Publication Details
Title: An (epsilon, delta)--Approximation Algorithm of the Number of Zeros for a Multilinear Polynomial over GF[q]
Author: M. Karpinski and B. Lhotzky
Group: ICSI Technical Reports
Date: March 1991
PDF: http://www.icsi.berkeley.edu/pubs/techreports/tr-91-022.pdf
Overview:
We construct a polynomial time (epsion, delta)-approximation for estimating the number of zeros of an arbitrary multi-linear polynomial f((x subscript 1), ..., (x subscript n)) over GF[q]. This extends the recent result of Karpinski/Luby [KL90] on approximating the number of zeros of polynomials over the field GF[2].
Bibliographic Information:
ICSI Technical Report TR-91-022
Bibliographic Reference:
M. Karpinski and B. Lhotzky. An (epsilon, delta)--Approximation Algorithm of the Number of Zeros for a Multilinear Polynomial over GF[q]. ICSI Technical Report TR-91-022, March 1991
Author: M. Karpinski and B. Lhotzky
Group: ICSI Technical Reports
Date: March 1991
PDF: http://www.icsi.berkeley.edu/pubs/techreports/tr-91-022.pdf
Overview:
We construct a polynomial time (epsion, delta)-approximation for estimating the number of zeros of an arbitrary multi-linear polynomial f((x subscript 1), ..., (x subscript n)) over GF[q]. This extends the recent result of Karpinski/Luby [KL90] on approximating the number of zeros of polynomials over the field GF[2].
Bibliographic Information:
ICSI Technical Report TR-91-022
Bibliographic Reference:
M. Karpinski and B. Lhotzky. An (epsilon, delta)--Approximation Algorithm of the Number of Zeros for a Multilinear Polynomial over GF[q]. ICSI Technical Report TR-91-022, March 1991
