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 A view on Greedy pursuits algorithms for representing audio 

signals: with applications to Compression, Source separation 

and Audio Fingerprint 
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Télécom ParisTech 

Associated 
schools 
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institutions 

Graduate 

schools 

ParisTech brings together twelve of the 

foremost French institutes of education 

and research   

• The full range of sciences and technologies, 
 

 

A school within the Institut Mines-

Télécom 

 

A school within ParisTech 
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Telecom ParisTech, the leading graduate school  

in Information & Communication Technology (ICT) 

 A public institution founded in 1878, placed under the aegis 

of the minister for Industry 

 Invented the term telecommunication in 1904 
 

 

 1st graduate engineering school in ICT in France, 5th in 

the national rankings of Engineering schools 

 Hosts the 1st  French ICT Incubator which creates 2-3 start-

ups/ month  

 A Budget of  66,4 M€, including 30% self-financing 

Education 

Continuing 

education & 

life-long training 

Research 
Business 

start-up support 

Public teaching at 

the highest level 

in the domain of ICT 

From theory to 

industrial transfer 

Development of 

entrepreneurial spirit 

.. to Incubation 

 

 4 Missions , 1 ambition Innovating in a Digital World 
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Disciplines including all the sciences and technologies of 

ICT  
 

 

5 

Communication & Electronics - Computer Science & Networking –  

Signal and Image processing - Economics, Management & Social Sciences 
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Télécom ParisTech : Research  

 Signal and Image Processing department  

 

• 4 Research and Education Groups 

• 35 Permanent Members 
- 20 Faculty Members 
- 10 Full time Research Members (CNRS) 
- 5 Technical & Administrative Support 

• 55 PhD candidates 

• 5~10 Post-Docs & Sabbatical   

  

TELECOM PARISTECH 

EGHS 
Social Sciences 

INFRES  
Network & Computer 

TSI 
Signal and Image 

Y. Grenier 

Statistical 
Processing 

 
F. Roueff 

Image processing 
 

I. Bloch 

Multimedia 
 

B. Pesquet-Popescu 

Audio, Acoustics 
and 

Waves 
 

G. Richard 

COMELEC 
Communications  
and electronics 
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Audio, Acoustics and Waves group  
« AAO » 

 The AAO group (6 permanent staff): 

 

 

 
+ 3 post docs / 1 Engineer (T. Fillon, A. Drémeau, C. Damon) 

+ 13+ PhDs (M. Maazaoui, M. Moussalam, B. Fuentes, R. Foucard, S. Fenet, A. 

Liutkus, N. Lopez, X. Jaureguiberry, A-C. Conneau, A. Masurelle, F. Rigaud, 

N. Seichepine, C. Fox, H. Bai) 

 

 

 Aim of the group : to develop digital signal processing methods 

with applications to audio, multimodal and biomedical signals. 
 

- from theoretical work on machine learning, signal models and sparse 

representations … 

- … to computational optimization of algorithms.   

 

 

G. Richard R. Badeau Y. Grenier S. Essid B. David A. Gramfort 



AAO « Audio, Acoustics and Waves »  

 http://www.tsi.telecom-paristech.fr/aao/en/ 

Music signals processing 

Multimedia streams analysis  

heterogenous sensors arrays signal processing  

Biological signals processing  

Image from http://www.bmedical.com.au/ 



AAO « Audio, Acoustics and Waves » 

 http://www.tsi.telecom-paristech.fr/aao/en/  

Methods: Multimedia and audio signal representations and models 

Deterministic and probabilistic models 

• HR methods for sinusoidal estimation (adaptive tracking of the signal subspace) 

• Non-Negative Matrix factorization (NMF) 

• Kernel methods for classification, feature selection 

• Sparse decompositions (Matching Pursuit, … ) 

• Source separation 

Echo cancellation 

Machine Audition 

Acoustics 

…. 

Watermarking 

Compression 

Capture Analysis Transmission Restitution 

Indexing, Transcription  

Segmentation AV 

Biomedical Signals 

Fingerprinting, …. 

Binaural reproduction 

Remasterisation 

(Remix / Upmix) 

11  

http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
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Some audio tools and technologies available… 

 http://www.tsi.telecom-paristech.fr/aao/en/  

 

 Databases 
• ENST-Drums (2006)   

• MAPS (2009)   

• 3DLife ACM Multimedia Grand Challenge 2011 Dataset 

• Romeo-HRTF (2011) 
• QUASI (2012)   

• … 
 

 Softwares  
• Yaafe : An efficient toolbox for audio feature extraction (licence LGPL)  

• Smarc : Efficient sampling frequency conversion (licence LGPL) 

• Desam Toolbox : Matlab toolbox for audio signal processing (licence GPL) 

• Audio separators 

•  … 

 

• Accessible at http://www.tsi.telecom-paristech.fr/aao/en/ 

 
 

 

 

http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
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(some) Available tools for separation 

 http://www.tsi.telecom-paristech.fr/aao/en/  

 Drum extractor: 

• Available at : http://perso.telecom-paristech.fr/~liutkus/ 

 

 

 

 Leading voice extractor 

• Available at: http://www.tsi.telecom-

paristech.fr/aao/2011/06/07/402/ 

http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://perso.telecom-paristech.fr/~liutkus/
http://perso.telecom-paristech.fr/~liutkus/
http://perso.telecom-paristech.fr/~liutkus/
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Collaborations… 

 Involved in a variety of projects sponsored by industry or 

national and European bodies (ANR, EC, Oseo, …) 

 

 One example the ANR-Dream project 
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Greedy pursuits algorithms for representing 

audio signals 

 
with applications to Compression, Source separation and 

Audio Fingerprint 

 

 
with Manuel Moussallam and Laurent Daudet 
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Content 

 Matching Pursuit (MP): a greedy approach for audio signal 

representation 

 

 Three variations of MP 

• Random MP: An interesting extension for compression 

• Redundant MP: An interesting extension for source separation 

• Coverage constrained MP: An interesting extension for Audio ID 
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Sparse representation of audio signals 

 Standard formulation 

 

Let            , find the sparsest 

linear expansion of the signal      

in a dictionary 

 

That is 

 

Or alternatively  

 

 

S
ig

n
a
l 

D
ic

ti
o

n
n

a
ry

 



19   Gaël RICHARD         October 2012    

Sparse approximation of audio signals 

 Standard formulation 

 

Let            , find the sparsest 

linear expansion of the signal      

in a dictionary 

 

 

 

Or alternatively  
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How to obtain the sparse approximation ? 

 Many existing approaches 

 

• Convex optimisation : 

 

• Bayesian approaches (MAP) 

 

• Greedy methods (such as those based on Matching Pursuit)                         
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A greedy approach: Matching pursuit 

 

 

 

A simple process: 

• The most prominent atom (i.e. 

the most correlated with the 

signal) is extracted. 

 

• The selected atom is 

subtracted from the original 

signal.   

 

• Iterate the procedure until a 

predefined criterion is met 
Figure from L. Daudet: Audio Sparse Decompositions in 

Parallel, IEEE Signal Processing Magazine, 2010 
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Matching pursuit 

Parameters Examples 

The Dictionary  Dictionary of Gabor atoms 

The Selection Rule  

The Update Strategy  addition of new contribution 

The Stopping Criterion Signal to Noise Ratio 

•          : Residual signal after n iterations 

•          : Set of selected atoms 

•          : Approximated signal after n iterations 
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Matching pursuit 

 Decomposing a bell sound in a multiscale MDCT-based dictionary 

Original 

Spectral representation 
Residual 
N=500 

Approximation ;  
n=500 
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Different types of dictionaries for different 

applications    

 Use “informed atoms”  

• Specific instruments atoms for instrument recognition 

• Specific pitched atoms for multipitch estimation 

• Specific atoms of a given source for source separation 

• Specific atoms for audio inpainting or denoising 

 

 Use single or union of orthogonal bases (such as MDCT) 

• Interesting for Compression 
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Three extensions of MP 

 Random Sequential Sub-dictionaries Matching Pursuit 

• Application to audio compression 

 

 Matching pursuit using similarity 

• Application to audio fingerprint 

 

 Matching pursuit using structure 

• Application to singing voice separation 
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Weak Matching pursuit 

 A search in the complete dictionary may be too complex 

 

 

 A solution:  

• use only a sub-dictionary (which only contains parts of the 

complete dictionary). 

 

 

 In practice  

• This results in a gain of complexity but in a slower convergence 

• Selected atoms are less appropriate 

• Different possibilities for building the sub-dictionaries   
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Weak Matching pursuit (2) 

 Example with a dictionary of time-frequency atoms (full and 

undersampled dictionaries) 
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Weak Matching pursuit 

 Different choices for the sub-dictionaries  

• A different choice leads to a different decomposition 
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Sequences of sub-dictionaries 

 Usually: 

• The dictionary is fixed for the whole decomposition  

• A few exceptions : 

- Probabilistic matching pursuit  (a posteriori mean of multiple runs on 

different  (but fixed) sub-dictionnaries for each decomposition) 

- “Adaptive” dictionaries (each atom is locally optimised after selection)   

 

 Our approach:  

• Use a different dictionary at each iteration 

• The sub-dictionary changes according to a (pseudo) random 

sequence 
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Random Sequential Subdictionaries MP 

(RSS-MP) 

 Only the first step is changed compared to the classical MP: 

• Recall: 

•          : Residual signal after n iterations 

•          : Set of selected atoms 

•          : Approximated signal after n iterations 
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Random Sequential Subdictionaries MP 

(RSS-MP) 

 Performance : close fo full dictionary case 

 Cost : close to under-sampled dictionary case 
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Random Sequential Subdictionaries MP 

(RSS-MP) 

 Clear advantage for compression (the sequence of sub-

dictionaries is not transmitted) 
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Three extensions of MP 

 Random Sequential Sub-dictionaries Matching Pursuit 

• Application to audio compression 

 

 Matching pursuit for audio fingerprint (repeating audio 

objects detection) 

 

 Matching pursuit using structure 

• Application to singing voice separation 

 

 



The broadcast use case: detecting of 

repeating audio objects 

 Broadcast streams are quite repetitive 

 

 

 

 

 Repeated objects might be distorted (different 

volume, equalization, background noise…) 

 

 Detecting these repetitions opens the door to 

numerous applications (compression, automatic 

annotation, segmentation…) 

 
page 34 
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Fingerprint systems  

 Most fingerprint systems rely on the following transform of the 

signal 

 

 

 

 

 

 Idea: using Matching pursuit approach with a time-frequency plane 

coverage constraint 
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Fingerprint 
Signal 

Fingerprint 

of the 

Signal 
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Repeating object detection : scheme 

 



MP based fingerprint 

 Sparse Approximation of the signal on a Multiscale Gabor 

Dictionary (STFT) 

 

 Atoms selected with MP using a constraint on TF coverage:  

shallow decomposition  Sparse Binary Support 

 

 

 

 

 

 One key = one atom (scale and frequency) 
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The output 

page 38 

 



Evaluation 

 Preliminary synthetic evaluation  

• Corpus = concatenation of 30-seconds experts – 240 in total, 100 of 

which are exact repetitions of previous ones 

• Analysis performed by the system on 5s segments – one decision 

per segment  

 

 

page 39 

Algorithm CQT (reference) MP 

Precision (%) 95.1 94.5 

Recall (%) 97.8 91.5 

F-Measure (%) 96.5 93.0 

CPU/segment (s) 0.20 0.40 

Database (MB) 9.3 2.4 

Recall = Nb of good detected repetions  /  Total nb of repetitions 

Precision= Nb of good detected repetions  /  Total nb of detections 



Real World Evaluation (Quaero 2012) 

page 40 



41   Gaël RICHARD         October 2012    

Three extensions of MP 

 Random Sequential Sub-dictionaries Matching Pursuit 

• Application to audio compression 

 

 Matching pursuit for audio fingerprint (repeating audio 

objects detection) 

 

 Matching pursuit using structure 

• Application to singing voice separation 
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Singing voice separation 

 The idea: 

• The singing voice is variable with time 

• The foreground music is somewhat repetitive due to the music 

structure (chorus – verse). 

 

• We suppose that we know where are the repetitions : the signal 

is sliced in   (known) repeating segments 
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Singing voice separation 

• Using Sparsity on the audio signal   
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Singing voice separation 

• Using Sparsity on the stacked audio signal   
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Singing voice separation 

• Using Structured Sparsity on the stacked audio signal 

 

 

 

 

 

 

 

 

 

 

 

• Separated the singing voice            and the background    
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Modified MP algorithm 
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Different selection rules 

• Decision based on 

 

• Energetic criterion 

 

 

• Minimum risk 

 

 

• Favour background 

 

 

• Penalized background 
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Some results 

 

 

 

 

 

 

 

 

 

 

• Strategy      gives best results both in terms of reconstruction 

error and source separation 
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Sound examples 

 Sound examples with a total of 10 000 atoms (e.g. a very low 

number of atoms) 

 

• Original signal 

• Approximate (reconstruction) 

• Background estimate 

• Singing Voice estimate  
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Conclusion  

• Greedy approaches allow to build specific representations for 

dedicated applications  

 

• Sparsity, Structured sparsity, random sequences or coverage 

constraints are some of the potential extensions of the classical 

MP approach 

 

• Open issues: 

- Build multi-objective representations 

- Build meaningful hierarchical and dynamic representations 
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And a few web links…. 

http://perso.telecom-paristech.fr/~grichard/ 

http://www.tsi.telecom-paristech.fr/aao/en/ 

 

 

http://perso.telecom-paristech.fr/~grichard/
http://perso.telecom-paristech.fr/~grichard/
http://perso.telecom-paristech.fr/~grichard/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
http://www.tsi.telecom-paristech.fr/aao/en/
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WIAMIS’13 

 Important dates 

• Proposal for Special Session 

 4th January 2013 

 

• Paper Submission  

 8th March 2013 

 

• Acceptance Notification  

 3rd May 2013 

 

• Camera-ready Papers 

24th May 2013 


