF_OF, MANY, MOST, \ldots, ALMOST_ALL, ALL} \} \) while the corresponding nodes of the preextensional layer are specified by the cardinality attribute CARD with values \(\text{CARD} \in \{ \text{NIL, 1, \ldots, \geq 5, 12, \leq 100, \ldots} \} \). As an illustration we take the following sentences (cf. figure 4; the symbolism of the different types of nodes on the preextensional layer is explained together with fig. 5).

Paul gave Mary several dollars.

a) It was more than Paul gave to another girl.

b) Two of them were counterfeits.

Interestingly, the sconcept (several dollars) is referred to in sentence a) with the singular pronoun it. This pronoun relates to the intensional representative of the concept several dollars as a whole. On the other hand, an explicit plural reference (them) to the

\(^3\)The value NIL means "irrelevant" as it is the case with most generic concepts.
extensional interpretation of the same concept is contained in sentence b) by the phrase "two of them." This phrase denotes a subset with cardinality 2 of the set of "several dollars" allowing thus for the inference $\text{CARD} \geq 3$ for the preextensional representative of "several dollars." Generally, the act of figuring out the extensional meaning of phrases is triggered by specific elements of the language itself, e.g. partitioning terms like the one or the others, by determiners like this one, the same and quantifiers like two of them, all of them etc.

2.2.2 Determinate and Indeterminate Concepts

The distinction between intensional layer and preextensional layer is also relevant for the explanation and representation of the semantic differences between determinate and indeterminate phrases. For the purpose of representation we are using the special pictorial conventions for the preextensional layer explained in figure 5. Let us begin with a determinate phrase like "that mountaineer" in the sentence That mountaineer came home. The semantics of the phrase is represented by a node on the intensional layer which is subordinated to the generic concept (mountaineer). On the preextensional layer it has an attached extension which is of the same type as for single individuals described by a proper name (in fig. 5 indicated by the name Messner). In connection with a phrase like "a mountaineer" we have to discern two different cases. In the sentence Every tourist watched a mountaineer (case 1) the correct interpretation is a node on the intensional level with an preextensional counterpart which is indeterminate and variable in the sense that it possibly depends on the preextensional representation of the tourist who watched the mountaineer (the representation of dependencies is explained in section 2.3.1, see also fig. 7). In a logical representation case 1 corresponds to a quantifier scope expressed by

$$\forall x \ \text{TOURIST}(x) \rightarrow \exists y \ (\text{MOUNTAINEER}(y) \land \text{WATCH}(x, y))$$

In the sentence Peter watched a mountaineer (case 2) the semantic representation of the phrase a mountaineer on the intensional level is also a node subordinated to the
concept \{\text{mountaineer}\}, but it has a constant indeterminate node as counterpart on the preextensional layer. The term ‘constant’ means that the corresponding node is not varying over the set of mountaineers (as in case 1). The same representational method is used for the case \textit{There is a mountaineer who was watched by all tourists} corresponding to a logical quantifier scope expressed by

$$\exists y \ \text{MOUNTAINEER}(y) \land \forall x \ (\text{TOURIST}(x) \rightarrow \text{WATCH}(x, y))$$

A further example illustrating the use of the referentiality dimension together with the intensional and preextensional layer gives the semantic representation of the sentence \textit{Paul watched the same mountaineer as Mary}. The semantics of the construction \textit{the same ... as} is expressed by two different \"\{\text{mountaineer}\}\-nodes\" on the intensional layer having identical counterparts on the preextensional layer. In contrast to that, the construction \textit{another} in the above cited sentence \textit{It was more than Paul gave to another girl}, is expressed by the referential difference of the preextensional nodes (indicated by the relation \text{NEQU} - non-equality) belonging to the two \"\{\text{girl}\}\-nodes\" on the intensional layer (see fig. 5).

The classification of nodes following the above described characterization can be done along the dimensions of \textbf{Referentiality} (Attribute \text{REF}) and \textbf{Variability} (Attribute \text{VARI}). These Attributes have the following values: \text{REF} \in \{\text{DET}, \text{INDET}\} and \text{VARI} \in \{\text{CO}, \text{VAR}\}. Thus a determinate and constant entity (cf. fig. 5) has the characterization [\text{REF=DET, VARI=CO}] and a indeterminate parametrized entity depending on some other node is specified as [\text{REF=INDET, VARI=VAR}].

\subsection{2.2.3 Generic and Non Generic Concepts}

A fundamental distinction which is made in almost all knowledge representation systems is the one between generic and non–generic concepts. But what is often not
realized is the fact that this distinction runs across different sorts. Therefore, in MESNET it is given the status of a dichotomic dimension (attribute GENER) and not of sorts. The values of this Attribute are GENER ∈ {GE, SP} for "generalized" and "specialized" respectively. Its use show the following examples:

- **dollar** [GENER=GE] vs. **the other dollar** [GENER=SP] (concrete object)
- **courage** [GENER=GE] vs. **Paul's courage** [GENER=SP] (abstract entity)
- **at school** [GENER=GE] vs. **at the school of Bonn** [GENER=SP] (location)
- **at night** [GENER=GE] vs. **yesterday night** [GENER=SP] (time)

Generic concepts are of importance because they bear the information that holds for whole classes of individuals (e.g. Lions are dangerous). For exceptions see the discussion at the end of this section. The properties of a generic concept can be inherited by determinate instances of that concept (like the lion Clarence) as well as by indeterminate instances (like a lion in All hunters had shot a lion). The inheritance mechanism is an important basis for drawing inferences. With MESNET one part of the information connected with generic concepts is to be considered as prototypical information (or as default information) while another part has to be given the status of categorical information, as for instance the subordination under higher concepts (see sect. 2.3.2). Thus, the proposition The lion (generic) is dangerous is true for the typical lion but not for all lions (baby lions, ill lions etc.) while the statement The lion is a mammal is true for all lions. For this reason in MESNET the adequate preextensional counterpart of the generic concept lion on the intensional layer primarily is the representative of a prototypical lion and not the set of all lions. The preextensional counterpart of the concept (all C), C being an arbitrary generic concept, is determined by the categorical knowledge about C while the prototypical counterpart of the concept C is determined by categorical and default knowledge. That means there is a clear distinction between the generic concept {the lion} and the concept {all lions} which is illustrated by the following consideration: while the sentence The lion lives in Africa is accepted by most people as being true, the proposition All lions live in Africa is certainly false.

2.2.4 Virtual and Real Concepts

There is another dichotomic dimension characterizing nodes on the intensional layer which is called the factivity dimension. The two poles of this dimension are virtual and real. A concept corresponding to an object is called 'virtual' if nothing can be definitely said about the existence of the object (e.g. quarks or black holes are as yet such virtual or hypothetical objects) otherwise the concept is called 'real'. With concepts described by propositions an analogous criterium for the decision between 'virtual' and 'real' is given by the question whether a truth value can be assigned to the proposition or not. The most important area in the semantic representation of

4It has to be mentioned that the characterization [GENER=GE] is not met alone with the semantic representation of one-word generic concepts but also in cases like that: *Two young pets [GENER=GE] are easier to keep than one.*
natural language sentences where just the \textit{virtual-real} dichotomy is relevant to express the whole informational content is given by the counterfactual sentences (cf. figure 6). In counterfactuals like \textit{If the forger had not been discovered by the police, he would not have been arrested} there are two real and two virtual facts involved. The two real facts can be derived from the two partial sentences of the counterfactual by negating them and setting them in the indicative mood. Their semantic representatives have to be connected by a causal relation (upper part of figure 6). The two virtual facts about whose truth values nothing is expressed are derived from the counterfactual by dropping the information about mood and tense. They form a more generic conditional which is also contained in the meaning of the counterfactual sentence (lower part of figure 6). With this approach we share an opinion hold by Hermodsson [9] who states that the counterfactuality of the two partial propositions of a counterfactual is not to be considered as a presupposition but as an intrinsic part of the content of the sentence itself.

\subsection{2.2.5 The Order of Preextensional Representatives}

Collective nouns are a well-known category in traditional linguistics. To deal with collective terms properly the order of a preextensional node is introduced which will be specified by the attribute ORDER with values shown in table 1. MESNET generalizes

\begin{table}[h]
\begin{tabular}{|l|l|l|}
\hline
Example & ORDER of the preext. node & Interpretation \\
\hline
Max Mayer/Mt. Everest & \(s^{(0)}\) & Element which is no set \\
\hline
FC Barcelona/the Himalayas & \(s^{(1)}\) & Set of elements of order \(s^{(0)}\) \\
\hline
Several teams/three families & \(s^{(2)}\) & Set of elements of order \(s^{(1)}\) \\
\hline
\end{tabular}
\caption{The order of preextensional nodes}
\end{table}
concepts: The first are intentionally perceived as closed entities. While some of them are individual concepts ({FC Barcelona}, {the Fisher family}), others must be characterized as generic concepts ({team}, {family} etc.). Both have sets or sets of sets as their counterparts on the preextensional layer. The second type of collectives are concepts which also intentionally are perceived as multitudes. They are often (but not always) described by plural forms in natural language (five dollars, vacancies, mountains, the Himalayas – but compare: Gebirge, Himalaya which are singular nouns in German). The counterpart of collective concepts is given by the so-called non-collectives which have no sets but single entities as a representative with [ORDER = s^{(0)}] on the pre-extensional layer. This indicates that the characterization of concepts by sorts and dimensions has to be used already in the semantic description of lexical entities of a computer lexicon used in a NLU system.

2.3 Structural Means

Relations and functions connecting the representatives of concepts with each other form the topological structure of the SN while shells are used to combine elementary (atomic) concepts and relations (in general whole parts of the SN) to a closed representative of a higher (molecular) concept.

2.3.1 Relations and Functions

The semantic relations of MESNET reflect the cognitive aspect of the semantically marked associations between concepts and the functions mirror the aspect of the generation of concepts out of other concepts, e.g. the generation of locations out of concrete entities. In the following, the names of functions are discerned from the names of relations by a star as the first character. According to the intensional and preextensional layer there are two classes of relations and functions characteristic for these layers. On the intensional layer MESNET distinguishes among others the following groups of expressionial means:

- Relations subordinating concepts under higher concepts, e.g.
 - SUB for the definition of hierarchies of concepts mirroring objects
 - SUBS for hierarchies of situations (events and states)

 with axiomatic rules like:

 \[\forall x \forall y \forall p \ ((x \text{ SUB } y) \land (y \text{ PROP } p) \rightarrow (x \text{ PROP } p)) \]

- Relations characterizing cognitive roles of actions, e.g.
 - AGT the agent role
 - AFF the role of an affected object changed by the action
 - OBJ the role of an object passively participating in an action
 - ORNT the role of an addressee
with axiomatic rules like:
\[\forall x \forall y \ ((x \text{ AGT } y) \rightarrow (y \text{ PROP active})) \] (postulate of meaning)

- Relations and functions used for the characterization of objects, e.g.
 - PARS for specifying the part–whole relation
 - POSS for possessor–possession–relationship
 - PROP for characterizing objects by their properties.
 - *QUANT for building quantities out of numbers and measure units

with axiomatic rules like:
\[\forall k_2 \forall c_1 \forall c_2 \ ((c_1 \text{ SUB } c_2) \land (k_2 \text{ PARS } c_2) \rightarrow \exists k_1 \ (k_1 \text{ SUB } k_2) \land (k_1 \text{ PARS } c_1)) \]

- Relations between states of affairs, e.g.
 - CAUS causal relation
 - COND conditional relation

with axiomatic rules like:
\[\forall x \forall y \ ((x \text{ CAUS } y) \rightarrow (y \text{ ANTE } y)) \]

- Relations and functions for temporal and local specifications
 - TEMP for temporal restrictions of states of affairs
 - ANTE for temporal precedence
 - LOC specification of the location of an entity
 - *IN for construction of a location out of an object ('inside the object')

with axiomatic rules like:
\[\forall x \forall y \forall z \ ((x \text{ LOC (*IN } y)) \land ((y \text{ LOC (*IN } z)) \rightarrow (x \text{ LOC (*IN } z))) \]

Further expressional means are related to negation and modalities, to comparison and others. Alltogether, MESNET provides about 110 predefined semantic relations and functions each of them connected with a set of inference rules.

Relations and functions of the preextensional layer are mainly used for the characterization of sets or membership in sets as well as for the description of dependencies between preextensional entities (see lower part of fig. 7).

- ELMT characterizing an entity as an element of a set
- SUBM denoting the subset relation
- DPND characterizing a parametrized entity as depending on another entity
node representing every element of a set
○ parametrized individual depending on ■
----- concept defined by a semantic shell (see fig. 8)

Figure 7: Using Parametrized Nodes for the Representation of Mixed Quantification

▷ *DIFF a function describing the difference between sets
▷ EXT connects an entity on the intensional layer with its counterpart on the preextensional layer
▷ SETOF connects a set on the preextensional layer with the intensional concept describing the elements of this set (this construction corresponds to the specification of a set predicate in logics).

Fig. 7 shows the combined application of intensional and preextensional components in representing the meaning of the sentence: "Every postman in the village has been bitten by a dangerous dog."

2.3.2 Semantic Shells – The Encapsulation of Concepts

The parts of the semantic network which inherently belong to a certain concept – that means, which define the concept – are encapsulated in MESNET by a so called semantic shell (cf. figure 8). There is exactly one node lying on the borderline of the shell which represents the concept defined by this shell. This partitioning method is more general in comparison to the one proposed by [8] because it differentiates between immanent parts (connected with inheritance mechanisms for categorical as well as prototypical knowledge) and situative parts.
a) Components of a concept (general frame)

b) Example

<Concept>

\begin{itemize}
 \item **immanent (categorical):** A house is a building. It necessarily has a roof and is always erected in a certain year.
 \item **immanent (prototypical):** A house (normally) possesses windows and (in general) has an owner.
 \item **situative:** Peter bought a house.
\end{itemize}

Figure 8: Encapsulation of Concepts – Immanent vs. Situative Knowledge
The encapsulation of concepts plays an important part in the inferential answer finding in a QAS. While the query "What is a house?" has to be answered only by the immanent knowledge about the concept (house) (see fig. 8, the the answer at the query "What did Peter buy?" should not contain any information about roofs and windows, or that a house is a building. With a representation technique combining the advantages of multilayered object-oriented semantic networks with representational means corresponding to the method of Skolemization in logics MESNET achieves an expressive power which is lacking in DRT [12] or File Change Theory [6]. The encapsulation of knowledge in semantic shells is a means for delimiting immanent knowledge which defines the inherent meaning of a concept from situative knowledge corresponding to the use of the concept in the description of a certain situation. Together with the corresponding set and dependency relations on the preextensional layer the deep staggered structure of the nodes justifies the term extended semantic networks which has already been used by Schubert [14] in a somewhat restricted meaning.

3 Conclusion
The conception of multilayered SN and especially the distinction between intensional and preextensional layers permits a fine grained and at the same time graded semantic interpretation. Without need of a further semantic elaboration of extensional aspects there is always a compact or shorthand representation on the intensional layer corresponding to the first spontaneous understanding of an utterance. Even the representation of combined quantification and anaphoric reference as it can be met in the so-called donkey sentences fits neatly in the MESNET framework. Finally, the representational means of MESNET provide a sound base for the model-theoretic definition of the truth of the propositional shells represented in the semantic network. This topic is now under further investigation.

References

