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Abstract

We present an application of the analytical inductive programming system Igor
to learning sets of recursive rules from positive experience. We propose that this
approach can be used within cognitive architectures to model regularity detection
and generalization learning. Induced recursive rule sets represent the knowledge
which can produce systematic and productive behavior in complex situations – that
is, control knowledge for chaining actions in different, but structural similar situ-
ations. We argue, that an analytical approach which is governed by regularity de-
tection in example experience is more plausible than generate-and-test approaches.
After introducing analytical inductive programming with Igor we will give a vari-
ety of example applications from different problem solving domains. Furthermore,
we demonstrate that the same generalization mechanism can be applied to rule
acquisition for reasoning and natural language processing.

1 Introduction

The human ability to master complex demands is to a large extend based on
the ability to exploit previous experiences. Based on our experience, we are
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able to predict characteristics or reactions of (natural or man-made, inanimate
or animate) objects, we can reason about possible outcomes of actions, and
we can apply previously successful routines and strategies to new tasks and
problems. In philosophy, psychology and artificial intelligence, researchers pro-
posed that the core process to expand knowledge, that is, construct hypothe-
ses, in such a way that we can transfer knowledge from previous experience to
new situations is inductive inference (Goodman, 1965; Klahr & Wallace, 1976;
Holland, Holyoak, Nisbett, & Thagard, 1986; Tenenbaum, Griffiths, & Kemp,
2006).

From the perspective of machine learning, inductive inference is characterized
as a mechanism for generalizing over observed regularities in examples. To
allow for generalization, every learning algorithm must make some a priori as-
sumptions. This so called inductive bias gives the rational basis to allow trans-
fer of the learned hypothesis to new situations (Mitchell, 1997). The restric-
tion or language bias characterizes the language in which induced hypotheses
are represented. The preference or search bias characterizes the mechanism
for selecting hypothesis. Every machine learning algorithm, be it statistical,
neuronal or symbolical, makes such (maybe implicit) assumptions. This ba-
sic proposition of machine learning certainly also holds for human induction.
That is, human learning is very powerful but nevertheless learning is restricted
by the way knowledge can be represented and by some mechanism for prefer-
ring some generalizations over others. The human preference mechanism is a
very clever one (Holland et al., 1986): it appears to draw from a vast amount
of background knowledge and is highly flexible – allowing to perform eager
generalizations in one context and being more conservative in another context.

Human learning is considered a base mechanism which takes place on all levels
from sensu-motor associations over pattern recognition and concept acquisi-
tion to learning high-level schemata, rules and strategies on the knowledge
level (Sun, 2007). It can be safely assumed that different mechanisms and bi-
ases are at work on these different levels. In this paper we focus on learning
of complex structures and routines on the knowledge level. More precisely,
we want to demonstrate that an approach to inductive programming can be
applied to model the acquisition of generalized rules from example experience.
We specifically are interested in rules which are productive (Chomsky, 1965)
in such a sense that they can be applied in situations of various complexity –
for example, rules which can characterize the ability of humans to grasp the
transitivity of some concepts such as ancestor. Typically, we get acquainted
with such a concept by some, necessarily small and finite examples, such as my
father is my ancestor, my grandfather is my ancestor, and my grand-grand-
father is also my ancestor and are able to induce the infinite regularity of
the concept which allows us to apply it to ancestor relations of various com-
plexities. Likewise, productive rules govern the generation and application of
regular action sequences. For example, if humans have learned how to solve
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Tower of Hanoi problems with three and four discs, at least some of them are
able to generalize the underlying strategy for solving problems with an arbi-
trary number of discs (Kotovsky, Hayes, & Simon, 1985; Anderson & Douglass,
2001; Altmann & Trafton, 2002; Anderson, Albert, & Fincham, 2005; Welsh
& Huizinga, 2005).

Acquired concepts and strategic rules often can be communicated, that is, they
must be available as declarative structures on the knowledge level (Newell,
1982; Anderson, 1983). For that reason, we are interested in inductive pro-
gramming as a symbolic approach to learning. While statistical and neuronal
approaches present powerful mechanisms for inductive learning, the acquired
(black box) classifiers typically can not or not easily be transformed into (white
box) symbolic representations (Hammer & Hitzler, 2007) which would be nec-
essary for incorporating the acquired knowledge in a representation on the
knowledge level.

In the following we shortly introduce our analytical inductive programming
system Igor. Then we present the general setting for incorporating Igor in
a cognitive architecture. Afterwards we will give various examples of cognitive
rule acquisition in the domain of problem solving. We will shortly demonstrate
that the same mechanisms can be applied to learning in the context of reason-
ing and language understanding and we will conclude with a discussion and
further work to be done.

2 Analytical Inductive Programming with Igor

Inductive programming research addresses the problem of learning computer
programs from incomplete specifications, typically samples of the desired in-
put/output behavior and possibly additional constraints (Biermann, Guiho,
& Kodratoff, 1984; Flener & Schmid, 2009; Schmid, Kitzelmann, & Plamei-
jer, 2010). Induced programs are usually represented in a declarative – func-
tional or logic – programming language. As a special application of machine
learning (Mitchell, 1997), inductive programming creates program hypotheses,
that is, generalized, typically recursive, programs. In contrast to classification
learning, program hypotheses must cover all given examples correctly since
for programs it is expected that a desired input/output relation holds for all
possible inputs.

There are two general approaches to inductive programming: analytical and
generate-and-test methods. Generate-and-test methods enumerate syntacti-
cally correct programs and test these programs against the given examples
guided by some search strategy. For example, the inductive logic program-
ming (ILP) system Foil constructs sets of Horn clauses by sequential cover-
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ing, that is by a first construct then test approach. This approach was also
applied to learning recursive rule sets (Quinlan & Cameron-Jones, 1995). The
most successful search-based system is Adate (Olsson, 1995) which constructs
ML programs using evolutionary principles. The system MagicHaskeller
(Katayama, 2005) enumerates Haskell programs with higher-order func-
tions.

Clearly, it is not plausible to assume that a cognitive system learns rules by
a generate-and-test approach. In contrast, in analytical methods learning is
guided by the structure underlying the given examples. Early research on
inductive programming in the nineteen-seventies brought forward such an-
alytical strategies for learning Lisp programs from small sets of positive in-
put/output examples (Biermann et al., 1984). The most influential of the early
systems is Thesys (Summers, 1977). It realized a two step approach to syn-
thesize programs: In a first step, input/output examples were rewritten into
traces, in a second step recurrent patterns were searched-for in the traces and
the found regularities were generalized to a recursive function.

For Thesys and all later analytical approaches it is enough to present a small
set of only positive input/output examples. These examples must be the first
representants of the underlying data-type of the input parameter. In contrast,
in generate-and-test approaches, an arbitrary set of positive examples can
be presented. In addition negative examples can and often must be used to
eliminate unsuitable hypotheses.

Igor2 (Kitzelmann, 2009, 2010) was developed as a successor to the classical
Thesys system and its generalization Igor1 (Kitzelmann & Schmid, 2006).
To our knowledge, Igor2 is currently the most powerful system for analytical
inductive programming. Its scope of inducible programs and the time efficiency
of the induction algorithm compares favorably with inductive logic program-
ming and other approaches to inductive programming (Hofmann, Kitzelmann,
& Schmid, 2008). The system is realized in the constructor term rewriting sys-
tem Maude. Therefore, all constructors specified for the data types used in
the given examples are available for program construction. Since Igor2 is
primarily designed as an assistant system for program induction, it relies on
small sets of noise-free positive input/output examples and it cannot deal
with uncertainty. Furthermore, the examples have to be the first inputs with
respect to the complexity of the underlying data type. Given these restrictions,
Igor2 can guarantee that the induced program covers all examples correctly
and provides a minimal generalization over them. Classification learning for
noise-free examples such as PlayTennis (Mitchell, 1997) can be performed as
a special case (Kitzelmann, 2009).

Igor2 specifications consist of a set of examples as described above together
with a specification of the input data type. Background knowledge for ad-

4



ditional functions can (but needs not) be provided. Igor2 can induce sev-
eral dependent target functions (i.e., mutual recursion) in one run. Auxiliary
functions are invented if needed. In general, a set of rules is constructed by
generalization of the input data by introducing patterns and predicates to
partition the given examples and synthesis of expressions computing the spec-
ified outputs. Partitioning and search for expressions is done systematically
and completely which is tractable even for relative complex examples because
construction of hypotheses is data-driven. Igor2’s restriction bias is the set of
all functional recursive programs where the outermost function must be either
non-recursive or provided as background knowledge.

Igor2’s built-in preference bias is to prefer fewer case distinctions, most spe-
cific patterns and fewer recursive calls. Thus, the initial hypothesis is a single
rule per target function which is the least general generalization (Plotkin,
1969) of the example equations. If a rule contains unbound variables on its
right-hand side, successor hypotheses are computed using the following opera-
tions: (i) Partitioning of the inputs by replacing one pattern by a set of disjoint
more specific patterns or by introducing a predicate to the right-hand side of
the rule; (ii) replacing the right-hand side of a rule by a (recursive) call to
a defined function where finding the argument of the function call is treated
as a new induction problem, that is, an auxiliary function is invented; (iii)
replacing sub-terms in the right-hand side of a rule which contain unbound
variables by a call to new subprograms.

3 Igor as Cognitive Rule Acquisition Device

In the context of a cognitive architecture Igor can be seen as a module which
observes the content of the working memory and greedily tries to generalize
over its content. In many cases, Igor will not detect regularities. This can be
because for the current cognitive task there exists no underlying regularity or
because the current problem representation is structured in such a way that
the regularities cannot be detected. In the second case, one can hope that
over several problem solving trials in the domain eventually the problem is
represented such that regularity detection becomes possible.

While we are aware that finding the “right” representation is a crucial problem
(Kaplan & Simon, 1990), in this paper we focus on Igor as a powerful and
fast mechanism for constructing minimal generalizations for complex domains.
In the domain of problem solving, we explored some strategies for rewriting
action sequences into suitable representations for Igor (Schmid & Wysotzki,
2000; Kitzelmann, 2003; Schmid, 2003).

If Igor2 produces a generalization over examples, the induced rules are avail-
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able as symbolic representations in the working memory. Following the usual
assumption that active components of classical working memory are conscious
(Baars & Franklin, 2003), this can be interpreted as some realization of the
“aha”-experience – the sudden impression that one has understood a problem
(Bühler, 1907; Ohlsson, 1984; Knoblich, Ohlsson, Haider, & Rhenius, 1999).
The experience of having a sudden insight is well-known to every human prob-
lem solver. We all remember episodes where we suddenly “saw” the solution
procedure for some problem and “knew” that this is the right one. More sys-
tematic empirical evidence of this phenomenon is for example available for
Tower of Hanoi where it could be shown that successful problem solvers can
verbalize the components of the recursive solution strategy (Welsh & Huizinga,
2005).

There are some aspects of Igor which might be considered as making this ap-
proach implausible as a cognitive mechanism. First, one might argue that hu-
mans notoriously have difficulties in understanding recursion (Kahney, 1989)
and therefore that representing expertise by recursive rule sets is inadequate.
We argue that such recursive rule sets are just a means to represent the com-
petence of producing systematic and productive behavior in a given domain.
Nobody would argue that neural nets are inadequate for representing human
skills because humans are not able to multiply large matrices of real numbers
on the fly. Furthermore, all approaches to classification learning which do not
take into account recursion – be it symbolic approaches or sub-symbolic or
statistical approaches – will always be bound by some fixed size of the input
to produce a meaningful output. For example, such approaches might cor-
rectly learn an ancestor-relation up to the tenth grandfather but be unable
to produce a useful output for the eleventh one; they would produce correct
action sequences for solving Tower of Hanoi problems up to five discs but not
for more discs, and so on.

Second, one might argue that such a brittle approach as analytical inductive
programming does not account for human errors since, once the correct rule
set is induced, the system will always generate correct solutions. Here we
argue that Igor models learning on the competence level. We do not dispute
the fact that there are many factors which influence performance (Chomsky,
1965). There are many reasons why a person who has acquired a correct set of
rules might produce errors when solving a given problem in a given context.
Typical sources of error are working memory restrictions or motivational or
emotional states which influence information processing (Bach, 2009; Simon,
1958).

Third, one might argue that a mechanism which can only induce correct rules
if the first examples with respect to some underlying data type are presented
and that this examples are error-free is not suitable for modeling learning
in complex domains. Here we have a trade-off between analytical approaches
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where rule construction is guided by the examples and generate-and-test ap-
proaches. Generate-and-test approaches are robust with respect to variance
in complexity of the given examples and with respect to erroneous examples.
However, there is a price to pay: in such approaches, huge spaces of possi-
ble rule sets are generated and tested against the given examples. It is not
plausible to assume that such kind of search processes take place in work-
ing memory. Furthermore, these approaches typically are much slower than
Igor2 which typically can induce a rule set in milliseconds (Hofmann et al.,
2008). In general, there will be a trade-off between the amount of search (and
search space) necessary to produce generalized rule sets and the requirements
which constrain the examples. Fortunately, in many domains, obtaining the k
first positive examples comes quite naturally. As we will show in the following
section, in problem solving typically the examples are derived from the prob-
lem solving traces which can be ordered by the number of actions which were
performed.

4 Rule Induction in Problem Solving

In cognitive psychology speed-up effects in problem solving are often modelled
as composition of primitive rules as a result of their co-occurrence during prob-
lem solving, e.g., knowledge compilation in ACT (Anderson & Lebière, 1998)
or operator chunking in SOAR (Rosenbloom & Newell, 1986). Similarly, in AI
planning macro learning was modelled as composition of primitive operators
to more complex ones (Minton, 1985; Korf, 1985). We will not dispute that
performance improvements in problem solving can often be explained by such
mechanisms for a more efficient organization of the rule base. But, there is
empirical evidence that humans are able to acquire general problem solving
strategies from problem solving experiences, that is, that generalized strategies
are learned from sample solutions. For example, after solving Tower of Hanoi
problems, at least some people have acquired the recursive solution strategy
(Anzai & Simon, 1979; Welsh & Huizinga, 2005). Typically, experts are found
to have superior strategic knowledge in contrast to novices in a domain (Meyer,
1992).

There were some proposals to the learning of domain specific control knowl-
edge in AI planning (Shell & Carbonell, 1989; Shavlik, 1990; Mart́ın & Geffner,
2000). All these approaches proposed to learn cyclic/recursive control rules
which reduce search. Learning recursive control rules, however, will eliminate
search completely. With enough problem solving experience, some general-
ized strategy, represented by a set of rules (equivalent to a problem solving
scheme) should be induced which allows a domain expert to solve this prob-
lem via application of his/her strategic knowledge. We already tried out this
idea using Igor1 (Schmid & Wysotzki, 2000). However, since Igor1 was a
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two-step approach where examples had to be first rewritten into traces and
afterwards recurrence detection was performed in these traces, this approach
was restricted in its applicability. With Igor2 we can reproduce the results of
Igor1 faster and without specific assumptions to preprocessing and further-
more can tackle more complex problem domains. 2

The general idea of learning domain specific problem solving strategies is that
first some small sample problems are solved by means of some planning or
problem solving algorithm and that then a set of generalized rules are learned
from this sample experience. This set of rules represents the competence to
solve arbitrary problems in this domain.

4.1 How to Clear a Block

We illustrate the idea of our approach with the simple clearblock problem
(see Figure 1). Inference of the recursive strategy for this problem was also
researched in the context of deductive program synthesis (Manna & Waldinger,
1987). A problem consists of a set of blocks which are stacked in some arbitrary
order. The problem solving goal is that one specific block – in our case A –
should be cleared such that no block is standing above it. We use predicates
clear(x), on(x, y), and ontable(x) to represent problem states and goals. The
only available operator is puttable: A block x can be put on the table if it
is clear (no block is standing on it) and if it is not already on the table but
on another block. Application of puttable(x) has the effect that block x is on
the table and the side-effect that block y gets cleared if on(x, y) held before
operator application. The negative effect is that x is no longer on y after
application of puttable.

We use a PDDL-like 3 notation for the problem domain and the problem
descriptions. The problem domain is given by the puttable operator. We defined
four different problems of small size each with the same problem solving goal
(clear(A)) but with different initial states: The most simple problem is the
case where A is already clear. This problem is presented in two variants – A is
on the table and A is on another block – to allow the induction of a clearblock
rule for a block which is positioned in an arbitrary place in a stack. The third
initial state is that A is covered by one block, the fourth that A is covered
by two blocks. A planner might be presented with the problem domain and
problem descriptions given in Figure 1.

The resulting action sequences can be obtained by any PDDL planner (Ghal-

2 The complete data sets and results for all problems discussed can be found on
www.cogsys.wiai.uni-bamberg.de/effalip/download.html.
3 see http://ls5-www.cs.tu-dortmund.de/~edelkamp/ipc-4/pddl.html
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Problem domain:
puttable(x)

PRE: clear(x), on(x, y)

EFFECT: ontable(x), clear(y), not on(x,y)

Problem Descriptions:
: init-1 clear(A), ontable(A)

: init-2 clear(A), on(A, B), ontable(B)

: init-3 on(B, A), clear(B), ontable(A)

: init-4 on(C, B), on(B, A), clear(C), ontable(A)

: goal clear(a)

Problem Solving Traces/Input to Igor2
fmod CLEARBLOCK is

*** data types, constructors

sorts Block Tower State .

op table : -> Tower [ctor] .

op __ : Block Tower -> Tower [ctor] .

op puttable : Block State -> State [ctor] .

*** target function declaration

op ClearBlock : Block Tower State -> State [metadata "induce"] .

*** variable declaration

vars A B C : Block .

var S : State .

*** examples

eq ClearBlock(A, A table, S) = S .

eq ClearBlock(A, A B table, S) = S .

eq ClearBlock(A, B A table, S) = puttable(B, S) .

eq ClearBlock(A, C B A table, S) = puttable(B, puttable(C, S)) .

endfm

Induced Clearblock Strategy (4 examples, 0.036 sec)
ClearBlock(A, (B T), S) = S if A == B

ClearBlock(A, (B T), S) =

ClearBlock(A, T, puttable(B, S)) if A =/= B

Fig. 1. Initial experience with the clearblock problem with three blocks and solution

lab, Nau, & Traverso, 2004) and rewritten to Igor2 (i.e. Maude) syntax.
When rewriting plans to Maude equations (see Figure 1) we give the goal,
that is, the name of the block which is to be cleared, as first argument. The sec-
ond argument represents the initial state, that is, the stack as list of blocks and
table as bottom block. The third argument is a situation variable (McCarthy,
1963; Green, 1969; Manna & Waldinger, 1987; Schmid & Wysotzki, 2000)
representing the current state. Thereby plans can be interpreted as nested
function applications and plan execution can be performed on the content of
the situation variable. The right-hand sides of the example equations corre-
spond to the action sequences which were constructed by a planner, rewritten
as nested terms with situation variable S as second argument of the puttable
operator. Currently, the transformation of plans to examples for Igor2 is
done “by hand”. For a fully automated interface from planning to inductive
programming, a set of rewrite rules must be defined.

Given the action sequences for clearing a block up to three blocks deep in
a stack as initial experience, Igor2 generalizes a simple tail recursive rule
system which represents the competence to clear a block which is situated
in arbitrary depth in a stack (see Figure 1). That is, from now on, it is no
longer necessary to search for a suitable action sequence to reach the clearblock
goal. Instead, the generalized knowledge can be applied to produce the correct
action sequence directly. Note, that Igor2 automatically introduced the equal
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Problem Solving Traces/Input to Igor2
fmod ROCKET is

*** data types, constructors

sorts Object OList State InVec .

op nil : -> OList [ctor] .

op __ : Object OList -> OList [ctor] .

ops load unload : Object State -> State [ctor] .

op move : State -> State [ctor] .

*** target function declaration

op Rocket : OList State -> State [metadata "induce"] .

*** variables

vars O1 O2 : Object .

var S : State .

*** examples

eq Rocket(nil, S) = move(S) .

eq Rocket((O1 nil), S) = unload(O1, move(load(O1, S))) .

eq Rocket((O1 O2 nil), S) = unload(O1, unload(O2, move(load(O2, load(O1, S))))) .

endfm

Rocket (3 examples, 0.012 sec)
Rocket(nil, S) = move(S) .

Rocket((O Os), S) = unload(O, Rocket(Os, load(O, S)))

Fig. 2. Example equations and learned rules for the rocket domain

predicate to discern cases where A is on top of the stack from cases where A is
situated farther below since these cases could not be discriminated by disjoint
patterns on the left-hand sides of the rules.

4.2 Rocket Transport

A more complex problem domain is rocket (Veloso & Carbonell, 1993). This
domain was originally proposed to demonstrate the need of interleaving goals.
The problem is to transport a number of objects from earth to moon where
the rocket can only fly in one direction. That is, the problem cannot be solved
by first solving the goal at(o1, moon) by loading it, moving it to the moon
and then unloading it. Because with this strategy there is no possibility to
transport further objects from earth to moon. The correct procedure is first
to load all objects, then to fly to the moon and finally to unload the objects.
Igor2 learned this strategy from examples for zero to two objects (see Figure
2). The objects to be loaded and unloaded are provided as a list (sort OList

with constructors nil for the empty list and the “empty syntax” constructor
__ to construct a list from an object and a list).

Let us demonstrate—by means of the rocket problem—how analytical induc-
tive programming systems and especially Igor2 derive a recursive generaliza-
tion from example equations.

The three provided rocket examples (cp. Figure 2) are:

1. Rocket(nil, S) = move(S)

2. Rocket((O1 nil), S) = unload(O1, move(load(O1, S)))

3. Rocket((O1 O2 nil), S) = unload(O1, unload(O2, move(load(O2, load(O1, S)))))
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As an initial hypothesis, Igor2 takes the least general generalization (LGG)
over all example equations. That means, the three equations are scanned in
parallel from left to right, position by position. If the symbol at a position is
the same in all example equations, it is kept for that position. If the symbols
differ, a variable is introduced at that position. For each introduced variable,
the respective substitutions to recover the corresponding sub-terms in the
examples are stored. If at one position a variable is to be introduced, it is
checked if the resulting substitutions are already associated with an earlier
introduced variable and if yes, that variable is taken. Consider for example the
root (left-most) position of the left-hand sides (LHSs). The symbol is Rocket
in all three examples, hence Rocket is kept as symbol at the root position of
the LHS of the LGG. In contrast, consider the right-hand sides (RHSs) of the
examples. They differ at the root position (move in the first equation, unload
in the remaining two equations) such that the RHS of the LGG consists of a
single variable.

The LGG, i.e., the initial hypothesis for the three rocket example equations
above is

Rocket(Os, S) = S’.

The variable Os results from the different constructors nil and __ at the same
position in the example equations. The variable S ′ results from the different
constructors move and unload as roots of the RHSs in the examples.

This initial hypothesis is regarded unfinished due to the variable S ′ as RHS
which does not occur in the LHS such that this initial hypothesis does not
represent a function. We call such variables open variables. Now Igor2, in
principle, applies three refinement operators in parallel to this unfinished hy-
pothesis: (i) It refines the pattern (LHS) by a set of more specific patterns,
leading to a new hypothesis consisting of a set of equations; (ii) it considers
open subterms of the RHS as new subproblems; (iii) it replaces the open RHS
by a (recursive) function call. All these operations are data-driven such that
many potential refinements can be ruled out a-priori. In particular, for our
initial rocket hypothesis, operators (ii) and (iii) do not apply: Since the RHS
consists of the single, non-structured, variable S ′, there are no proper sub-
problems to deal with. Further, since no example RHS subsumes another one
by some substitution, a hypothetical recursive call of rocket as replacement for
S ′ can be ruled out.

It remains the first operator—introducing a case distinction by refining the
pattern in the LHS. Therefore, Igor2 checks which of the pattern variables in
the initial hypothesis result from different constructors in the example equa-
tions. As mentioned above, in our example, the pattern variable Os results
from the two different constructors nil and __ in the first and in the second
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and third example equation, respectively. Now the example equations are par-
titioned according to these different constructors such that the first example
equation goes into one subset and the second and third example into a second
subset. The single equation of the initial hypothesis is then replaced by initial
equations (LGGs) of the two subsets, leading to the refined hypothesis:

Rocket(nil, S) = move(S)

Rocket((O Os), S) = unload(O, S’)

The second equation is again unfinished due to the variable S ′. Since the open
variable S ′ now occurs as a proper sub-term in the unfinished RHS, it can be
dealt with as a subproblem. Therefore, Igor2 replaces the S ′ by a call to a
new sub-function Sub,

Rocket((O Os), S) = unload(O, Sub((O Os), S)),

and abduces examples for this new sub-function by simply taking the appro-
priate sub-terms of the RHSs of the corresponding rocket example equations:

Sub((O1 nil), S) = move(load(O1, S))

Sub((O1 O2 nil), S) = unload(O2, move(load(O2, load(O1, S))))

The refinement step is finished by computing an initial hypothesis for the
abduced examples for Sub and adding it to the refined hypothesis for rocket,
leading to the following result:

Rocket(nil, S) = move(S)

Rocket((O Os), S) = unload(O, Sub((O Os), S))

Sub((O Os), S) = S’

The equation for Sub remains open. At this step, the RHSs of both example
equations for Sub are subsumed by an RHS of the example equations for rocket.
In particular, the RHS

move(S)

of the first rocket example subsumes the RHS

move(load(O1, S))

of the first Sub example with the substitution {S 7→ load(O1, S)} and the
RHS

unload(O1, move(load(O1, S)))

of the second rocket example subsumes the RHS
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unload(O2, move(load(O2, load(O1, S))))

of the second Sub example by {O1 7→ O2, S 7→ load(O1, S)}.

This indicates that the Sub examples might be computable by calling rocket.
Igor2 now applies the found substitutions to the respective LHSs of the rocket
examples and then tries to generate a term over the pattern variables O, Os, S
such that the LHSs of the Sub examples are mapped to the corresponding,
substituted, LHSs of the rocket examples. The found term,

(Os, load(O, S))

is taken as the argument of the rocket call, leading to the final hypothesis:

Rocket(nil, S) = move(S)

Rocket((O Os), S) = unload(O, Sub((O Os), S))

Sub((O Os), S) = Rocket(Os, load(O, S))

Since the Sub function is not recursive, it can be eliminated by unfolding,
leading to the solution stated in Figure 2.

4.3 Building Towers

A most challenging problem domain which is still used as a benchmark for
planning algorithms is blocks-world. A typical blocks-world problem is to build
a tower of some blocks in some prespecified order. With evolutionary pro-
gramming, an iterative solution procedure to this problem was found from
166 examples (Koza, 1992). The found strategy was to first put all blocks
on the table and than build the tower. This strategy is clearly not efficient
and cognitively not very plausible. If, for example, the goal is a tower on(A,
B), on(B, C) and the current state is on(C, B), on(B,A), even a young child
will first put C on the table and then directly put B on C and not put B on
the table first. Another proposal to tackle this problem is to learn decision
rules which at least in some situations can guide a planner to select the most
suitable action (Mart́ın & Geffner, 2000). With the learned rules, 95.5% of
1000 test problems were solved for 5-block problems and 72.2% of 500 test
problems were solved for 20-block problems. The generated plans, however,
are about two steps longer than the optimal plans. In Figure 3 we present the
rules Igor2 generated from only nine example solutions. This rule system will
always produce the optimal action sequence.

To illustrate how examples were presented to Igor2 we show one example
in Figure 4. The goal is to construct a tower for some predefined ordering
of blocks. To represent this ordering, blocks are represented constructively as
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Tower (9 examples of towers with up to four blocks, 1.2 sec)
(additionally: 10 corresponding examples for Clear and IsTower predicate as background knowledge)
Tower(O, S) = S if IsTower(O, S)

Tower(O, S) =

put(O, Sub1(O, S),

Clear(O, Clear(Sub1(O, S),

Tower(Sub1(O, S), S)))) if not(IsTower(O, S))

Sub1(s(O), S) = O .

Fig. 3. Induced optimal strategy for solving arbitrary tower problems

eq Tower(s s table,

((s s s s table) (s table) table | ,

(s s s table) (s s table) table | , nil)) =

put(s s table, s table,

put(s s s table, table,

put(s s s s table, table,

((s s s s table) (s table) table | ,

(s s s table) (s s table) table | , nil)))) .

Example input state,
the shaded blocks shall be stacked

Goal state

innermost (first) put

outermost (final) put

(s4

table)

(s
table)

table)
(s3

table)
(s2 (s4

table)
(s
table)

table)
(s3

table)
(s2

(s
table) table)

(s2 (s4

table) table)
(s3 (s

table)

table)
(s2

(s4

table) table)
(s3

Fig. 4. One of the nine example equations for tower

“successors” to the table with respect to the goal state (| representing the
empty tower). Therefore the top object of the tower to be constructed is given
as first argument of the tower function. If the top object is s s s table, the
goal is to construct a tower with three blocks with s table on the table, s s
table on s table and s s s table on s s table. The second argument again is
a situation variable which initially holds the initial state. In the example in
Figure 4 s s table (we may call it block 2) shall be the top object and the
initial state consists of two towers, namely block 4 on block 1 and block 3
on block 2. That is, the desired output is the plan to get the tower block 2
on block 1. Therefore blocks 1 and 2 have to be cleared, these are the both
innermost puts, and finally block 2 has to be stacked on block 1 (block 1 lies
on the table already), this is the out-most put.
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In addition to the tower example, Igor2 was given an auxiliary function
IsTower as background knowledge. This predicate is true if the list of blocks
presented to it are already in the desired order. Furthermore, we did not learn
the Clear function used in tower but presented some examples as background
knowledge.

4.4 Car Park Problems

In 2008, the biennial international planning competition (IPC) for the first
time included a special learning track 4 . The learning track contains two
phases: A learning phase, where the planners solve example problems in the
competition domains; and an evaluation phase, where they solve further prob-
lems in the same domains and where they may use domain-specific control-
knowledge—e.g., domain-specific heuristics, macro operators, or policies—that
they learned based on solving the problems in the learning phase.

One of the used domains was the parking domain. Several cars are to be parked
into N curb locations, where each curb location can carry up to two cars. If
two cars are “stacked” into one location, only the back-most car can move. If
there are N curbs, then there are 2 ∗ (N − 1) distinguished cars; two parking
positions are always free. A problem consists of re-parking all cars from a
particular initial configuration to a particular target configuration.

The domain is isomorphic to a variant of the blocksworld : Instead of building
towers anywhere at the table, there are N possible tower-locations and each
tower can maximally contain two blocks. Furthermore, there are exactly 2 ∗
(N − 1) involved blocks.

We consider a generalized version of this car parking domain—namely a gen-
eralization to M (instead of 2) cars that can be stacked into one curb location.
If there are N locations, then there are M ∗ (N − 1) cars involved.

Coming up with an (optimal) solution strategy for this problem class is even
harder than for tower building in the ordinary blocksworld, because there are
more constrains regarding applicability of operators. A general strategy could
be to fill one parking position after the other with the correct car (according to
the goal configuration) where the parking positions are ordered from innermost
to outermost in each curb location. (In the equivalent constraint blocksworld
domain this would correspond to get the correct blocks position by position
where positions in each tower are ordered from bottom to top.) However, filling

4 Homepage of the IPC: http://www.icaps-conference.org/index.php/Main/
Competitions, homepage of the 2008 learning track: http://eecs.oregonstate.
edu/ipc-learn/.

15



Input to Igor2
eq PutLast(Car1, Curb, Cars, 0, S) = S .

eq PutLast(Car1, Curb, Cars, s 0, S) = move(Car1, Curb, S) .

eq PutLast(Car1, Curb, Car2 Cars, s s 0, S) =

move(Car1, Curb, move(Car2, Curb, S)) .

eq PutLast(Car1, Curb, Car2 Car3 Cars, s s s 0, S) =

move(Car1, Curb, move(Car3, Curb, move(Car2, Curb, S))) .

Induced Rules (4 examples, 0.024 sec)
PutLast(Car1, Curb, Cars, 0, S) = S

PutLast(Car1, Curb, Cars, s 0, S) = move(Car1, Curb, S)

PutLast(Car1, Curb, Car2 Cars, s s N, S) =

PutLast(Car1, Curb, Cars, s N,

move(Car2, Curb, S))

Fig. 5. Posing the described parking sub-problem for Igor2 and induced recursive
rule set

one particular position is itself not a trivial task. Obviously, it comprises (i)
clearing the correct car such that no other car is stacked behind it and (ii)
clearing the particular parking position such that the curb location including
this position is only filled up to the preceding position. These two sufficient
preconditions for moving the correct car to the chosen position imply an even
stronger precondition. Consider the particular task of moving car A to the
innermost position in some curb location. That means, the target curb location
must be completely free, no car may already be parked in it. Yet since there
are N locations and M ∗ (N −1) cars and each location only can take M cars,
this implies that all other curb location are completely filled. Hence, our car
A, in order to be movable, must be located at the outermost position of any
curb location.

That is, one relevant subproblem of the complete parking problem class is to fill
one particular curb location completely with a particular car at the outermost
position. We have considered this particular subproblem. The function to be
learned was PutLast. It takes five parameters: The selected car, the selected
curb location, a list of further (possibly all remaining) cars that can be moved
according to their order in the list, a number indicating the remaining number
of free positions in the selected curb location, and a state. We assume, that the
selected car to be moved to the out-most position is already cleared, hence
movable. Figure 5 shows the four examples we provided to Igor and the
learned rules. The learned strategy is to take cars from the list of cars and
move them into the selected curb location until only one free position remains.
Then move the selected car into this outermost position.

4.5 Tower of Hanoi

Finally, the recursive solution to the Tower of Hanoi problem was generated
by Igor2 from three examples (see Figure 6).

For the discussed typical problem solving domains Igor2 could infer the re-
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Input to Igor2
eq Hanoi(0, Src, Aux, Dst, S) =

move(0, Src, Dst, S) .

eq Hanoi(s 0, Src, Aux, Dst, S) =

move(0, Aux, Dst,

move(s 0, Src, Dst,

move(0, Src, Aux, S))) .

eq Hanoi(s s 0, Src, Aux, Dst, S) =

move(0, Src, Dst,

move(s 0, Aux, Dst,

move(0, Aux, Src,

move(s s 0, Src, Dst,

move(0, Dst, Aux,

move(s 0, Src, Aux,

move(0, Src, Dst, S))))))) .

Induced Tower of Hanoi Rules (3 examples, 0.076 sec)
Hanoi(0, Src, Aux, Dst, S) = move(0, Src, Dst, S)

Hanoi(s D, Src, Aux, Dst, S) =

Hanoi(D, Aux, Src, Dst,

move(s D, Src, Dst,

Hanoi(D, Src, Dst, Aux, S)))

Fig. 6. Posing the Tower of Hanoi problem for Igor2 and induced recursive rule
set

cursive generalizations very fast and from small example sets. The learned
recursive rule systems represent the strategic knowledge to solve all problems
of the respective domains with a minimal number of actions. As it was to be
expected, Tower of Hanoi can be learned faster and with less examples than
tower. This is contrary to what we know from human cognitive development:
Tower of Hanoi is the by far more intellectually complex problem. While al-
ready small children can build towers of blocks in some order, they usually are
not able to produce the optimal action sequence for Tower of Hanoi. This dif-
ference between human intelligence and artificial intelligence is also reflected
in planning which is faster for Tower of Hanoi than for tower problems due
to the fact that the the problem space of Tower of Hanoi is smaller, highly
symmetric and operator application is more constrained.

5 Rule Induction in Reasoning and Language

A classic work in the domain of reasoning is how humans induce rules in con-
cept learning tasks (Bruner, Goodnow, & Austin, 1956). Indeed, this work has
inspired the first decision tree algorithms (Hunt, Marin, & Stone, 1966). This
work addressed simple conjunctive or more difficult to acquire disjunctive con-
cepts. However, people are also able to acquire and correctly apply recursive
concepts such as ancestor, prime number, member of a list and so on.

The acquisition of recursive and even mutually recursive concepts (such as
odd/even) is explicitly addressed in the inductive logic programming system
Atre (Malerba, 2003) and also covered by Igor2.
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Ancestor (9 examples, 10.1 sec)
(and corresponding 4 examples for IsIn and Or)
Ancestor(X, Y, nil) = nilp .

Ancestor(X, Y, node(Z, L, R)) =

IsIn(Y, node(Z, L, R)) if X == Z .

Ancestor(X, Y, node(Z, L, R)) =

Ancestor(X, Y, L) Or Ancestor(X, Y, R) if X =/= Z .

Corresponding to:

ancestor(x,y) = parent(x,y).

ancestor(x,y) = parent(x,z), ancestor(z,y).

isa(x,y) = directlink(x,y).

isa(x,y) = directlink(x,z), isa(z,y).

Fig. 7. Learned Transitivity Rules

In the following, we will focus on the concept of ancestor which is often used as
standard example in inductive logic programming (Lavrač & Džeroski, 1994).
The competence underlying the correct application of the ancestor concept,
that is, correctly classifying a person as ancestor of some other person, in our
opinion is the correct application of the transitivity relation in some partial
ordering. We believe that if a person has grasped the concept of transitivity in
one domain, such as ancestor, this person will also be able to correctly apply
it in other, previously unknown domains. For example, such a person should
be able to correctly infer is-a relations in some ontology. We plan to conduct
a psychological experiment with children to strengthen this claim.

For simplicity of modeling, we used binary trees as domain model. For trees
with arbitrary branching factor, the number of examples would have to be in-
creased significantly. The transitivity rule learned by Igor2 is given in Figure
7.

Finally, we demonstrate the ability of Igor2 to learn a phrase-structure gram-
mar. This problem is also addressed in grammar inference research (Sakak-
ibara, 1997). We avoided the problem of learning word-category associations
and provided examples abstracted from concrete words (see Figure 8). This,
in our opinion, is legitimate since word categories are learned before complex
grammatical structures are acquired. There is empirical evidence that chil-
dren first learn rather simple Pivot grammars where the basic word categories
are systematically positioned before they are able to produce more complex
grammatical structures (Braine, 1963; Marcus, 2001). Learning grammar rules
from example experience is also addressed in research on usage based theories
of language acquisition (Tomasello, 2003).

The abstract sentence structures correspond to sentences as (Covington, 1994):

1: The dog chased the cat.
2: The girl thought the dog chased the cat.
3: The butler said the girl thought the dog chased the cat.
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presented grammar
S -> NP VP

NP -> d n

VP -> v NP | v S

examples
fmod GENERATOR is

*** types

sorts Cat CList Depth .

ops d n v : -> Cat [ctor] .

op ! : -> CList [ctor] .

op __ : Cat CList -> CList [ctor] .

op 1 : -> Depth [ctor] .

op s_ : Depth -> Depth [ctor] .

*** target fun declaration

op Sentence : Depth -> CList [metadata "induce"] .

*** examples

eq Sentence(1) = (d n v d n !) .

eq Sentence(s 1) = (d n v d n v d n !) .

eq Sentence(s s 1) = (d n v d n v d n v d n !) .

learned grammar rules (3 examples, 0.072 sec)
Sentence(1) = (d n v d n !)

Sentence(s N) = (d n v Sentence(N))

Fig. 8. Learning a Phrase-Structure Grammar

The recursive rules can generate sentences for an arbitrary depth which is
given as parameter. Such center-embedded clauses are relational complex and
parsing such sentences has similar demands than solving Tower of Hanoi puz-
zles (Halford, Wilson, & Phillips, 1998). Generation as well as reception of
such sentences has high demand on working memory, because partial struc-
tures have to be held on a stack. However, again, we want to emphasize that
we propose Igor2as an approach to learn rules representing the competence
of a speaker or problem solver and not his or her performance.

Igor2 can also learn more complex rules, for example allowing for conjunc-
tions of noun phrases or verb phrases. In this case, a nested numerical param-
eter can be used to specify at which position conjunctions in which depth can
be introduced. Alternatively, a parser could be learned. Note that the learned
rules are simpler than the original grammar but fulfill the same functionality.

6 Conclusion and Further Work

We presented the inductive programming system Igor as a mechanism for
inducing generalized rules from example experience. Our focus was to demon-
strate Igor’s capability to induce generalized strategies for various domains
in the area of problem solving. We could show that Igor learns rule sets for
generating correct and complete action sequences from a small amount of only
positive examples in very short time. This corresponds with claims in cogni-
tive science about the human ability of generalization learning (Marcus, 2001;
Klahr & Wallace, 1976).
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Furthermore, we could demonstrate that Igor can not only be applied to rule
learning in problem solving but also to learn generalized rules for reasoning
and natural language processing. Since the induction mechanism underlying
Igor is driven by analyzing structural regularities and thereby domain inde-
pendent, Igor can be considered as one proposal for a general cognitive rule
acquisition device realizing the claims Chomsky made about a language ac-
quisition device (LAD) which allows to obtain a grammar for a language from
linguistic experience (Chomsky, 1959, 1965). Unfortunately, this idea became
quite unpopular (Levelt, 1976): One reason is, that only performance and not
competence is empirically testable and therefore the idea was only of limited
interest to psycho-linguists. Second, Chomsky (1959) argued that there “is lit-
tle point in speculating about the process of acquisition without much better
understanding of what is acquired” and therefore linguistic research focussed
on search for a universal grammar. Third, the LAD is concerned with learning
and learning research was predominantly associated with Skinner’s reinforce-
ment learning approach which clearly is unsuitable as a language acquisition
device since it explains language acquisition as selective reinforcement of imi-
tation.

Since the time of the original proposal of the LAD there was considerable
progress in the domain of machine learning (Mitchell, 1997) and we propose
that it might be worthwhile to give this plausible assumption of Chomsky
a new chance. Obviously, typical approaches to classification learning from
rather large sets of positive and negative examples which are based on the as-
sumption of PAC (probably approximately correct) learnability are unsuitable
to model a general rule acquisition device. To model the acquisition of a gen-
eral cognitive competence, an approach is needed which learns from positive
examples only, covers all examples correctly and learns a set of rules which
capture the regularities observed in these examples. A niche of machine learn-
ing research where algorithmic approaches fulfilling these presuppositions are
developed and investigated is inductive programming. Inductive programming
is based on the notion of language identification in the limit (Gold, 1967) and
can be viewed as more general approach to rule learning than grammar infer-
ence (Sakakibara, 1997) since it is concerned with learning recursive programs
from examples. As argued above, especially analytical approaches to inductive
programming might be helpful instruments to provide an algorithmic founda-
tion for a general rule acquisition device.

Furthermore, the conception of inductive biases (Mitchell, 1997) introduced in
machine learning, namely restriction (i.e. language) and preference (i.e. search)
bias might be an alternative approach to the search of a universal grammar:
Instead of providing a general grammatical framework from which each specific
grammar – be it for a natural language or for some other problem domain –
can be derived, it might be more fruitful to provide a set of constraints (biases)
which characterize what kinds of rule systems are learnable by humans.
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There are several aspects of Igor which we want to explore in future research.
One line of work will be concerned with different possibilities to include back-
ground knowledge. Currently, background knowledge can – but needs not – be
presented to Igor in form of additional examples. We used this possibility, for
example, when generating the rule set for tower by presupposing knowledge
about how to check whether a block is clear and how to check whether blocks
in a partial tower are already in correct sequence isTower. Assuming that
humans exploit already acquired knowledge to solve more complex domains,
we want to provide a possibility to present background knowledge which has
already the form of recursive rule sets. Furthermore, we currently work on an
extension of Igor2 where examples are checked for their subsumption under
higher-order program schemes (Hofmann & Kitzelmann, 2010). We could al-
ready demonstrate that by this technique, problems which previously could
only dealt with if background knowledge was given to Igor2 now can be
learned without recurring to background knowledge. To investigate mecha-
nisms for constructing examples suitable for Igor we currently are working
on embedding Igor in a robot scenario where the robot learns recursive rule
sets for behavior which will generate positive reinforcements. Here we are
experimenting with color patterns with underlying grammar structures such
as (red)n(green)(red)n. Only if the robot accesses patterns belonging to this
grammar it will be rewarded. From some examples, it should generalize the
grammar rules which allow it to select rewarding patterns of arbitrary com-
plexity.
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