Publications

Found 58 results
Author [ Title(Desc)] Type Year
Filters: Author is M. W. Mahoney  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Shun, J., Roosta-Khorasani F., Fountoulakis K., & Mahoney M. W. (2016).  Parallel Local Graph Clustering. Proceedings of the VLDB Endowment. 9(12), 
S
Fountoulakis, K.., Gleich D.. F., & Mahoney M.. W. (2018).  A Short Introduction to Local Graph Clustering Methods and Software. Abstracts of the 7th International Conference on Complex Networks and Their Applications.
Giannakis, G. B., Bach F., Cendrillon R., Mahoney M. W., & Neville J. (2014).  Signal Processing for Big Data (Editorial for Special Issue). IEEE Signal Processing Magazine. 31, 15-16.
Veldt, N., Gleich D., & Mahoney M. W. (2016).  A Simple and Strongly-Local Flow-Based Method for Cut Improvement. Proceedings of the 33rd ICML Conference.
Andersen, D. G., Du S. S., Mahoney M. W., Melgaard C., Wu K., & Gu M. (2015).  Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nystrom Method.
Martin, C.. H., & Mahoney M. W. (2019).  Statistical Mechanics Methods for Discovering Knowledge from Modern Production Quality Neural Networks. Proceedings of the 25th Annual SIGKDD. 3239-3240.
Raskutti, G., & Mahoney M. W. (2014).  A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares.
Mahoney, M. W., & Drineas P. (2016).  Structural properties underlying high-quality Randomized Numerical Linear Algebra algorithms. Handbook of Big Data. 137-154.
Wang, R., Li Y., Mahoney M. W., & Darve E. (2015).  Structured Block Basis Factorization for Scalable Kernel Matrix Evaluation.
Roosta-Khorasani, F.., & Mahoney M. W. (2019).  Sub-Sampled Newton Methods. Mathematical Programming. 293-326.
Roosta-Khorasani, F., & Mahoney M. W. (2016).  Sub-Sampled Newton Methods I: Globally Convergent Algorithms.
Roosta-Khorasani, F., & Mahoney M. W. (2016).  Sub-Sampled Newton Methods II: Local Convergence Rates.

Pages