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Abstract
A connectionist model capable of performing rapid inferences
to establish explanatory and referential coherence is described.
The model’s ability to perform such inferences arises from (i)
its structure, (ii) its use of mutual inhibition among “sibling”
types, entities, and rules, (iii) the use of temporal synchrony for
representing dynamic bindings, and (iv) its ability to rapidly
modify weights in response to convergent activity.

Introduction
Consider the following simple narrative: “John fell in the
hallway. Tom had cleaned it. He got hurt.” Upon hearing the
above narrative most of us would infer that Tom had cleaned
the hallway, John fell because he slipped on the wet hallway
floor, and John got hurt because of the fall. These inferences
allow us to establish causal and referential coherence among
the events and entities involved in the narrative. They help
us explain John’s fall by making plausible inferences that the
hallway floor was wet as a result of the cleaning and John fell
because he slipped on the wet floor. They help us causally
link John’s hurt to his fall. They help us determine that “it”
in the second sentence refers to the hallway, and “He” in the
third sentence refers to John, and not to Tom. Empirical data
strongly suggests that inferences required to establish referen-
tial and causal coherence occur automatically during language
understanding (see e.g., Just & Carpenter 1977; Keenan, Bail-
let, and Brown 1984; Kintsch 1988; McKoon & Ratcliff 1980,
1992; Potts, Keenan, & Golding, 1988).

Any system that attempts to explain our ability to establish
causal coherence during language understanding must pos-
sess a number of properties: First, such a system must be
representationally adequate. It must be capable of encoding
specific facts and events and expressing general regularities
(aka rules) that capture the causal structure of the environ-
ment. In particular, the system should be capable of encoding
context-dependent and evidential cause-effect relationships.
Second, the system should be inferentially adequate, that
is, it should be capable of drawing a range of explanatory
inferences by combining evidence and arriving at coherent
interpretations that are quasi-optimal with reference to a cost-
function (Hobbs et. al, 1993). Third, the system should be
capable of establishing referential coherence. In particular, it
should be able to unify entities and events by recognizing that
multiple designations might refer to the same entity or event.
Fourth, the system should be capable of learning and fine-
tuning its causal model based on experience, instruction, and
exploration. Finally, the system should be scalable and com-
putationally effective. The causal model underlying human
language understanding would be extremely large. Yet we
understand language at the rate of several hundred words per
minute (Just & Carpenter 1977). Hence, a system for estab-
lishing causal coherence should also be capable of encoding

a large causal model and rapidly performing the requisite in-
ferences within fractions of a second.

This paper describes several key extensions to the con-
nectionist model SHRUTI that enable it to draw the sorts of
inferences described above. SHRUTI is a neurally plausible
system capable of expressing causal knowledge involving n-
place relations, limited quantification, and type restrictions. It
encodes specific events as well as context-sensitive priors over
events. It expresses dynamic bindingsvia the synchronous fir-
ing of appropriate node clusters and performs inferences via
the propagation of rhythmic activity over node clusters. This
propagationamounts to a parallel breadth first activation of the
underlying causal graph, and hence, the reasoning in SHRUTI
is extremely fast. The use of weighted links and activation
combination functions at nodes allow SHRUTI to encode soft
rules and perform evidential inference. SHRUTI supports su-
pervised learning which allows it to fine-tune its causal model
in a data-driven manner (Shastri & Ajjanagadde, 1993; Shastri
& Grannes, 1996; Shastri, 1999; Shastri & Wendelken, 1999;
Wendelken & Shastri, 2000).

In order to carry out inferences for establishing referential
and causal coherence, however, SHRUTI’s core functionality
had to be extended in a number of ways. These include the
ability to (i) unify entities and relational instances (events) (ii)
posit the existence of entities that are left implicit in the utter-
ance, and (iii) favor interpretations that are more plausible and
more likely over others that are less so. These functional ex-
tensions were realized in part by introducing mutual-exclusion
clusters in the encoding of types and entities and by modifying
the behavior of node-types. But more importantly, SHRUTI’s
inferentialbehavior was modified by (i) introducinginhibitory
interactions among rules sharing a common consequent (ef-
fect) and (ii) modeling short-term-potentiation, a biological
phenomena whereby synaptic strengths (link weights) un-
dergo rapid but short-lived changes in response to convergent
activity. Both these changes play a critical role in favoring
coherent and more-likely interpretations over less coherent
and less likely ones.

The rest of the paper is organized as follows. The next
section presents SHRUTI’s basic representational machinery.
This is followed by an elaboration of evidential reasoning
in SHRUTI. Next we discuss mechanisms particularly aimed
at the problem of establishing coherence and illustrate the
functioning of the model with the help of an example.

SHRUTI’s representational machinery
Figure 1 illustrates the encoding of the following fragment

of knowledge (expressed in SHRUTI’s input syntax):
(1) � x:Agent, y:Location [slip(x,y) � fall(x,y) (600,900)];
(2) � x:Agent, y:Location [trip(x,y) � fall(x,y) (800,900)];
(3) *TF: trip(Person, Location) 100;
(4) *TF: slip(Person, Location) 50;
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Figure 1: An example SHRUTI network encoding two rules (i) � x:Agent, y:Location [ slips(x,y) � falls(x,y) (600,900)]; and
(ii) � x:Agent, y:Location [ trips(x,y) � falls(x,y) (800,900)]; two T-facts, F1 and F2; and a type hierarchy fragment. Links
between mediator and type structures, and inhibitory links between sibling rules, entities, and types, have been omitted.

(5) is-a( John, Man ); (6) is-a( Tom, Man );
(7) is-a( Man, Person); (8) is-a( Person, Agent );
(2) is-a( Hallway, Location );
Items (1–2) are rules, items (3–4) are taxon-facts (T-facts), and
item (5–9) are assertions about types. The first rule states that
when an entity of type Agent slips at a location, then the latter
may fall at that location. The weights (a,b) associated with a
rule have an evidential interpretationand we discuss this in the
section on evidential reasoning. The weight associated with
a T-fact is indicative of the prior probability of the specified
event type. All weights lie in the interval [0,1000].

Encoding Relations, Entities, and Types
Each relation is represented by a focal cluster depicted by
a dotted ellipse in Figure 1. Consider the focal cluster for
slip. This cluster includes an enabler node labeled ?:slip,
two collector nodes labeled +:slip and -:slip, and two role
nodes labeled slip-pat and slip-loc for its two roles patient
and location. In general, the cluster for an n-place relation
contains n role nodes. The positive and negative collectors
are mutually inhibitory (inhibitory links are depicted by filled
circles).

Assume that the roles of slip have been dynamically bound
to some fillers and thereby represent an active instance of
slip (we will see how, shortly). The activation level of ?:slip
indicates the strength with which the system is seeking an
explanation for the currently active instance of slip. The
activation levels of +:slip and -:slip encode graded beliefs
about currently active instance of slip ranging continuously
from no on the one extreme (only -:slip is active), to yes on
the other (only +:slip is active), and don’t know in between
(neither collector is very active). If both the collectors receive
comparable and strong activation then both collectors can be
active, despite mutual inhibition. This signals a contradiction.

The collector nodes of each relation are connected to the
enabler node of the relation. For example, +:fall and -:fall
are connected to ?:fall. These links cause ?:fall to become
active whenever +:fall or -:fall become active. In effect, these
links cause any active assertion about a relation to lead to a
query about the assertion. Thus the system continually seeks
an explanation for active assertions. The weight on the link
from +:fall (-:fall) to ?:fall is inversely proportional to the
probability of occurrence (non-occurrence) of an instance of
fall — the less likely an event, the stronger the search for an

explanation of the event.
The encoding of types and instances is illustrated at the right

of Figure 1. The focal cluster of each entity, A consists of a
?:A and a +:A node. In contrast, the focal cluster of each type,
T consists of a pair of ? (?e:T and ?v:T) and a pair of + nodes
(+e:T and +v:T). While the nodes +v:T and ?v:T participate
in expression of knowledge (facts and attributes) involving
the whole type T, the nodes +e:T and ?e:T participate in
the encoding of knowledge involving particular instances of
type T. Thus the pair of v nodes and the pair of e nodes
signify universal and existential quantification, respectively.
The levels of activation of ?:A, ?v:T, and ?e:T nodes signify
the strength with which informationabout entity A, type T, and
an instance of type T, respectively, is being sought. Similarly,
the levels of activation of +:A, +v:T, and +e:T signify the
degree of belief that the entity A, the type T, and an instance
of type T, respectively, play appropriate roles in the current
situation.

Nodes are computational abstractions and correspond to
small ensembles of cells, and a connection between nodes
corresponds to several connections from cells in one ensem-
ble to cells in the other. Phasic nodes, of which role nodes are
an example, produce output spikes in synchrony with their
inputs. Temporal-and nodes, such as the enablers and col-
lectors, integrate activity over a broader time window and
produce wider output pulses (such a pulse may be identified
with recurring high-frequency bursts of spikes).

Dynamic bindings
The dynamic encoding of a relational instance corresponds to
a rhythmic pattern of activity wherein bindings between roles
and entities are represented by the synchronous firing of ap-
propriate role and entity nodes (von der Malsburg 1981; Shas-
tri & Ajjanagadde 1993; Hummel & Holyoak 1997). With
reference to Figure 1, the dynamic representation of the re-
lational instance (fall: hfall-pat=Johni, hfall-loc=Hallwayi)
(i.e., “John fell in the Hallway”) will involve the synchronous
firing of +:John and fall-pat, and the synchronous firing of
+:Hallway and fall-loc. The entities +:John and +:Hallway
will fire in distinct phases.

Encoding E-facts and T-facts
SHRUTI encodes two types of facts in its long-term memory:
episodic facts (E-Facts) and taxon facts (T-facts). These facts



provide closure between the enabler node and the collector
nodes. While an E-fact corresponds to a specific instance of
a relation, a T-fact corresponds to a distillation or statistical
summary of various instances of a relation and can be viewed
as coding prior probabilities. T-facts are conditioned on the
type of role-fillers. Typically, T-facts involving salient role-
filler combinations such as [buy(a-Parent, a-Minivan) w1]
(i.e., the prior probability that a parent buys a minivan is w1)
as well as more generic T-facts such as [buy(a-Person,a-Car)
w2] would be learned. The priors for role-filler combinations
not explicitly encoded would be inherited from generic T-
facts.

Encoding rules
A rule is encoded via a mediator focal cluster (shown as
a parallelogram) that mediates the flow of activity between
the antecedent and the consequent clusters.1 The mediator
consists of a collector and an enabler node and as many role-
instantiation nodes as there are distinct variables in the rule.
The enablers of the consequent relations are connected to the
enablers of the antecedent relations via the enabler of the
mediator. The (+/–) collectors of the antecedent relations are
linked to the appropriate (+/–) collectors of the consequent re-
lations via the collector of the mediator. Each of these enabler
and collector links for a rule has a weight. The roles of the
consequent relations are linked to the roles of the antecedent
relations via the corresponding role-instantiation nodes in the
mediator. This linking reflects the correspondence between
antecedent and consequent roles specified by the rule.

If a role-instantiationnode receives activation from the me-
diator enabler and a consequent role node, it simply propa-
gates the activity onward to connected antecedent role nodes.
If the role-instantiation node receives activity only from the
mediator enabler it sends activity to the node ?e:T, where T is
the type specified in the rule as the role type. This causes node
?e:T to become active in an unoccupied phase. Node ?e:T
now conveys this activity to the role-instantiation node which
in turn propagates this activity to connected antecedent role
nodes. This interaction between the mediator and the type
hierarchy, in effect, creates activity corresponding to “Does
there exist some role filler of the specified type?” This is the
mechanism by which new entities are posited and new phases
emerge during the course of inference.

Evidential Reasoning
The interpretation of link weights and activation values is
intentionally underspecified in the core SHRUTI model. The
goal has been to provide a flexible and expressive representa-
tional structure which can be fine-tuned according to specific
modeling and task requirements. The following describes a
specific interpretation of link weights in terms of probabilities
that leads to satisfactory explanatory inferences.

A probabilistic interpretation of weights
Refer to the simplified SHRUTI network shown in Figure 2.
The weight of the link from the enabler (?) of a relation to its
collector (+) equals the (prior) probability of the occurrence
of an instance of the relation. This weight corresponds to the
weight of a T-fact associated with the relation. The weight of
the link from the collector (+) of a relation to the enabler (?)
of the relation is inversely proportional to the prior probability
of the occurrence of an instance of the relation.

1The inclusion of a mediator was motivated, in part, by discus-
sions the author had with Jerry Hobbs.

P(E)

E ?+

1 / P(E)

P(E | C)

P(C)

C ?+

1 / P(C)

Ω

Figure 2: A simplified depiction of SHRUTI’s encoding of a
rule and T-facts. The rule is C � E and the T-facts are the
prior probabilities of C and E. The negative collector and all
roles nodes have been suppressed.
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Figure 3: Inhibitory interaction between rules sharing a com-
mon consequent.

Now consider the encoding of the rule C � E. The link
weight from ?:E to ?:C equal P �EjC�, the probability of E
given C. The weight, Ω, of the link from +:C to +:E can be
interpreted in several ways, as elaborated below. The simplest
of these interpretations is P �Ejonly C�, the causal strength
of C for E (this is essentially the independent component of a
noisy-or). Another is P �CjE�.

When E is observed to be true, and hence, +:E’s activ-
ity level is clamped to 1.0, the activation of ?:E will equal
1 � �1�P �E��, the activation of ?:C will equal �1�P �E�� �
P �EjC�, and that of +:C will equal �1�P �E�� � P �EjC� �
P �C�. A direct application of Bayes Rule shows that the
activation of +:C reduces to P �CjE� — the desired degree
of belief in C under a probabilistic interpretation. If there
are multiple causes of E, say C1 and C2, then subsequent
to the clamping of +:E, C1 and C2 will become active at
levels P �C1jE� and P �C2jE�, respectively, which is again
as desired under a probabilistic interpretation (see Figure 3).

Evidence combination
Where there are multiple sources of evidence for some pred-
icate, then we must have some way to combine them. Since
each source must communicate independently, along a single
weighted link, the approach taken follows that of a belief-net
noisy-or (Pearl 1988). However, to allow for more flexi-
ble evidence combination within this framework than what
a single function can provide, a set of evidence combina-
tion functions was developed, based on notions of sufficiency
or necessity of factors, and also on degrees of correlation.



Interestingly, these functions suggest several different inter-
pretations of the link weights. At one end of this range is the
familiar noisy-or function 1 �

Q
i�1 � xi � wi�, where each

weight wi is essentially a measure of the sufficiency of each
(independent) potential cause for bringing about the effect.
At the other end of the spectrum, a sort of noisy-and functionQ

i�1� �1� xi� �wi� is used where the weight is interpreted
as a degree of necessity, the probability that the consequent is
false given that the particular antecedent is false (but all other
necessary antecedents are true). In between these are soft-or
(wherein positive correlation is allowed), a set of power aver-

ages ��
P

iX
k
i Wi���

P
iWi��

1�k
ranging from max down to

min depending on the parameter k, and a soft-and analogous
to the soft-or (see Shastri & Wendelken, 1999).

Mechanisms to support coherence
Several mechanisms have been developed which support the
establishment of referential and causal coherence. These in-
clude inhibitory connections in the causal model, short-term
potentiation, and the ability to create and collapse phases.

Role of inhibitory connections
The encoding of a rule C � E in SHRUTI involves inhibitory
connections from +:C to all the ? to ? links that originate
from ?:E (see Figure 3) and reduce activity at their targets to a
degree proportional to the activation of +:C. These inhibitory
links serve two purposes. First, they provide a mechanism for
contrast enhancement since they allow stronger explanations
to dominate over weaker explanations. Second, they serve the
purpose of explaining away.2 It is well known that combin-
ing explanatory and predictive inference can lead to problems
in an inference system. For example, a system that can in-
fer “John fell” from “John slipped”, and “John tripped” from
“John fell” can also have the unfortunate tendency to infer
“John tripped” based on “John slipped”. The inhibitory links
prevent such unwarranted proliferation of evidence.3 The
precise impact of inhibition depends on the evidence combi-
nation function deployed at the site where the inhibitory links
converge.

Short-term Potentiation
If +:fall receives activity from one of its T-facts it means that
?:fall is active, and hence, fall is being sought as a possible
explanation of some event (say, hurt). If at the same time,
+:fall receives concurrent activity from +:med1 it means that
fall is also being predicted as a possible consequence of a
slip event. In these circumstances, it is highly likely that the
fall event actually occurred and is both an effect of the slip
event and an explanation of the fall event. SHRUTI expresses
this increased likelihoodvia the biologicallyplausible mecha-
nism of short-term potentiation(STP) (Bliss and Collingridge,
1993). Whenever a collector +:P receives activity from one
of its T- or E-fact and concurrent activity from a mediator col-
lector node, then the weights of the links from the mediator
collector to +:P and from the active T-facts to +:P increase
for a short-duration. Analogous short-term weight changes
occur due to convergence of top-down and bottom-up activity
at links incident on -P: and at ?:P.

2This use of inhibitory connections is motivated in part by Aj-
janagadde (1991).

3The weights of these inhibitory links can be given a probabilistic
interpretation. For example, the weight ��C2 � C1� in Figure 3
can be viewed as �P �E��P �EjC1� C2��P �C1jC2����P �EjC1��
P �EjC2� � P �C1��.

With reference to Figure 3, consider a domain where A is
a possible cause of C1, and hence we have the rule A� C1.
Now consider a situation where there is independent evidence
for A and E and one is interested in determining the proba-
bility of C1, P �C1jA�E�. This probability cannot be exactly
computed using only information available locally at node
C1. Simply combining the evidence arriving from E (i.e.,
P �CjE�) and A (i.e., P �C1jonlyA�) using an evidence com-
bination function such as noisy-or would typically lead to an
underestimation of the correct value. However, the short-term
potentiation (STP) of links allows SHRUTI to partially offset
this underestimation of the probability of an intermediate re-
lation when both the cause and the effect of a relation are
observed. At the same time, the unpotentiated weights con-
tinue to propagate the correct probability values when only
the cause or only the effect is observed.

At a more global level, STP also has the effect of priming
the whole subnetwork of nodes and links that constitute a
coherent interpretation and creating a strong feedback loop
of reverberant activity in a subnetwork of causal knowledge
corresponding to a coherent interpretation.

Taken together, the short-term associative increase in
weights and the inhibitory interactions leading to the ex-
plaining away phenomena, provide a powerful and neurally
plausible mechanism that enable SHRUTI to prefer coherent
explanations over non-coherent ones.

Mutual exclusion and collapsing of phases
Entities in the type hierarchy can be part of a phase-level
mutual exclusion cluster (�-mex cluster). Consequently, only
the most active entity within a �-mex cluster can remain active
in any given phase. A similar �-mex cluster can be formed
by mutually exclusive types. Mutual exclusion also occurs in
the type hierarchy as a result of inhibitory connections from
the + nodes of a type (or an entity) to the ? nodes of all its
siblings. This inhibition leads to another sort of "explaining
away" phenomenon. If for example, the type query “Is it a
Person?” (i.e., activation of ?e:Person) leads to the queries “Is
it a Man?” and “Is it a Woman?”, then strong support received
by +e:Woman reduces the strength of the query ?e:Man. In
essence, the query “Is it a Man?” is no longer considered
important by the system since it was seeking a person and it
has already found a woman.

SHRUTI allows separate phases to coalesce into a single
phase, or new phases to emerge, as a result of inference. The
latter is realized by the allocation of new phases resulting from
the interaction between role-instantiation nodes in mediators
and the type hierarchy, as described above. The unification of
phases is realized in the current implementation by the col-
lapsing of phases based on activity within an entity cluster or
within a focal cluster. In the first case, phase collapsing oc-
curs whenever a single entity dominates multiple phases (for
example if the same entity comes to be the answer to multiple
queries). In the second case, phase collapse occurs if two
unifiable instantiations of a relation arise within a focal clus-
ter. For example, the active assertion +:fall(John,Hallway)
alongside the query � x:Man ?:fall(x,Hallway) (Did a man
fall in the Hallway?) will result in the merging of the two
phases for “a man” and “John” via the inferred assertion �
x:Man +:fall(x,Hallway). The same assertion alongside the
query � x:Woman ?:fall(x,Hallway) would not lead to a similar
phase merge because the types Man and Woman are mutually
exclusive, and hence, would mutually inhibit one another.

SHRUTI’s ability to readily and flexibly instantiate entities
and collapse them into a single entity during inference is due to
its use of temporal synchrony to represent dynamic bindings.



Simulation Result
The activation trace resulting from the processing of the "John
fell" story by a SHRUTI network encoding the rules, T-facts,
and type hierarchy described in Section is shown in Figures 4
and 5. Figure 4 shows the actual activation levels of the
+:slip and +:trip nodes as the story is processed by SHRUTI.
Figure 5 depicts the activation trace of a larger subset of nodes.
The depiction in this figure, however, has been simplified to
highlight key aspects of the network behavior. In particular,
several nodes have been omitted, some intermediate cycles
have been omitted and the activation levels of collector and
enabler nodes have been discretized to four levels. Please
note that due to simplifications made to Figure 5, the time
scales along the x-axis in Figures 4 and 5 are not the same. To
minimize confusion, we will refer to the times in Figure 4 as
cycles and in Figure 5 as steps. The reader may also wish to
refer to Figure 1 to ground some of the following description.

Each sentence in the narrative is conveyed to SHRUTI by
activating the + node of the appropriate relation and estab-
lishing role-entity bindings by the synchronous activation of
the appropriate role and entity nodes. The sentences are pre-
sented in sequence and after each sentence presentation, the
network is allowed to propagate activity for a fixed number of
cycles. For example, the first sentence (S1) is communicated
to SHRUTI in step 1 (cycle 0) by activating the node +:fall, the
nodes fall-patand +:John in synchrony, and the nodes fall-loc
and +:Hallway in synchrony. The firing of nodes +John and
+:Hallway occupy distinct phases — �1 and �2, respectively.

Activation from the focal cluster for fall reaches the media-
tor structure of rules (1) and (2). Consequently, nodes r1 and
r2 in the mediator for rule (1) become active in phases �1 and
�2, respectively. Similarly, nodes s1 and s2 in the mediator
of rule (2) become active in phases �1 and �2, respectively.
At the same time, the activation from +:fall activates ?:fall
which in turn activates the enablers ?:med1 and ?:med2 (the
activity of mediator nodes, and role nodes of slip and trip is
not depicted in Figure 5). The activation from nodes r1 and r2
reaches the roles slip-pat and slip-loc in the slip focal cluster,
respectively. Similarly, activation from nodes s1 and s2 reach
the roles trip-pat and trip-loc in the trip focal cluster, respec-
tively. In essence, the system has created new bindings for
the slip and trip relations. These bindings together with the
activation of the nodes ?:slip and ?:trip encode two queries:
“Did John slip in the hallway?”, and “Did John trip in the
hallway?”. At the same time, activation travels in the type hi-
erarchy and activates the nodes ?v:Man, then ?v:Person, and
then ?v:Agent in phase �1, and the ?v:Location node in phase
�2. The coincident activity of slip-pat and ?v:person node,
and the coincident activity of the slip-loc and ?v:Location
nodes leads to the firing of the T-fact F1 associated with slip.
The activation of F1 causes activation from ?:slip to flow
to +:slip. The T-fact F2 associated with trip also becomes
active in an analogous manner and conveys activation from
?:trip to +:trip. The level of these activations is a measure of
the probability that a person may slip and fall, respectively.
At this time, “John tripped” is believed to be a more likely
explanation of “John fell” than “John slipped.”

While the activation spreads “backwards” from the fall fo-
cal cluster in the manner described above, activation also
travels “forwards” to the hurt focal-cluster (not shown in Fig-
ure 1) as a result of the encoding of rule (iii) (also not shown)
and leads to the weak prediction that John got hurt.

The introduction of sentence S2 in step 6 (Figure 5) (cycle
40 Figure 4) results in the instantiationof clean with the bind-
ings (hclean-agt=+:Tomi, and hclean-loc=+e:Locationi). As
a result, Tom gets active in phase �3 and +e:Location in phase

�4. Note that now we have two instantiations of a location.
The second instantiation gets merged with the first (Hallway)
as a result of phase merging. This happens in step 8 (see
activity of +e:location in Figure 5). The pressure for this
merging comes from the strong compatibility, and hence, the
strong coherence between the activity of hallway and the new
location. Note that in the ongoing activity, hallway and the
new location (say, Loc1) are active in parallel assertions such
as: “John fell on the hallway floor”, “The hallway floor might
have been wet”, “The hallway floor might have been cleaned”
and “The Loc1 floor was cleaned” “The Loc1 floor might be
wet”, “John might have fallen in the hallway floor.” At this
time, +:wetFloor also becomes active as a result of activity
arriving from +:clean via the mediator of rule (4) (cleaning
leads to a wet floor).

By step 10 (Figure 5) +:slip becomes more active as a
result of the high activation of +:wetFloor. The effect of
“explaining away” kicks in and causes the activation of +:trip
to go down by step 12. The strength of +:slip increases even
further due to (i) the potentiation of links from the mediator
for rule (4) (walking on a wet floor may cause slipping), (ii)
the potentiation of the link from ?:med1 to ?:slip, and (iii)
the effect of explaining away. The effect of these changes on
the activation levels of +:slip and +:trip may be seen more
vividly in the detailed trace shown in Figure 4.4

S3 is introduced in step 14 (cycle 80) with the binding (h
hurt-pat=+e:Mani). This leads to +e:Man becoming active
in phase �4 and a second dynamic instantiation of hurt (in ad-
dition to the earlier instantiation resulting from the inference
hurt(John)). These two instantiations get merged immedi-
ately, and phase �4 gets merged with �1 (John), in step 15 as a
result of the phase merging described in the previous Section.

Conclusion

SHRUTI shows how explanatory and referential coherence can
arise within a neurally plausible system as a result of sponta-
neous activity in a network. The network’s structure reflects
the causal model of the environment and when the nodes in
the network are activated to reflect a given state of affairs,
the network spontaneously seeks coherent explanations. The
time taken to perform an inference is simply proportional to
the depth of the causal derivation and is otherwise indepen-
dent of the size of the causal model. The state of coherence is
reflected as reverberatory activity around closed loops. The
system also makes predictive (forward) inferences, but only
those predictions that become part of a coherent explanation
gain strength and persist. Coherence arises in SHRUTI as a re-
sult of (i) inhibitory interactions among sibling entities, types
and rules, (ii) short-term increase in link weights resulting
from short-term potentiation, and (iii) the dynamic merging
and instantiation of entities.
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Figure 4: The activation trace of collector nodes +:slip and
+:trip during the processing of the “John fell” story. X-
axis is time. The activity of these collectors around cycle
12 is due to associated T-facts. Since tripping is more likely
than slipping (100 versus 50), +trip has a higher activation.
Activity from the clean predicate arrives (via wetFloor) at the
slip collector at cycle 50 due to the introduction of S2 at cycle
40, giving +:slip a significant boost. >From here onwards
the associative weight changes along highly active pathways
into +:slip result in a large increase in values at around cycle
55. The potentiation of the path from ?:fall to ?:slip also
contributes to this increase. At the same time, the “explaining
away” phenomena leads to the decrease in the activation of
+:trip. The activity stabilizes around cycle 100. Note that
each cycle in SHRUTI roughly corresponds to twice the period
of � band activity, i.e., about 40-50 msecs. (see Shastri &
Ajjanagadde 1993).
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