Publication Details

Title: Constructing Fuzzy Graphs from Examples
Author: M. R. Berthold and K.-P. Huber
Group: ICSI Technical Reports
Date: December 1997
PDF: ftp://ftp.icsi.berkeley.edu/pub/techreports/1997/tr-97-053.pdf

Overview:
Methods to build function approximators from example data have gained consider able interest in the past. Especially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms, however, are either complicated to use or infeasible for high-dimensional problems. This article presents an efficient and easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is demonstrated how the resulting fuzzy graphs offer quick insights into the structure of the example data, that is, the underlying model.

Bibliographic Information:
ICSI Technical Report TR-97-053

Bibliographic Reference:
M. R. Berthold and K.-P. Huber. Constructing Fuzzy Graphs from Examples. ICSI Technical Report TR-97-053, December 1997