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ABSTRACT
The following paper presents a novel audio-visual approach
for unsupervised speaker locationing. Using recordings from
a single, low-resolution room overview camera and a single
far-field microphone, a state-of-the art audio-only speaker
localization system (traditionally called speaker diarization)
is extended so that both acoustic and visual models are es-
timated as part of a joint unsupervised optimization prob-
lem. The speaker diarization system first automatically de-
termines the number of speakers and estimates “who spoke
when”, then, in a second step, the visual models are used to
infer the location of the speakers in the video. The experi-
ments were performed on real-world meetings using 4.5 hours
of the publicly available AMI meeting corpus. The pro-
posed system is able to exploit audio-visual integration to
not only improve the accuracy of a state-of-the-art (audio-
only) speaker diarization, but also adds visual speaker lo-
cationing at little incremental engineering and computation
costs.

Categories and Subject Descriptors
H5.5 [Information Interfaces and Presentation]: Sound
and Music Computing—Signal analysis, synthesis, and pro-
cessing ; H.4.3 [Information Systems Applications]: Com-
munications ApplicationsComputer conferencing, teleconfer-
encing, and videoconferencing

General Terms
Multimodal Integration

Keywords
speech, visual localization, speaker diarization, multimodal
integration

1. INTRODUCTION
Research in cognitive psychology suggests that the human

brain is able to integrate different sensory modalities, such
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as sight, sound, and touch, into a perceptual experience that
is coherent and unified [13]. Experiments show that by con-
sidering input from multiple sensors, perceptual problems
can be solved more robustly and even faster [7]. In com-
puter science, however, synergistic use of data encoded for
different human sensors has not yet lived up to its promise.

The following article presents a system where different
modalities are combined to jointly tackle two problems, each
traditionally solved using a single modality. The combina-
tion of the two modalities leads to a higher robustness than
a current state-of-the-art audio speaker diarization, which
aims to answer the question “who spoke when”. Further-
more, the visual models and the output of the speaker di-
arization allows for a bi-modal localization of the speakers in
the video (“where is the speaker?”). We view this system as
a successful example of multimodal integration in computer
science: a unimodal state-of-the art system gains improve-
ments in accuracy and extends its capabilities by adopting
an additional mobility without requiring either a fundamen-
tal redesign of an existing algorithm or significantly increas-
ing its computational complexity.

For portability, low cost and ease of deployment, we have
designed our system to require as inputs only audio from
a single microphone and video from a low-resolution web
camera. We used an annotated dataset that contains 4.5
hours of real-world meetings for evaluations; our proposed
system only uses a single far-field audio channel and a single
camera view with a resolution of 352 × 288 pixels. We think
that portability would especially be important for content
analysis of meetings or other events that are captured using
a web cam. The algorithm presented here has many uses as a
front-end processing step for other high-level analysis tasks,
such as behavioral analysis (eg. dominance estimation [12,
10]).

In this paper, we present our proposed algorithm, discuss
its properties, and evaluate its performance quantitatively.
We first present related work on audio/visual speaker lo-
cationing and diarization in Section 2. In Section 3, we
describe the meeting dataset that we used for evaluation to
provide a context for our system. Section 4 presents the un-
derlying speaker diarization approach, Section 5 discusses
the video features that we use and Section 6 describes how
multi-modal integration is done. Section 7 then presents the
visual locationing approach. In Section 8 we then discuss
how the use of video features improves speaker diarization
performance, compare it with other alternatives and present
a quantitative evaluation of the speaker locationing. We
conclude and lay out directions for future work in Section 9.



Figure 1: Plan view of the meeting room set up. For
the experiments presented in this article, data from
a single audio-channel of the microphone array and
the rear-video camera were combined.

2. RELATED WORK
Audio speaker diarization is the task of finding“who spoke

when”, as defined and proposed by Reynolds et al. [21]. It
can involve a single audio source or multiple audio sources.
Single source solutions rely heavily on accumulating good
models for each speaker and are location independent. When
multiple sources are available, beamforming-based solutions
can be used to enhance and localize the sound source, lead-
ing to the possibility of jointly identifying speakers and es-
timating their locations. However, this still only provides
audio information about who is speaking.

Common approaches to audio-visual speaker identification
involve identifying lip motion from frontal faces [16], [17], [3],
[5], [4], [20], [22], [23]. Therefore, the underlying assumption
is that motion from a person comes predominantly from the
motion of the lower half of their face. In addition, gestu-
ral or other non-verbal behaviors associated with natural
body motion during conversations are artificially suppressed
e.g. for the CUAVE database [19]. Most of the techniques
have involved identifying one or two people in a single video
camera only where short term synchrony of lip motion and
speech are the basis for audio-visual localization. In a real
scenario the subject behavior is not controlled and, conse-
quently, the correct detection of the mouth is not always
feasible. Here audio and visual modalities are combined.

Nock et al. [16] presents an empirical study to review def-
initions of audio-visual synchrony and examine their empir-
ical behavior. The results provide justifications for the ap-
plication of audio-visual synchrony techniques to the prob-
lem of active speaker localization in broadcast video. Zhang
et al. [28] presented a multi-modal speaker localization me-
thod using a specialized satellite microphone and omni-di-
rectional camera. Though the results seem comparable to
the state-of-the-art, the solution requires specialized hard-
ware, which is not practical. Noulas et al. [17] integrated
audio-visual features for on-line audio-visual speaker diariza-
tion using a dynamic Bayesian network (DBN) but tests
were limited to discussions with two to three people on just
two short test scenarios. Tamura et al. [23] demonstrate that
the different shapes the mouth can take when speaking facil-
itates word recognition under tightly constrained test con-
ditions (e.g., frontal position of the subject with respect to
the camera while reading digits).

Figure 2: Two frames from the meeting video corpus
which was used for the experiments. The meeting
participant were free to move in the room. The faces
are hard to detect, as in a natural scenario partic-
ipants are rarely looking frontally into the camera.
The frame on the right shows a partial occlusion of
the fourth participant.

It is important to note that in conversational scenarios,
even if we cannot detect mouth motion directly, other forms
of body behavior e.g. head gestures are also visible manifes-
tations of speech[15]. While there has been relatively little
work on using a person’s global body movements for infer-
ring speaking status, some studies have been carried out by
Vajaria et al. [24, 25], Hung et al. [9, 11], and Campbell and
Suzuki [1]. These approaches, however, have never assumed
audio/visual diarization as a single, unsupervised joint opti-
mization problem. This was achieved recently by Friedland
et al. [6] but this study was performed using multiple close-
view personal cameras. This article extends the approach
by only using a single, low-resolution overview camera and,
most importantly, by presenting the idea of visual speaker
locationing as a by-product. We also test on meeting sce-
narios where the participants are able to move around freely
in the room.

3. AMI MEETING CORPUS
In this paper, we use a subset of 12 meetings (4.5 hours)

from the Augmented Multi-Party Interaction (AMI) cor-
pus [2]. This subset contains the most comprehensively an-
notated meetings in the corpus, and is preferable since it
allows for the quantitative evaluation of meetings analysis
algorithms and the comparison of different approaches to
the same task on a common dataset. Thus, it is widely
used, for example by [12].

The AMI corpus consists of audio-visual data captured of
four participants in a natural meeting scenario. The partic-
ipants volunteered their time freely and were assigned roles
such as “project manager” or “marketing director” for the
task of designing a new remote control device. The teams
met over several sessions of varying lengths (15–35 minutes).
The meetings were not scripted and different activities were
carried out such as presenting at a slide screen, explaining
concepts on a whiteboard or discussing while sitting around
a table. The participants therefore interacted naturally, in-
cluding talking over each other.

Data was collected in an instrumented meeting room (see
Figure 1), which contains a table, slide screen, white board
and four chairs. While participants were requested to return
to the same seat for the duration of a meeting session, they
could move freely throughout the meeting. Different au-
dio sources of varying distance to the speaker, and different



Figure 3: Block diagram illustrating the traditional
speaker diarization approach: As described in Sec-
tion 4, an agglomerative clustering approach com-
bines speaker segmentation and clustering in one
step.

video sources of varying views and fields-of-view represent
audio-visual data of varying quality which is useful for ro-
bustness testing.

As mentioned earlier, we wish for our system to be por-
table, low-cost, and easy to deploy. Therefore, it must be
able to function using just a single-microphone input and
a low-resolution web camera. The system is tested using
a single far-field audio channel from the microphone array
and a scaled-down image of the overview camera (352 ×
288 pixels). The close-up cameras and the microphone ar-
ray were only used for comparison purposes, as described in
Section 6.

Figure 2 shows some sample snap-shots of the meeting
recordings by the overview camera and points out some of
the limitations: e.g. (i) the faces are mostly too small to
be tracked by off-the-shelf face detectors; (ii) people walk
around and also lean backwards and forwards, thus changing
their appearance drastically; and (iii) participants are also
sometimes occluded.

4. AUDIO SPEAKER DIARIZATION
The following section outlines the traditional audio-only

speaker diarization approach. We use a state-of-the-art di-
arization engine [26] that performed very well in the last
NIST RT evaluations.

4.1 Feature Extraction
Wiener filtering is first performed on the audio channel

for noise reduction. The HTK toolkit1 is used to convert
the audio stream into 19-dimensional Mel-Frequency Cep-
stral Coefficients (MFCCs) which are used as features for
diarization. A frame period of 10ms with an analysis win-
dow of 30ms is used in the feature extraction.

4.2 Speech/Non-Speech Detection
The speech/non-speech segmentation [8] proceeds in three

steps. At each step, feature vectors consisting of 12 MFCC
components, their deltas and delta-deltas, and zero-crossings
are used.

In the first step, an initial segmentation is created by
running the Viterbi algorithm on a Hidden Markov Model
(HMM) with Gaussian Mixture Model (GMM) emissions

1http://htk.eng.cam.ac.uk/

Figure 4: Block diagram illustrating the extension
of the traditional speaker diarization approach: The
video activity vector is calculated on the speech seg-
ments and integrated into the speaker diarization
process as described in Section 6.

that have been trained on Dutch broadcast news data to
segment speech and silence. In the second step, the non-
speech regions are split into two clusters: regions with low
energy and regions with high energy. A new and separate
GMM is then trained on each of the two new clusters and
on the speech region. The number of Gaussians used in the
GMM is increased iteratively and re-segmentation is per-
formed in each iteration. The model that is trained on au-
dio with high energy levels is added to the non-speech model
to capture non-speech-like sounds such as music, sound ef-
fects, slamming doors, paper rustling, etc. In the final step,
the speech model is compared to all other models using the
Bayesian Information Criterion (BIC). If the BIC score is
positive, the models are considered to be trained on speech
data. In this case, a new speech model is trained on the data
of both speech and sound regions and the original model is
discarded.

4.3 Speaker Segmentation and Clustering
In the segmentation and clustering stage of speaker di-

arization, an initial segmentation is generated by randomly
partitioning the audio track into k segments of the same
length. k is chosen to be much larger than the assumed
number of speakers in the audio track. For meetings data,
we use k = 16. The procedure for segmenting the audio data
takes the following steps:

1. Train a set of GMMs for each initial cluster.

2. Re-segmentation: Run a Viterbi decoder using the cur-
rent set of GMMs to segment the audio track.

3. Re-training: Retrain the models using the current seg-
mentation as input.

4. Select the closest pair of clusters and merge them.
This is done by going over all possible pairs of clus-
ters, and computing the difference between the sum
of the Bayesian Information Criterion (BIC) scores of
each of the models and the BIC score of a new GMM



Figure 5: Compressed-domain video features: Original, detected skin-color blocks, motion vectors, averaged
motion vectors per region.

trained on the merged cluster pair. The clusters from
the pair with the largest positive difference are merged,
the new GMM is used and the algorithm repeats from
the re-segmentation step.

5. If no pair with a positive difference is found, the algo-
rithm stops, otherwise the algorithm repeats from step
2.

A more detailed description can be found in [26].
The result of the algorithm consist of a segmentation of

the audio track with n clusters and an audio GMM for each
cluster, where n is assumed to be the number of speakers.

4.4 Using multiple audio streams
The algorithm can be slightly modified to use multiple au-

dio tracks as input (presumably from a far-field microphone
array). Beamforming is first performed as a pre-processing
step2 to produce a single noise-reduced audio stream from
the multiple audio channels by using a delay and sum algo-
rithm. In addition, as part of its processing, beamforming
also estimates time-delay-of-arrival (TDOA) between each
microphone and a reference microphone in the array. The
TDOA features contain information about the location of
the audio source, and can be used as an additional feature in
the clustering system. Separate GMM models are estimated
from these TDOA features. In the Viterbi decoding and in
the BIC comparison, a weighted combination of the MFCC
and TDOA likelihoods is used. We will be using a similar
mechanism for audio/visual integration (see Section 6).

5. VIDEO FEATURES
There has been evidence in literature (see Section 2) to

suggest that body movement correlates with speech activity
of a person. To provide video features for speaker diariza-
tion, we use frame-based visual activity features which can
be efficiently extracted from compressed videos as indicated
in [12]. In particular, we use block motion vector magnitude
obtained from the compressed video bitstream as proposed
by [27] (see Figure 5) to construct an estimate of personal
activity levels as follows.

2In our work, we used BeamformIt, an open-
source software to perform beamforming. See:
http://www.xavieranguera.com/beamformit/

Each video frame is gridded into 4 × 2 non-overlapping
subframes of equal size (see Figure 5). While we also ex-
perimented with other partitioning schemes, we found this
to work the best. In each of the 8 subframes, the average
motion vector magnitude over detected skin-color blocks is
calculated and used as a measure of individual visual activity
for that subframe. Note that the averaging over estimated
skin blocks is done to reduce the effect of background clutter
and mitigate pose and scale variations. These values from
all subframes are averaged over 400ms and stacked into an
8-dimensional vector. They are used as the video feature
vector for all frames in the 400ms region.

To detect skin blocks, we implement a block-level skin-
color detector working mostly in the compressed domain
(see Figure 5). A GMM is used to model the distribution
of (U, V ) chrominance coefficients of skin-tone in the YUV
colorspace [14], where each Gaussian component is assumed
to have a diagonal covariance matrix. In the Intra-frames,
we compute the likelihood of observed chrominance DCT
DC coefficients according to the GMM and threshold it to
detect skin-color blocks. Skin blocks in the Inter-frames
are inferred by using motion vector information to propa-
gate skin-color blocks through the duration of the group-of-
picture (GOP).

Motion vectors and DCT coefficients are block-based and
already computed during video compression. Compared to
extracting higher resolution pixel-based features such as op-
tical flow, compressed domain features are much faster to
extract, with a run-time reduction of up to 95% [27].

6. MULTIMODAL INTEGRATION
As discussed earlier, audio features are extracted using a

window of 10ms while video features are extracted using a
window of 400ms. For the purpose of multi-modal integra-
tion, we duplicate the video features for each 10ms audio
frame within the corresponding 400ms video analysis win-
dow.

The approach we chose for combining the compressed-
domain video features and MFCC audio features is similar to
the one proposed by Pardo et al [18] for acoustic feature inte-
gration. During every agglomerative clustering iteration (see
Section 4), each speaker cluster is modeled by two GMMs,
one for the audio MFCC features and one for the video ac-
tivity features, where the number of mixture components
varies for each feature stream. We determined experimen-



Figure 6: Schematic of the system presented in this
article. As discussed in Section 7, a second pass
is added to the multimodal diarization engine that
enables the inference of the locations of the speakers.

tally that 5 Gaussian components for the audio data and 2
Gaussian components for the video data give the best re-
sults. We assume that the two sets of features are condi-
tionally independent given a speaker. In the segmentation
step (which uses Viterbi decoding) and in the merging step
(which compares BIC scores), we use a weighted sum of the
log-likelihood scores of the two models. In other words, the
combined log-likelihood score of the audio-visual observation
for a particular frame is defined as:

log p(xMFCC , xV ID|θi)
.
=

(1− α) log p(xMFCC |θi,MFCC) + α log p(xV ID|θi,V ID) (1)

where xMFCC is the 19-dimensional MFCC vector, xV ID is
the 8-dimensional visual activity feature vector, θi,MFCC de-
notes the parameters of a GMM trained on MFCC features
of cluster i, and θi,V ID denotes the parameters of a GMM
trained on video features of cluster i. α is a parameter that
is used to weigh the contributions of each feature stream. In
the extreme case where α = 0, video features would not play
a role. Experimentally we found α = 0.1 to provide the best
results. Note that due to differently scaled log-likelihood
values for audio and video, the weighting does not necessar-
ily imply a priority of one modality over the other. Section 8
presents detailed results.

It is possible to treat audio and video data as part of
the same optimization problem to help improve the diariza-
tion task. The system has been submitted as part of the
NIST Rich Transcription evaluation (multimodal condition)
and is currently being evaluated on the NIST benchmark
data. However, the combined training of audio and video
models allows for more than just improved accuracy. In
addition to these quantitative improvement, the next sec-
tion will present qualitative improvements that cannot be
achieved by adding more audio channels or features.

7. VISUAL LOCATIONING
Before describing the visual locationing procedure, let us

recall how multi-modal speaker diarization is done. The au-
dio and video features are used to create visual and acoustic
models θi,V ID and θi,MFCC for each speaker cluster. The

Figure 7: The result of the visual locationing step:
Speakers are identified using different colors and
their movements are highlighted when they talk.
Speakers may be located even when they are par-
tially occluded (see row below).

classification is then performed by calculating the combined
log-likelihoods as given by Equation (1). In other words, for
each frame,

speaker =

argmaxi p(xMFCC , xV ID|θi,MFCC , θi,V ID) (2)

In the audio stream, the log-likelihoods are computed based
on the cepstral features; in the video stream the log-likelihoods
are computed based on the average activity values in one of
the 8 regions in the video. As we see from Section 8, us-
ing both xMFCC and xV ID gives better speaker diarization
performance than just using xMFCC alone.

Now that audio and video models are given and one can
calculate an estimate of the current speaker, it is also possi-
ble to infer the location of the current speaker in the video.
This is done by performing a second processing pass over
the video (Figure 6 illustrates the idea). In this second pass
over the video, the likelihood for each subframe of belong-
ing to the current speaker is computed using the learned
visual GMMs θi,V ID. The detected skin-color blocks that
are in the subframe with highest likelihood of belonging to
the active speaker are tagged for visualization or further
processing. Figure 7 shows some sample frames where dif-
ferent speakers are marked using different colors. We use a
region growing approach to compensate for faces and hands
crossing subframe borders.

In other words, given the current speaker speaker, the vi-
sual models θspeaker,V ID for the current speaker, we first find
the subframe with the highest likelihood of being occupied
by the current speaker using:

location(speaker) =

argmaxj p(xV ID(j)|θspeaker,V ID(j)) (3)

where xV ID(j) refers to the visual activity of the jth sub-
frame, and θspeaker,V ID(j) refers to the visual model of the
jth subframe (with some abuse of notation). All detected



Meeting ID Audio-only Multi-Modal Relative ∆
IS1000a 42.40 % 31.82% 24.95 %
IS1001a 39.40 % 35.40% 11.26 %
IS1001b 35.50 % 35.75% −0.70, %
IS1001c 30.40 % 26.91% 11.48 %
IS1003b 31.40 % 16.87% 46.27 %
IS1003d 56.50 % 52.93% 6.31%
IS1006b 24.10 % 16.29% 32.40 %
IS1006d 60.40 % 58.68% 2.84%
IS1008a 8.20 % 4.57% 44.26 %
IS1008b 10.10 % 7.44% 26.33 %
IS1008c 14.40 % 12.74% 11.52 %
IS1008d 32.30 % 30.84% 4.52%
Average 32.09 % 27.52% 14.14 %

Table 1: Per-Meeting comparison of the Diarization
Error Rate (DER) for audio-only diarization (base-
line) and the proposed multi-modal system. The
DER contains a total of 12.20% Speech/Non-Speech
Error for both cases.

skin-color blocks in subframe location(speaker) are then
tagged as belonging to the current speaker. Since we use
a diagonal-only covariance matrix in the video models, and
given that the models were obtained without external train-
ing data, this step enables a completely unsupervised di-
arization and locationing of the speakers in a video. The
runtime of the approach is about 0.1×realtime.

This “visual locationing using acoustic models” example
shows that the proper integration of acoustic and visual data
can lead to new synergistic effects: not only was the accuracy
of the diarization improved but a new capability was added
to the system at very little engineering cost.

8. QUANTITATIVE EVALUATION

8.1 Diarization Performance Improvements
The output of a speaker diarization system consists of

meta-data describing speech segments in terms of starting
time, ending time, and speaker cluster name. This output is
usually evaluated against manually-annotated ground truth
segments. A dynamic programming procedure is used to
find the optimal one-to-one mapping between the hypothe-
sis and the ground truth segments so that the total over-
lap between the reference speaker and the corresponding
mapped hypothesized speaker cluster is maximized. The
difference is expressed as Diarization Error Rate, which is
defined by NIST3. The Diarization Error Rate (DER) can be
decomposed into two components: Speech/non-speech error
(speaker in reference, but not in hypothesis or speaker in hy-
pothesis, but not in reference), and speaker errors (mapped
reference is not the same as hypothesized speaker).

The Speaker Diarization System used for these experi-
ments has competed in the NIST evaluations of the past
several years and established itself well among state-of-the-
art systems4. In order to evaluate the multimodal approach
we scored it using the NIST scoring tools and compared it
against other common testing conditions.

The baseline single-distant microphone system, as pre-
sented in the NIST RT07 evaluation, results in a DER of

3http://nist.gov/speech/tests/rt/rt2004/fall
4NIST rules prohibit publication of any rankings. Please
refer to the NIST website for further information:
http://www.itl.nist.gov/iad/mig/tests/rt/

1 ch 1 ch/1 cam 8 ch 1 ch/4 cams
DER 32.09% 27.52% 27.55% 24.00%
Relative baseline 14% 14% 25%
Speed 1.0 1.4 2.2 1.3

Table 2: Comparison of the Diarization Error Rate
(DER) for audio-only diarization (baseline) and dif-
ferent multistream systems. The DER contains a
total of 12.20% Speech/Non-Speech Error for all
cases.

32.09%. The multimodal system as presented here, results
in an accuracy improvement of 14% relative in DER. Table 1
present the results of the multimodal clustering in compar-
ison to an audio-only clustering for each meeting in the ex-
periment.

In order to test the influence of the audio and video chan-
nels we ran two contrast conditions with the same engine,
which are summarized in Table 2.

First, we tested how the engine would perform if, instead
of audiovisual integration, we use all 8 microphone chan-
nels from the microphone array as described in Section 4.4.
The accuracy of this approach is about the same as the au-
dio/visual approach. However, the runtime is worse and
requiring a microphone array instead of a camera is a much
higher usability hurdle.

Adding further cameras, however, results in an about 25%
relative improvement compared to the baseline. For this ex-
periment, we used the four closeup cameras in the meeting
room and calculated the features as described in Section 5.
However, instead of partitioning the video frames into 8
regions, we used the motion vectors of the entire camera
frame (thus using a 4-dimensional feature vector instead of
an 8-dimensional feature vector). The approach is described
in [6].

8.2 Evaluation of Visual Locationing
The accuracy of the system presented in this article de-

pends on the following four factors:

• the speech/non-speech error,

• the initial estimation of the speaker,

• the accuracy of the sub-frame assignment,

• and the accuracy of the skin-patch detection

Unfortunately, there is no publicly available dataset that
allows for the exact evaluation of visual speaker location-
ing and speaker diarization at once. In addition, we believe
that the skin patch detection might not be required in fu-
ture systems. Therefore we concentrated on evaluating the
visual locationing step by evaluating the correct sub-region
assignment from the estimated speaker. The approach is
described as follows.

First we annotated the mapping between subframes and
speakers for each meeting. A speaker is considered to be in a
subframe if his or her face stays in it during the meeting for
more than 5 seconds. This enables us to list the subframes
occupied by each speaker during the meeting. Clearly, if
the lists of subframes per speaker are disjoint the accuracy
is the highest. The more spatial ambiguity, the lower the
accuracy. We found that in all 12 meetings, the most-used



Meeting ID DER LER
IS1000a 31.82% 11.52%
IS1001a 35.40% 4.04%
IS1001b 35.75% 2.29%
IS1001c 26.91% 35.58%
IS1003b 16.87% 51.30%
IS1003d 52.93% 28.96%
IS1006b 16.29% 32.47%
IS1006d 58.68% 3.43%
IS1008a 4.57% 28.03%
IS1008b 7.44% 37.62%
IS1008c 12.74% 61.60%
IS1008d 30.84% 19.92%
Average 27.52% 29.40%

Table 3: Per-Meeting comparison of the Diariza-
tion Error Rate (DER) and the Location Error Rate
(LER) for the proposed multimodal locationing sys-
tem (refer Section 8.2). The DER contains a total
of 12.20% Speech/Non-Speech Error.

subframe per speaker is always modeled correctly by the sys-
tem. Given no spatial ambiguity, i.e. all subframes are only
occupied by exactly one speaker, the system would therefore
always find the right mapping between speaker and location
and vice versa in this data set.

In order to get a time-based measurement for how much
the spatial ambiguity influences the final results, we define
the Locationing Error Rate (LER) as the time a wrong sub-
frame is selected relative to the total meeting time. The
error is calculated by finding the location given the esti-
mated speaker and then estimating the speaker given that
location (as defined in Section 7). In order for the result
to be correct, both speakers must match, otherwise the sys-
tem is affected by an ambiguity. Table 3 shows the results
together with the diarization error for each meeting. The
variability of both DER and LER in the results reflects the
variability of real-world meetings and the complexity of the
task.

9. CONCLUSIONS AND FUTURE WORK
This article presents an algorithm that is an example of

successful multimodal integration in computer science. By
adding two steps to a state-of-the-art audio-only speaker di-
arization system, not only is the accuracy quantitatively im-
proved, a new feature also adds qualitative improvement of
the system. The algorithm as presented here uses very little
assumptions and is able to cope with an arbitrary amount of
cameras and subframes. The increased computational and
engineering cost was kept low by adding computationally
efficient features to an existing state-of-the art system.

As a result of training a combined audio and visual model,
we found that the locationing algorithm has interesting prop-
erties that may not be observed by either audio-only or
image-only locationing. They are discussed in the follow-
ing.

Since speaker diarization is an unsupervised approach,
audio-only diarization does not provide a means of iden-
tifying speakers beyond clustering numbers. Traditionally,
the speaker regions are assigned to real names by perform-
ing speaker identification (using externally trained acoustic
models) in a second step. Alternatively, speaker diariza-
tion might be performed as a supervised approach where the
speakers in the audio recordings are known a-priori. While

association with real names might be desirable in some cases,
this is, of course, not possible without pre-trained models
(either acoustic or visual). The audio-visual combination al-
lows for a completely unsupervised approach that associates
the cluster numbers to faces, and as such simulates what a
human can do with a recording of a meeting of strangers
that speak an unknown language.

Supervised or unsupervised visual locationing requires the
use of models created from the image part of a video which
makes them inherently dependent on the appearance of an
object. Most locationing algorithms therefore show signif-
icant lack of robustness against unexpected visual changes
in a video, such as change in lighting conditions, partial
occlusions, total disappearance of the object, etc. Also, in-
accurate modeling might results in the indistinguishability
of two different objects. Combined audio/visual models are
more robust against lighting changes, partial occlusion, or
other uni-modal distortions. Figure 7 (bottom right) shows
an interesting example: Even though the head is occluding
the speaker in the upper left corner, the system still at-
tributes the right location to (occluded) face and hands of
the speaker.5 Of course, if both the voice print and the ap-
pearance changes, there is nothing that can be done – even
a human would most likely assume a new person.

The most important limit of the approach as presented
here is the coarse granularity of the subframes. A larger
amount of subframes might help to have fewer ambiguities
(i.e. speakers in the same subframes). If we were to work
with features at the block-level, we may need to perform
more more explicit spatial clustering. However, given the
correlation between speech and body motion, it may not be
necessary to rely on appearance alone. Exploiting the syn-
chrony of gestural motion with speech may already highlight
the head, arm and hand regions of the speaking person. In
addition, even if one of the regions of the body is occluded,
the speaker may still be identified if parts of their moving
body are visible.

The properties of the algorithm presented in this article
suggest many ideas that could improve the accuracy and
qualities of the system. Especially common challenges in
speaker diariazation that seem to be very hard to tackle with
audio-only approaches might be addresses multimodally us-
ing an extension of the presented method. Examples include
the exact discrimination between speech and noise (non-
speech), the detection of two or more speakers talking at
the same time (overlap), and the detection and proper as-
signment of very short speech segments (smaller than about
0.5 sec), for example due to backchannels. Other interesting
future work includes generalizing the system to work with
other acoustic events, in addition to speech, that are corre-
lated with visual features such as motion.

Acknowledgments
Hayley Hung and Gerald Friedland are supported by the
Swiss IM2 project and the EU-funded AMIDA project. Chu-
ohao Yeo is sponsored by A*STAR.

10. REFERENCES
[1] N. Campbell and N. Suzuki. Working with Very

Sparse Data to Detect Speaker and Listener

5This is enabled by the fact that the head is detected by the
skin color detector.



Participation in a Meetings Corpus. In Workshop
Programme, volume 10, May 2006.

[2] J. Carletta, S. Ashby, S. Bourban, M. Flynn,
M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos,
W. Kraiij, M. Kronenthal, G. Lathoud, M. Lincoln,
A. Lisowska, M. McCowan, W. Post, D. Reidsma, and
P. Wellner. The AMI meeting corpus: A
pre-announcement. In Joint Workshop on Machine
Learning and Multimodal Interaction (MLMI), 2005.

[3] T. Chen and R. Rao. Cross-modal Prediction in
Audio-visual Communication. In International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), volume 4, pages 2056–2059, 1996.

[4] J. W. Fisher and T. Darrell. Speaker association with
signal-level audiovisual fusion. IEEE Transactions on
Multimedia, 6(3):406–413, 2004.

[5] J. W. Fisher, T. Darrell, W. T. Freeman, and P. A.
Viola. Learning joint statistical models for
audio-visual fusion and segregation. In Conference on
Neural Information Processing Systems (NIPS), pages
772–778, 2000.

[6] G. Friedland, H. Hung, and C. Yeo. Multi-modal
speaker diarization of real-world meetings using
compressed-domain video features. In Proceedings of
the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), page (to
appear), 2009.

[7] M. Hershenson. Reaction time as a measure of
intersensory facilitation. J Exp Psychol, 63:289–93,
1962.

[8] M. Huijbregts. Segmentation, Diarization, and Speech
Transcription: Surprise Data Unraveled. PrintPartners
Ipskamp, Enschede, The Netherlands, 2008.

[9] H. Hung and G. Friedland. Towards audio-visual
on-line diarization of participants in group meetings.
In Workshop on Multi-camera and Multi-modal Sensor
Fusion Algorithms and Applications in conjunction
with ECCV, Marseille, France, October 2008.

[10] H. Hung, Y. Huang, G. Friedland, and
D. Gatica-Perez. Estimating the dominant person in
multi-party conversations using speaker diarization
strategies. In International Conference on Acoustics,
Speech, and Signal Processing, 2008.

[11] H. Hung, Y. Huang, C. Yeo, and D. Gatica-Perez.
Associating audio-visual activity cues in a dominance
estimation framework. In IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition (CVPR) Workshop on Human
Communicative Behavior, Ankorage, Alaska, 2008.

[12] H. Hung, Y. Huang, C. Yeo, and D. Gatica-Perez.
Correlating audio-visual cues in a dominance
estimation framework. In CVPR Workshop on Human
Communicative Behavior Analysis, 2008.

[13] H. McGurk and J. MacDonald. Hearing lips and
seeing voices. Nature, 264(5588):746–48, 1976.

[14] S. J. McKenna, S. Gong, and Y. Raja. Modelling
facial colour and identity with gaussian mixtures.
Pattern Recognition, 31(12):1883–1892, 1998.

[15] D. McNeill. Language and Gesture. Cambridge
University Press New York, 2000.

[16] H. J. Nock, G. Iyengar, and C. Neti. Speaker
localisation using audio-visual synchrony: An
empirical study. In ACM International Conference on
Image and Video Retrieval (CIVR), pages 488–499,
2003.

[17] A. Noulas and B. J. A. Krose. On-line multi-modal
speaker diarization. In Proc. International Conference
on Multimodal Interfaces (ICMI), pages 350–357, New
York, USA, 2007. ACM.

[18] J. Pardo, X. Anguera, and C. Wooters. Speaker
Diarization For Multiple-Distant-Microphone
Meetings Using Several Sources of Information. IEEE
Transactions on Computers, 56(9):1189, 2007.

[19] E. K. Patterson, S. Gurbuz, Z. Tufekci, and J. N.
Gowdy. CUAVE: A new audio-visual database for
multimodal human-computer interface research. In
International Conference on Acoustics, Speech, and
Signal Processing, pages 2017–2020, 2002.

[20] R. Rao and T. Chen. Exploiting audio-visual
correlation in coding of talking head sequences.
International Picture Coding Symposium, March 1996.

[21] D. A. Reynolds and P. Torres-Carrasquillo.
Approaches and applications of audio diarization. In
Proc. of International Conference on Audio and
Speech Signal Processing, 2005.

[22] M. Siracusa and J. Fisher. Dynamic dependency tests
for audio-visual speaker association. In Proc. IEEE
Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), April 2007.

[23] S. Tamura, K. Iwano, and S. FURUI. Multi-Modal
Speech Recognition Using Optical-Flow Analysis for
Lip Images. Real World Speech Processing, 2004.

[24] H. Vajaria, T. Islam, S. Sarkar, R. Sankar, and
R. Kasturi. Audio segmentation and speaker
localization in meeting videos. International
Conference on Pattern Recognition, 2006. ICPR 2006.
18th, 2:1150–1153, 2006.

[25] H. Vajaria, S. Sarkar, and R. Kasturi. Exploring
co-occurence between speech and body movement for
audio-guided video localization. IEEE Transactions on
Circuits and Systems for Video Technology,
18:1608–1617, Nov 2008.

[26] C. Wooters and M. Huijbregts. The ICSI RT07s
speaker diarization system. In Proceedings of the Rich
Transcription 2007 Meeting Recognition Evaluation
Workshop, 2007.

[27] C. Yeo and K. Ramchandran. Compressed domain
video processing of meetings for activity estimation in
dominance classification and slide transition detection.
Technical Report UCB/EECS-2008-79, EECS
Department, University of California, Berkeley, Jun
2008.

[28] C. Zhang, P. Yin, Y. Rui, R. Cutler, and P. Viola.
Boosting-Based Multimodal Speaker Detection for
Distributed Meetings. IEEE International Workshop
on Multimedia Signal Processing (MMSP) 2006, 2006.


