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Abstract Surprisingly complex tasks can be solved us-
ing a behaviour-based, reactive control system, i.e., a
system that operates without an explicit internal repre-
sentation of the environment and the own body. Never-
theless, application of internal representations has gained
interest in recent years because such internal represen-
tations can be used to solve problems of perception
and motor control (sensor fusion, inverse modeling) and
may in addition be applied to higher cognitive functions
as are the ability to plan ahead. To endow such a system
with the ability to find new behavioural solutions to a
given problem in a broad range of possibilities, the in-
ternal representation must be universally manipulable,
i.e. the model should be able to simulate all movements
that are physically possible for the body given. Using
recurrent neural networks, models showing this faculty
have been proposed being based on the principle of
mean of multiple computation (MMC). The extension
of this approach to three dimensions requires the intro-
duction of a joint angle representation which allows for
computation of mean values. Here we use dual quater-
nions that are singularity-free and unambiguous which
allow for shortest path interpolation. In addition, it has
been shown that dual quaternions are the most efficient
and most compact form for representing rigid transfor-
mations. The model can easily be adapted to bodies
of arbitrary geometries. The extended MMC net intro-
duced in this article represents a holistic system that
can—following the principle of pattern completion—
likewise be used as an inverse model, a forward model,
for sensor fusion or other, related capabilities.
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1 Introduction

Traditional Artificial Intelligence approaches focussed
on reasoning as a process working on explicit and purely
symbolic representations. Actions were only regarded as
side effects of higher-level processes. Perception’s only
function was to inform and construct the higher-level
representations. In this view, reasoning has been un-
derstood as the application of rules with action and
perception being mere subordinate processes.

In contrast, during the last two decades the behaviour-
based approach focussed on a completely different per-
spective on intelligence, or in this case intelligent be-
haviour: This approach does not presume representa-
tions, but concentrates on building acting systems in-
stead, which fulfil only limited tasks like simply wander-
ing around in an environment without running into an
obstacle or, as a more complex task, acquiring informa-
tion about the environment to be used for homing. The
systems are assumed to be extended in a bottom-up
fashion: not by imposing an overly sophisticated con-
trol structure to solve a certain task, but by evolving
a controller step-by-step. It is hoped that following an
evolutionary path will guide the construction of such a
system in a minimalist fashion, abandoning costly ex-
tensions like unnecessary internal representations. To
this end the environment itself can often be used in-
stead of an internal model, an approach that is char-
acterised by the terms embodiment and situatedness
(Brooks, 1991a,b).

While behaviour-based systems can solve surpris-
ingly complex tasks, e.g., starting from coordination
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of joints in a walking robot going up to behaviours
like crossing a large gap (Brooks, 1991a,b; Pfeifer and
Scheier, 2001; Bläsing, 2006; Schmitz et al., 2008), with-
out an explicit representation of the environment, in re-
cent years interest in internal representations has grown,
because they appear to be important when such sys-
tems are to be developed further (Steels, 2003). How-
ever, internal representations are now assumed to be
directly influenced by and connected to motor func-
tions or sensory influences. Higher cognitive functions
use the existing sensorimotor representations instead of
remodelling their function into an abstract representa-
tion (which inevitably will be error-prone).

Systems which can be called embodied are reactive
systems in the sense that they at first exploit external
representations—the environment itself. At this stage
their behaviours rely on sensory data. Internal repre-
sentations may only gradually co-evolve in parallel and
in service for a specific action (Steels, 2003). These re-
presentations may later be used for higher-level func-
tions. As a consequence, these representations are al-
ways connected to the actions themselves and are in
service for these actions (Glenberg, 1997). In fact, these
representations are assumed to be realised through the
integration of neuronal activations in sensing and acting
related to the action itself and, as a consequence, they
are grounded and therefore avoid the problem of sym-
bol grounding (Harnad, 1990). To the extent that these
representations concern properties of the body, we call
this form of representation second-order embodiment,
following Metzinger (2006), who defines it as “gener-
ating intelligence by using an integrated representation
of the body as a whole”. As a consequence, Metzinger
proposed the term first-order embodiment for what is
usually termed embodiment.

The literature discusses three different tasks that
rely on internal representations which in the following
will be described as inverse modelling, forward mod-
elling and models for sensor fusion.

1. Inverse modelling: If the task is to grasp a visu-
ally given object, the target position is defined in
an egocentric three-dimensional space. However, the
movement to reach the target must be described
in terms of joint positions, displacements or muscle
activations in some form. Therefore, a transforma-
tion between these two reference systems is needed.
This transformation corresponds to a mapping from
Cartesian space to joint space and is called an in-
verse model (e.g., Wolpert and Kawato, 1998; Stringer
and Rolls, 2007). This task may become, and usually
is, complicated if the body to be controlled is char-
acterised by extra degrees of freedom (DoF), i.e.,
contains more joints than necessary for the solution

of the task. In this case, there are not only one,
but many solutions to the task (Bernstein, 1967).
Therefore, the controller has to select one out of
these many possible solutions.
Targeted limb movements can be found not only in
humans and other “higher” animals, but already in
insects, for example, in crickets (Honegger, 1981), in
locusts (Page et al., 2008; Matheson and Dürr, 2003)
and in stick insects (Cruse, 1979). This suggests that
inverse models may be applied by many species.

2. Forward models: When performing fast movements
or adapting a movement to a fast-moving target, one
can not rely solely on sensory feedback for guiding
the movement, because of temporal delay inherent
to the sensory and motor pathways. A possible so-
lution is to rely on a fast prediction of the expected
feedback that could be provided by a forward model
(Miall et al., 1993; Desmurget and Grafton, 2000).
A forward model determines spatial locations when
joint angles are given. Forward models are therefore
often called predictors. Combined with an inverse
model, a possible error can be detected faster than
when relying only on proprioceptive feedback.
When interacting in dynamic tasks, like catching a
ball, it is also necessary to be able to predict the
movement of target objects. Therefore a forward
model that forecasts future states from the current
state is required. Simple forms of predictive models
can even be found in insects (for example, stick in-
sect (Bläsing and Cruse, 2004), Drosophila (Strauss
and Pichler, 1998), see (Webb, 2004) for further ex-
amples).

3. Sensor fusion: A distinct feature of animals and hu-
mans, in contrast to most technical systems, is the
very high number of different modalities as well as
sensors for each modality. For example, the position
of an arm can be described by the visual system in
a Cartesian, body-centred coordinate system while
different proprioceptive sensors would provide joint
angle-like representation (Makin et al., 2008). An
advantage of such redundant systems is that they al-
low one to compensate for errors and disturbances,
which however presupposes some kind of integra-
tion mechanism of the sensory information (e.g.,
(van Beers et al., 2002; Wolpert et al., 1995; Smeets
et al., 2006), integration of visual cues (Muller et al.,
2009), or interpolation of positional information like
in the rubber-hand illusion (Botvinick and Cohen,
1998)).

The three aforementioned tasks are examples of how
basic tasks and behaviours require different sorts of in-
ternal models. These tasks establish a set of require-
ments which has to be fulfilled by potential implemen-
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tations of such models. On the one hand, an internal
model should afford the ability to represent all move-
ments possible for a given body including its kinematic
and dynamic limits (Acosta-Calderon and Hu, 2005).
On the other hand, it must be able to relate different
modalities to account for the diversity and redundancy
of sensors in natural systems. In other words, such a
body model should be universally adaptable for per-
ceptions and universally manipulable when it is used
for motor control and imagining body movements.

At the same time, the different functions of inter-
nal models show that even quite basic behaviours as,
e.g., grasping or reaching, rely on quite complex inter-
nal models and representations of complex structures,
at first of the own body but later-on of objects and
the environment. This opens up an evolutionary path
on which internal models may have co-evolved in ser-
vice for specific actions as demanded by Steels (2003).
When these internal models became sufficiently com-
plex, they may be used in a different context and for a
different purpose. An internal model being capable of
the forward function could be used to predict the effect
of a behaviour. When the model can be decoupled from
the body (Hesslow, 2002; Wilson, 2002), the internal
model may be used as a simulator for planning ahead.
The internal model can then be used to try out new
behaviours in a mental simulation or as done in imag-
ination without actually performing them (Jeannerod,
1999). If this ability to predict is complemented by the
ability to use these predictions as a basis to decide on
what behaviour will be performed, the system is not
anymore a reactive system, but can, according to the
definition of McFarland and Bösser (1993), be termed a
cognitive system. Therefore, if evolution has equipped a
brain of a reactive system with such a network, the step
to exploit the predictive capabilities of this network and
thereby to become a cognitive system appears to be a
small one. The mechanism of internal simulation is crit-
ical for this notion of a cognitive system, i.e., a system
which is able to plan ahead. Internal simulations means
to imagine the consequences of its possible actions and
to choose an action which maximises the benefit for the
system—or as Shaw (1903) has put it “To be able to
choose the line of greatest advantage instead of yielding
in the direction of least resistance”.

Traditional solutions in robotics apply separate mono-
lithic models for each of the three tasks above, all of
them involving internal models. Wolpert and Kawato
(1998) offer a way of dealing with the inverse and the
forward task by introducing for each behaviour a pair
of dedicated inverse and forward models. The MOSAIC
architecture (Wolpert and Kawato, 1998) has shown
its ability to control systems with a set of simple be-

haviours and to choose the appropriate behaviour. In-
stead of applying a pair of separate models, Morasso
and Sanguineti (1994) proposed a body model by com-
bining both models in such a way that the output of
the inverse model is connected with the input of the
forward model and the output of the forward model
with the input of the inverse model. Thus, the body
model is represented by a recurrent network.

When addressing the third function, sensor fusion,
application of Kalman filtering has been proposed (Wol-
pert et al., 1995). Although this method can be applied
to systems with redundant degrees of freedom, due to a
minimisation procedure required for inverse modelling,
only specific solutions can be provided (Grush, 2004). In
other words, such a system cannot exploit all possibil-
ities the system is capable of realising when exploiting
its extra degrees of freedom.

In contrast, Cruse and Steinkühler (1993) proposed
a holistic network, forming a unified inverse-forward
model, which can represent any configuration that is ge-
ometrically possible and may therefore be termed a uni-
versally manipulable body model. While this network,
termed mean of multiple computation (MMC) network,
can be used as a forward model, as an inverse model
and as any mixed model (Cruse and Steinkühler, 1993;
Steinkühler and Cruse, 1998), it was originally applied
only to 2D structures and the extension to 3D struc-
tures was restricted to Cartesian coordinates. An exten-
sion to general coordinates including joint angles, for
example, requires additional processing of constraints
which introduce non-linearities. In this article the MMC
principle is now applied to rigid transformations in gen-
eral which include translations and rotations in three
dimensions. The extension of angular relationships to
three-dimensional geometries is not trivial. We apply
the approach of dual quaternions that can be realised
by using non-linear neural networks and leads to a more
elegant structure. Therefore, the MMC principle will be
briefly reviewed first, followed by an introduction to the
dual quaternion structure.

The MMC network represents a pattern-completion
system that can be used for any task, forward mod-
elling, inverse modelling, any mixed case or for per-
ception/sensor fusion, depending only on the selection
of the input values. As an example structure we use
a three-segmented arm performing a reaching task. In
such an inverse kinematic problem, a target position de-
scribed in a three dimensional Cartesian space is given
to the network. One task for the network is to come up
with a solution of how the joints of the manipulator,
e.g., a human-like arm, have to be moved to reach the
target position. But the network could further be used
in different contexts for sensor fusion, e.g. to cancel out



4 Malte Schilling

noise or errors, or for computation of the forward kine-
matics.

This article addresses the structure of the network
and shows how the network can be used to solve in-
verse kinematic problems. Results are presented and
are, in the last section, discussed and related to other
approaches. The usage for sensor fusion and prediction
will only briefly be discussed as well as how the net-
work can be incorporated into a controller scheme as
such (for a detailed explanation on how such an inter-
nal model may be used for control and planning ahead
in a six-legged walking robot see Schilling and Cruse
(2008)).

2 MMC — An Internal Model

The MMC model is implemented as a neural network
and fulfils the aforementioned requirements, i.e., it can
be used as an inverse model, a forward model or a model
for sensory integration.

At first, we will briefly review the general idea—the
mean of multiple computation (MMC) principle— and
how to construct a neural network model for a very
simplistic kinematic example. Following the introduc-
tion of dual quaternions as a suitable representation of
the kinematics of a body, the principle will be applied
to a 3D body model.
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Fig. 1 Graphic representation of a planar (2D) arm consisting of

three segments, upper arm (L1), lower arm (L2) and hand (L3).
Vector R points to the position of the end effector (tip of the

hand). D1 and D2 represent additional diagonal vectors.
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Fig. 2 A recurrent neural network containing 2 x 6 units. The
complete net consists of two identical linear networks, one for the

x-components (black lines) and the other for the y-components

(grey dashed lines) of the vectors. The units represent the com-
ponents of the six vectors L1, L2, L3, D1, D2 and R of the planar

arm (see Fig. 1 for graphic illustration). If an input is given, the
corresponding recurrent channel is suppressed (symbolised by the

open arrow heads). For details see text.

2.1 Classical MMC approach

The classical MMC network (Cruse and Steinkühler,
1993; Steinkühler and Cruse, 1998) is an autoassocia-
tor, a type of self-organising map that is constrained by
geometric relationships representing the kinematics of,
to take a simple example, a serial chain manipulator,
or, as a more complex case, of a six-legged walker with
18 degrees of freedom. By means of the geometric con-
straints, the network is forced into its attractor states,
which always represent valid, geometrically correct so-
lutions. In the following, we will use a three-segmented
planar arm as a simple example.

Figure 1 shows the robot arm: the arm, which is
restricted to movements in a plane, consists of three
segments that are connected by two hinge joints form-
ing a serial chain and attached to a fixed point by
a third hinge joint (the “shoulder joint”). Following
the mean of multiple computation approach, each vari-
able is described only by relative relations of the adja-
cent variables. However, each variable may be part of
many equations (therefore allowing for multiple com-
putations).

The simple 2D, three degrees of freedom manipu-
lator shown in figure 1 is represented by the vectors
characterising its segments. In addition, we introduce
diagonal vectors in such a way that each node of the
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manipulator—these are the joints and the end-effector—
is connected with each other node. Local equations can
be formulated that describe the geometric relationships
among all these vectors. A local relationship simply rep-
resents a triangle of three vectors. When we construct
all possible triangles, we obtain

(
n
3

)
equations. In our

example we have 4 triangles and each variable is part
of two triangles:

L1 +D2 −R = 0

L1 + L2 −D1 = 0

D1 + L3 −R = 0

L2 + L3 −D2 = 0 (1)

Next, for each variable we solve the two equations of
which they are part of. Now every variable is described
by a set of—in our simple example two—equations.

L1 = R−D2

L1 = D1 − L2 (2)

The general idea of the mean of multiple computation
principle is to compute the multiple equations for a vari-
able in parallel and to assign the mean value of these
multiple computations to the variable itself. The whole
process is iterative. As a consequence, the value of a
variable can change over time. The new value for a vari-
able is calculated as described above and shown for the
first segment as an example:

L1(t+ 1) =
1
2

(R(t) −D2(t)) +
1
2

(D1(t) − L2(t))

(3)

The resulting equations can now be written as a
weight matrix describing a recurrent neural network
(see figure 2). A prerequisite is to decompose the vec-
tors into their components. For every single component
(here x- and y-components), a unique network has to be
built. In our example, the two resulting weight matrices
are identical. In the simplest case, the diagonal of the
weight matrix consists of zeros. To prevent oscillations
it has shown to be sufficient to introduce a damping
factor d in the diagonal of the weight matrix (discussed
in the Appendix of Steinkühler and Cruse, 1998).

L1(t+ 1) =
1
d

(R(t) −D2(t)) +
1
d

(D1(t) − L2(t))

+
d− 2
d

L1(t) (4)

The damping values can be related to the time constant
of a low-pass filter (Makarov et al., 2008). They can
differentially influence the relaxation dynamics, but do
not affect the final position.

When the network is in a stable state, the differ-
ent equations describing one variable lead to exactly
the same value—the geometrically correct solution. The
different equations are redundant. As a consequence,
when we introduce a disturbance into the network by
changing one variable, the network starts to compen-
sate for the disturbance and approaches a new state in
which the disturbance is distributed over all the equa-
tions and the error is minimised. In other words, the
network compensates for this error and relaxes to a sta-
ble state in such a way that it adjusts its internal values
until all the equations are satisfied again and the net-
work represents a correct solution (see figure 3 for an
example). When setting the variable describing the tip
of the end-effector—R, see in figure 1—to a new value,
the equations for the calculation of the other variables
containing the R vector are influenced correspondingly.
During all iterations, the new target value is imposed
upon the network, therefore overriding the calculation
of new target vectors (in figure 2 this is represented by
the open arrow heads). As a result, the network relaxes
to a solution that maintains the value of R. Thus, the
network solves the inverse kinematic problem. In figure
3 a) the state of the arm is shown for different points of
time and in b) the velocity of the end effector is plotted.
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Fig. 3 Solution of the inverse kinematic problem. A planar arm

with three segments (i.e., one extra DoF) should point to a given
position, marked by a cross, starting from an initial configuration.

In a) the state of the arm for every second iteration step is shown.
In b) the velocity profile of the end effector is plotted over time.
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The function of the network can be thought of as the
application of the passive motion paradigm as stated by
Mussa-Ivaldi et al. (1988) to solve the inverse kinematic
problem for surplus degrees of freedom. The network
behaves as if we had a real stick model of the manipu-
lator and now pulled this model at its tip with a rubber
band to the target location. The tip will move towards
the target while the segments and joints will just follow
the movement. In principle, the MMC network does the
same. While “pulling” at the tip by changing vector R,
all equations are pulled in a direction to counterbal-
ance the movement at the tip and to distribute the
movement equally to all variables.

However, as explained, until now, there remains one
major problem: In the MMC network all the constraints
are treated equally. When changing the x- and y-components,
the joint angles as well as the segments length are adapted.
However, unless systems with prismatic joints were used,
changing the length of a segment is generally not in-
tended. In the classical MMC approach, additional ex-
ternal constraints have been introduced that counter-
act the segment-length change. While the convergence
of the model is guaranteed for the linear MMC model
(Steinkühler and Cruse, 1998), i.e., a model without ex-
ternal constraints acting on some variables, this has not
be proven in general for the model extended through
constraints which act in a non-linear way on the vari-
ables. Until now there are only proofs for special cases
(Steinkühler, 1994).

To apply constraints, it was in general necessary to
transform the variables in the network into a differ-
ent representation form (Schilling and Cruse, 2007)—
scaling the segments in Cartesian Coordinates can be
thought of as transposing the coordinates to a repre-
sentation of a direction and a length of the vector. A
more elegant way is to use dual quaternions to repre-
sent positions, rotations and translations which allows
us to use one single type of representation and make ex-
plicit transformation unnecessary. As a consequence, it
is easy to maintain constant segment lengths. In addi-
tion, while applying the passive motion paradigm does
not circumvent that the arm may be pulled near to
its joint limits, the type of representation chosen here
allows us to easily introduce external constraints. In
this way approaching joint limits can be avoided on a
local level by steering each single joint away from its
workspace limits. Such extensions, as have been pro-
posed by, e.g., (Yoshikawa, 1985) or (Cruse, 1986; Cruse
and Brüwer, 1987) can be easily applied to the MMC
model as proposed here.

2.2 Dual Quaternion MMCs

Above, we introduced the mean of multiple computa-
tion principle using a vector-based model that describes
a manipulator in two-dimensional Cartesian space. Usu-
ally, such manipulators are represented in a different
format and a configuration is given by the position of
the joints. The latter representation is better suited
for control and for planning movements because con-
trollers usually have to deal with the task of trans-
forming a problem description given in a global 3D
space into a joint configuration. While such joint re-
presentations and transformations are trivial for two-
dimensional spaces, making the application of the MMC
principle for this case straightforward, the extension of
trigonometric relations to three dimensions is compli-
cated.

Usually homogenous coordinates are used to rep-
resent affine transformations. Homogenous transforma-
tion matrices (Maxwell, 1951) are 4x4 matrices forming
the group of rigid body displacements, called the Spe-
cial Euclidean group SE(3) (Murray et al., 1994). The
advantage of homogenous transformation matrices is
that translational and rotational parts are represented
at distinct places in the matrixand that the concatena-
tion of two transformations equals the multiplication of
the two matrices. Translations can be easily described
by a relative position, that is a three-dimensional vec-
tor. Rotations in two dimensions are easily represented
through an angle of rotation and a rotation centre that
is a point in space. In combination with translations,
the origin is usually chosen as the rotation centre be-
cause the computations of the rotation are then trivial.
A description of a rotation in three dimensions is more
difficult. Often, an orientation is described by means of
a concatenation of three standard rotations, which are
rotations around one of the three axes of the coordinate
system in a predefined order. The orientation is repre-
sented by means of the three angles of this standard
rotations, called Euler angles. One set of such stan-
dard rotations is given by the Tait-Bryan rotations,
i.e., the Yaw, Pitch and Roll angles. The representa-
tion through homogenous transformation matrices and
especially the use of Euler angles for representing ori-
entations has some serious disadvantages (Aspragathos
and Dimitros, 1998; Wang, 1999; Klein Breteler and
Meulenbroek, 2006):

– Singularities: Euler angles form a chart with the
special orthogonal group of rotations in three di-
mensional space. This chart is mostly smooth, but
there are singularities: The so called “Gimbal lock”,
occurring when, following a rotation, two of the ro-
tation axes are aligned in parallel, so that one degree
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of freedom is lost. Such a singularity is characterised
by the fact that small changes in one representation
may lead to very large changes in the other (Wang,
1999; Klein Breteler and Meulenbroek, 2006). In this
case, infinitesimal changes of orientation may result
in fast and huge changes in the Euler angles, which
may cause movements with high velocity.

– Ambiguity: Another problem with the Euler angle
representation is that a given orientation can be rep-
resented by an infinite number of different combina-
tions of Euler angles (Foley et al., 1996). The map
from Euler angles to the Special Euclidean group
is only surjective and not bijective. This is a seri-
ous disadvantage with respect to using such a rep-
resentation for calculating mean values as required
by the MMC principle. In such a case, the result
of the mean calculation of the involved parametri-
sations depends not only on the orientations them-
selves which should be averaged. Instead, the result
also depends on which set of possible Euler angles
have been chosen to represent the orientation.

– Ambiguous interpolation paths: As a consequence,
the result of an interpolation can not be guaranteed
to follow the shortest path (this extends to homoge-
nous transformation matrices in general).

– Normalisation required in interpolation: Interpola-
tion between two homogenous transformation ma-
trices in general is problematic. There is no simple
computation of a mean transformation or a possibil-
ity to combine two weighted transformations. The
resulting matrix does generally not describe a valid
transformation. A normalisation of the matrix is re-
quired, which is quite costly.

– Compactness and efficiency: Orientation and posi-
tion can be represented by six numbers, but ho-
mogenous transformation matrices use 16 numbers.
Therefore, there is a high degree of unnecessary re-
dundancy. In addition, the concatenation of two trans-
formations becomes overly expensive (Funda and
Paul, 1990; Aspragathos and Dimitros, 1998).

The main problems are related to the representa-
tion of rotations: First, when describing an orientation
by a set of standardised rotations the orientation can be
mapped on multiple sets of rotations. Second, choosing
a 3x3 rotation matrix as part of the homogeneous trans-
formation matrix to represent the rotation is inefficient.
Ideally, a representation of a rotation should describe a
rotation in a compact way, allowing for efficient com-
putation. In addition, there should be no singularities
in the representation. Concatenation as well as interpo-
lation between transformations should be easy. A suit-
able description of orientations or rotations is possible
by choosing an axis-angle notation: The rotation is de-

scribed by the rotational axis and by the angle giving
the amount of rotation.

Quaternions provide a compact and efficient way of
representing an axis-angle rotation which at the same
time circumvents the aforementioned problems and can
be easily used for shortest path interpolation (see Ap-
pendix, sect. A, and Hamilton, 1844, 1866; McCarthy,
1990; Bottema and Roth, 1979): quaternions are quadru-
ples (q = w + xi + yj + zk), forming a normed divi-
sion algebra over the real numbers with three imaginary
units (i, j, k). They can be thought of as an extension
of the complex numbers, but, while addition and multi-
plication are well-defined for quaternions as in complex
numbers, the commutativity is lost, thus forming a skew
field.

Quaternions are well suited to represent rotations.
On the one hand, the set of all three dimensional ro-
tations is a three-dimensional manifold whose topol-
ogy is not trivial. It is known as the special orthogo-
nal group in three dimensions or the rotation group for
three-dimensional space SO(3). On the other hand, all
unit quaternions form a unit three-sphere S3 and form
a group under multiplication. There is a direct rela-
tion between both groups. Unit quaternions capture the
topology and structure of the manifold of the rotation
group. The group of unit quaternions is a double cover
of the group of rotations in three-dimensional space.
This means that every rotation corresponds to two unit
quaternions (q and −q). While this twofold redundancy
is important in some specific application, e.g., for the
description of spin in quantum mechanics, it can be ne-
glected in our case. The combination of two rotations
can be realised as the multiplication of the correspond-
ing unit quaternions. As such, unit quaternions provide
a compact, stable and efficient way to express rotations
and use these in computations. Therefore, they have be-
come a standard tool for expressing rotations in Com-
puter Graphics (Shoemake, 1985). There, quaternions
are used to calculate combinations of rotations (and re-
flections) and for interpolation. But for the calculation
of transformations in general other representation for-
malisms are used which can deal also with translations.
This makes explicit conversions before and after the use
of quaternions necessary which is quite inefficient and
therefore not desired. To avoid these conversions, one
would need an extension of the quaternion representa-
tion in which the properties of the quaternions are still
given and which can be used to represent translations.

How can translations be represented? One possible
extension of the quaternions is the dual quaternions
(Clifford, 1882; Kavan et al., 2008; McCarthy, 1990;
Bottema and Roth, 1979). Dual quaternions do not con-
sist of real numbers, but instead use dual numbers. Dual



8 Malte Schilling

numbers extend the real numbers through the introduc-
tion of the unit ε—for which ε2 = 0 holds true (with
ε nilpotent)—constructing a two-dimensional commu-
tative associative algebra. A dual number â consists of
a non-dual part a0 and a dual part aε (â = a0 + εaε).
As a consequence, a dual quaternion consists of eight
numbers. Like the quaternions, the dual quaternions
form a non-commutative algebra over the reals. The
real part of the unit dual quaternions (q0) consists of
four values and represents rotations in the same way as
a unit quaternion. The important extension is the in-
troduction of the dual part, which can be used for rep-
resenting translations. A translation by a vector about
(tx, ty, tz) can be written as the unit dual quaternion
q̂ = 1 + ε

2 (txi + tyj + tzk) (the real vector part of
the dual quaternion equals zero). In analogy to using
half-angles for the representation of rotations (see Ap-
pendix, sect. A), we also use half-translations. Then
the composition of transformation can be defined in
exactly the same way as for quaternions: for applying
a transformation (represented by the unit dual quater-
nion q̂) to a position P (written as the dual quaternion
p̂ = (vxi+ vyj + vzk)) one has to compute

q̂p̂q̂∗ (5)

q̂ can represent any transformation, a rotation, a trans-
lation, a combination of both that can be accomplished
by dual quaternion multiplication (the order is criti-
cal) or any sequence of transformations. q̂∗ is the con-
jugate of the dual quaternion q̂ (see Appendix, sect.
A). In this way, unit dual quaternions can be used
to represent the transformations describing kinematic
relations. The multiplication of two such dual quater-
nions corresponds to the concatenation of two transfor-
mations. As for quaternions, the dual quaternions can
be geometrically interpreted: a quaternion can be writ-
ten as q = cos θ2 + s sin θ2 . The scalar part expresses
the angle of the rotation and the vector part expresses
the normalised axis of rotation (s is a unit quater-
nion describing a vector, i.e., the scalar part is zero).
In a similar way, a dual quaternion can be written as
q̂ = cos θ̂2 + ŝ sin θ̂2 with θ̂ = θ0 + εθε, ŝ = s0 + εsε. It
can be interpreted as the representation of a screw mo-
tion (Blohm and Crawford, 2007). Following Chasle’s
theorem (Daniilidis, 1999; Chasles, 1830), every rigid
transformation can be described as a rotation around
an axis and a translation along the same axis. The real
part of the dual quaternion is used to represent the ro-
tation. θ0 is the rotation angle and s0 the rotation axis.
The translation along the rotation axis is given by θε.
sε represents the position in space of the axis in an in-
variant way (this is called the moment, see Kavan et al.,
2008).

Dual quaternions have been used to describe rigid
transformations in robotics (Yang and Freudenstein,
1964; McCarthy, 1990; Bottema and Roth, 1979), com-
puter graphics (Kavan et al., 2008, 2007) and other
fields. They offer a simple way to describe arbitrary
geometric relations and provide a mathematical back-
ground that allows combining transformations by sim-
ple multiplication of the corresponding dual quater-
nions. In a comparison of different representation for-
malisms, Funda and Paul (1990) have shown that dual
quaternions are the most computationally efficient and
most compact representation. For application in MMC
networks, it is essential to be able to calculate a mean
value of two individuals representing transformations,
i.e., to be able to interpolate between the two (see Ap-
pendix, sect. B). In this respect, dual quaternions are
robust, exhibiting no singularities and being unambigu-
ous (besides the antipodal property, which is not rele-
vant for our case). Quaternions—and dual quaternions
even more so—are often abandoned because they, as
4-dimensional structures, are difficult to imagine or il-
lustrate. However, not only do they provide a geometri-
cally illustrative interpretation, one also gains a lot from
the mathematical foundation of the quaternions: the ex-
tension to four dimensions is essential for the properties,
like the topology of the manifold.

In the following, we use dual quaternions for the
construction of an internal model. The kinematics will
be represented by dual quaternions and the MMC prin-
ciple applied to solve the kinematic tasks. The geomet-
ric structure will be described by translations and ro-
tations:

– Segments will be described by constant translations
along the segment (of course, constant changes of
orientations could be included here as well) being
termed t̂i.

– Joints are represented as variable rotations or trans-
lations. In hinge joints, the joint axis is fixed, while
in ball joints this axis can also be changed and a pris-
matic joint can be represented by a variable transla-
tion. Below, we will concentrate on rotational joints,
which will be named r̂θi .

– Additional diagonal vectors correspond to transla-
tions and a set of rotations aligning these diagonals
with the coordinate frames given by the robot struc-
ture. These are given as t̂di

and r̂δi , or r̂γi .
– The end effector position and orientation can be de-

scribed in the same way by a translation and a set
of rotations given as t̂r and r̂α, or r̂δi .
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Fig. 4 Graphical representation of the three-segmented arm, up-
per arm (L1), lower arm (L2) and hand (L3). Vector R points to
the position of the end effector (tip of the hand). D1 and D2 rep-

resent additional diagonal vectors. The figures illustrate how the
equations can be constructed. Each equation describes a triangle.

The sides of the triangle are the segments of the manipulator, the

diagonal vectors and the vector to the position of the end effec-
tor. These vectors are described through a rotational part around
the starting point of the vector and through a translation follow-

ing this rotation. Figure a) to d) show the four different possible
triangles and introduce segment names and angle names.

2.2.1 Construction of the multiple
equations—describing the forward kinematics

Following the MMC principle, the kinematics should be
described in multiple ways. For the illustration, we will
again use the three-segmented arm (see figure 4). As a
starting point, the geometric structure is divided into
subparts in exactly the same way as has been described
above for the classical approach: triangles are used to
describe the local geometrical relationship, reducing the
complexity and simplifying the generally possible three-
dimensional geometrical structure to relations acting in
one plane. In our example, we end up with the same
set of triangles as in the planar approach, but the rep-
resentation is different (see figure 4): a kinematic chain
is described by the concatenation of transformations.
Some of these transformations are kept fixed (the seg-
ment describing translations), while others are variable.
The variable ones are, on the one hand, the rotations
describing the joints. On the other hand, the variables
represent the diagonal and end effector transformations
with variable lengths, which result from the forward
kinematics.

As an example of setting up the equations of the
MMC network, we will concentrate on the description
of the first diagonal D1 (see figure 5), given by a ro-
tation and a translation starting from the origin. We
equate the generating transformation for the given con-
figuration of the arm which is called a motor (a motor
includes rotational and translational information): The
transformation to get from the origin to the position of
the second joint can be reached by the concatenation of
the rotation r̂γ1 followed by the translation along this
diagonal t̂d1 . 1

1 For calculation of the position with respect to the origin,

following equation 5 we have to apply this transformation to a
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In the same way—through the concatenation of trans-
formations—the generating transformation can be cal-
culated through the forward kinematics of the robot
structure: r̂θ1 t̂l1 r̂θ2 t̂l2 . These two transformations de-
scribe the same configuration of the manipulator. In
addition, we have to introduce an auxiliary variable de-
scribing the necessary rotation to align the two orien-
tations in the second joint: r̂δ1 . Following this opera-
tion, the diagonal can be described as: r̂γ1 t̂d1 r̂δ1 =
r̂θ1 t̂l1 r̂θ2 t̂l2 . This equation can now be solved for each
dual quaternion describing a variable transformation.
As an example, we can obtain r̂θ1 which equals the
computation of L1 in equation 2 in the classical MMC
approach:

r̂θ1 = r̂γ1 t̂d1 r̂δ1
(
t̂l1 r̂θ2 t̂l2

)−1

= r̂γ1 t̂d1 r̂δ1 t̂−1
l2

r̂−1
θ2

t̂−1
l1

(6)

As for the classical MMC approach and according
to the MMC principle, for every variable, different mul-
tiple computations are generated by using different in-
terrelations between the triangles (see section 3, in the
electronic supplementary material for a complete list of
the equations). In the example, for each variable, two
different computations are obtained. The second one
describing the rotation of the first joint involves the
end effector position and the second diagonal vector.

Following this approach, the equations can be set
up describing the kinematic chain. The network can di-
rectly compute the forward kinematics when the joint
angles, i.e., the position of the end effector, are given.
When dynamic equations are included in the computa-
tion of the mean, the movement of the arm to the end
configuration can be predicted and simulated. For the
computation of the inverse kinematic, it is necessary
to introduce for each joint an error compensation, be-
cause when enforcing a new end position the network
compensates for this disturbance by distributing the
disturbance onto all parameters of the free variables.
As a consequence, translational shares arise in the dual
quaternions representing the joints. This effect can be
balanced by transforming the translational error into a
compensating rotation of the joint (see section C in the
Appendix).

Critical for the mean of multiple computation ap-
proach is, besides the parallel multiple computation of
equations, the calculation of a mean value. For rigid

dual quaternion describing the origin in the origin’s reference

frame: r̂γ1 t̂d1
p̂ (r̂γ1 t̂d1

)∗ (note the right multiplication of the

following translation, as the translation is with respect to the
rotated coordinate frame). In the following, we are concentrating

only on the transformations and, due to the specific properties
of dual quaternions with respect to ambiguity, it is allowed to
equalise transformations obtained following different paths.

transformations, it is not quite obvious how to con-
struct a mean transformation as a result of a set of
transformations. Ambiguous representation formalisms
can not lead to an unambiguous calculation of a mean
transformation. Therefore such ambiguous representa-
tions are not suited for our approach. Angle-axis re-
presentations for rotations and screw motions for rep-
resenting transformations in general are not afflicted
with this problem. There are methods for interpolating
between quaternions that have recently been expanded
to dual quaternions as well, allowing the calculation of
a mean for a set of transformations (see Appendix, sec-
tion B for details on different methods that produce ex-
act solutions or a good approximation following a sim-
ple principle). We used dual quaternion linear blending
(see Appendix) for computation of a weighted mean of
dual quaternions as it is a simple and efficient method.

2.3 MMCs containing dynamic equations

One problem with classical MMC networks is that the
network is approaching the solution with a velocity pro-
file that starts with a high velocity, but later-on de-
creases exponentially. Changing the damping factors
can only influence the time constant, but not the char-
acteristic velocity profile. Human arm movements are
characterised by very different velocity profiles usually
being bell-shaped (Morasso, 1981) for small movements.
Is it possible to introduce dynamic influences into the
model leading to such bell-shaped profiles? In the fol-
lowing we show how the MMC principle can be ex-
ploited to specifically control the relaxation velocity

Lint_1

L1

Lint_2

M
M

C 
In

pu
ts

MMC Outputs

Recurrent
Connection

Velocity

Calculation

V1

V1

↳ L1(t-1)

↓ 
L1(t) 

Fig. 6 Calculation of the velocity in the MMC network shown
in figure 2. For details see text.
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Velocities are defined as position changes over time
(v = δs

δt ). The MMC network lacks any explicit rep-
resentation of time. Instead, changes of positions are
linked directly to the network dynamics and the itera-
tive process of approaching an attractor is time depen-
dent. This process depends on the iteration steps. As
a consequence, the velocity can be written for the clas-
sical vector MMC as v(t) = s(t)−s(t−1)

δt∗(t−(t−1)) = 1
δt ∗ s(t) −

s(t− 1). s(t) is the output value of the network at time
t. During the relaxation process, the input variables are
determined by the recurrent connections, i.e. the input
values are the variable values from one time step ahead
at (t − 1). The neural network therefore includes both
values needed: the current value of a variable and as
an input the preceding value of this variable. The dif-
ference between these two values in the vector MMC
represents the change of the variable during one time
step being proportional to the velocity. The velocity can
be illustrated as a diagonal connection in the neuronal
network which calculates the difference between input
and output (see figure 6). The equations describing the
velocities can now be included as one of the multiple
computations like any other equation. Calculation of
the mean can be used to integrate multiple velocity
equations (or even more to connect these equations de-
scribing accelerations).

Applied to the dual quaternion representation the
change of a joint variable during a timestep represents
a rotation. This rotation represents the angular velocity
of the joint. As rotations are concatenated by multipli-
cation, the joint velocity is not computed as the dif-
ference between the joint angle at time t and the joint
angle at time t− 1, but it uses the quotient:

r̂ωi
(t) = r̂θi(t− 1)−1 ∗ r̂θi(t) (7)

ωi corresponds to mapping the old joint value onto the
current joint value.

To illustrate how this extension allows to access
the dynamic variables in a flexible manner, we will
apply the extension to our earlier example, the three-
segmented arm. We will add three joint velocity vari-
ables and the corresponding equations. In this simple
extension, we are not using multiple velocity equations
for each joint (like equations relating velocity to iner-
tia, momentum or energy). Instead, to make the ex-
ample as simple as possible, we are only extending the
neuronal network in such a way that the dynamics of
the arm in forward and inverse dynamic problems can
be represented and accessed. No additional influences
have to be integrated in this rather simplistic case, only
the recurrent connections for the velocities are fed back
to the network and weighted by a damping factor—
the velocity damping factor dvel. The introduction of
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Velocity

Calculation

V2

V3

V1

Fig. 7 The recurrent neural network containing the veloc-
ity equations. The complete net consists of two identical lin-

ear networks (application of non-linear constraints not shown),

one for the x-components and the other for the y-components
(not shown, but identical to the network representing the x-

component) of the vectors. The units represent the components of

the six vectors L1, L2, L3, D1, D2 and R of the planar arm (see
Fig. 1 for graphical illustration). If an input is given, the cor-

responding recurrent channel is suppressed (symbolised by the

open arrow heads). The velocities are calculated as the difference
between two time steps. The output position for the segments is

calculated by applying the internally calculated offset given by

the velocity to the preceding position. For details see text.

the recurrent connections allows us to influence how
strongly the new computed velocity—that is used as a
control signal—should depend on the current velocity
by changing the velocity damping factor dvel. A high
damping value would lead to a smooth velocity pro-
file with low accelerations while a low damping value
would allow to quickly accelerate. This small recurrent
network shows low-pass properties and provides a form
of a dynamic model for the movement of the arm (the
velocity damping factor dvel can be thought of as being
related to the inertia of the connected segments). This
model is of course an oversimplification as it reduces
the overall dynamic influences to low-pass properties.
But while its simplicity allows to explain how dynamic
influences can be integrated, the network is sufficient to
produce quite naturalistic arm movements.

As indicated in figure 6 for a classical vector MMC
network the kinematic network operates as an internal
part of the whole network including velocity equations,
producing a new internal position estimate (Lint i(t)).
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This is used for the calculation of the velocity. But the
overall output of the network including the velocity in-
fluences can be computed as the sum of the current
positional information (Lint i(t− 1) = Loutput i(t− 1))
and the positional change as given by the computed
velocity (see in figure 7 the whole network). This trans-
fers to the dual quaternion network, as the joint angles
derived from the kinematic equations are forming the
internal network (θint i) which are used for calculat-
ing the joint angle change during one time step (see
ωi, equation 7). The control signal (θoutput i(t)) is com-
puted as the joint change ωi(t) applied to the old joint
position θint i(t − 1) = θoutput i(t − 1). The change of
the joint angles therefore does not solely depend on the
neural network dynamics of the geometry describing
part of the MMC, but is coupled to the velocity and
can be linked to other velocity influences (for further
details see Schilling, 2009).

The advantage of this network structure is that we
are now able to alter the velocity-dependency of move-
ments directly and introduce influences on the velocity
into the network. This network can be used in a flexible
way for different purposes by adjusting the two damp-
ing factors.

– It can still be used for any forward, inverse or mixed
kinematic problem in the same way as the kine-
matic MMC network through turning off the veloc-
ity damping factor (dvel = 0).

– On the other extreme, when only using the velocity
related part of the network and switching the recur-
rent connections of the kinematic inner network off
(d = 0), the model works like a dynamic forward
model. If a position change is given as an input
to the network, depending on the current state of
the system (i.e. the current position and velocities
of the segments), the network predicts a new arm
position. The velocity damping factor describes a
property similar to the inertia of the arm segments
introducing low-pass properties.

– When both damping factors are greater then zero,
both parts of the network including all recurrent
connections interact. The network can be used to
solve inverse problems and at the same time allows
access to the variables related to dynamic proper-
ties.

2.3.1 Realisation in Neural Networks

Traditional MMC networks can be easily represented
in neural networks (Cruse and Steinkühler, 1993) be-
cause the equations used to represent the geometric
structure are based on summation and the resulting

equations can be directly transferred into a weight ma-
trix for a neural network. In contrast, for the structure
proposed here, the equations describing geometrical re-
lations use quaternion multiplication for the concate-
nation of transformations. How can such an operation
be implemented in a neural network? Usually, neurons
in neural network approaches are simplified as compu-
tational units that compute the weighted sum of their
input. Different solutions have been proposed to imple-
ment the multiplication of two variables, for example,
multi-layer perceptrons or architectures using spatial
coding (Hartmann and Wehner, 1995). The sigma-pi
neuron proposed by Rumelhart and McClelland (1986)
allows for an easier realisation. Sigma-pi units are some-
what more complex units than summation units. A
sigma-pi unit is composed of two processes: the cen-
tral part is—again—the summation of the weighted in-
puts. But prior to entering the unit as such, the incom-
ing connections can be multiplicative. Thus, a sigma-pi
unit realises the summation of products. Sigma-pi units
may represent biological mechanisms like axo-dendritic
synapses or pre-synaptic inhibition. Figure 8 a) shows
how such units can be used to realise quaternion mul-
tiplication. Fig. 8 a), for simplicity, shows the case for
quaternions, whereas Fig. 8 b), as explained below, de-
picts, in a more abstract way, the realisation of a com-
plete equation using dual quaternions. In Fig. 8 a) each
quaternion is represented by four units, one for each
value of the quaternion. Following the multiplication
table (see Appendix, equation 8) for quaternions, the
multiplication can be directly implemented as shown
explicitly for the first values (the computation of the
following values can be obtained in the same way, but
is not shown for better readability). This realisation of
the multiplication of quaternions can now be used to
implement the equations of the MMC approach.

In dual quaternions, 2 times 4 units are required.
Multiplication can be realised in the same way as for
quaternions. As an example, the network for equation
6 (r̂θ1 = r̂γ1 t̂d1 r̂δ1 t̂−1

l2
r̂−1
θ2

t̂−1
l1

) is shown in Fig. 8 b).
Every variable transformation is explained by five or six
other transformations represented through dual quater-
nions. As a consequence, four or, as in our example, five
multiplications are needed. The first intermediate result
q̂γ1,D1 describes the first diagonal, the next one below
describes the second segment q̂θ−1

2 ,L−1
2

. The results of
the multiplication appearing on the next level (counted
from left to right) are also used by other equations.

The computation of the equations necessary for the
complete network can be simplified. First, most of the
computations can be performed in parallel. Second, while
each multiplication requires a dual quaternion for stor-
ing the result, these intermediate results are shared by
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Fig. 8 Realisation of quaternion multiplication in a neural net-
work: a) Two quaternions (left) are multiplied. Each quaternion

(qA, qB, qA ∗ qB) is represented by four units. Multiplication

of the values (indicated by the asterisk) and the following linear
summation in the units at the right provides quaternion qA ∗ qB

as a result. b) Example of the connections describing the equation
r̂θ1 = r̂γ1 t̂d1

r̂δ1 t̂−1
l2

r̂−1
θ2

t̂−1
l1

using dual quaternions.

different equations. Therefore, not every equation for
each variable needs additional units, because several
dual quaternions always occur in the context of one
specific other dual quaternion. This is the case, for ex-
ample, for the two dual quaternions that describe the
orientation and the dimension of one side of one of the
triangles that were used to set up the equations. Third,
inversion of a dual quaternion (see equation 17 in the
Appendix) corresponds to a change of the sign and, in
a neural network, could be realised by inhibitory con-
nections.

3 Three-dimensional arm example using dual
quaternions

In this section, results are presented that simulate 3D
movements of a three-segmented arm produced by a
MMC network using dual quaternion representation.
Two general questions are addressed. First, the conver-
gence of the network is analysed. It is difficult to proof
the convergence for the dual quaternion MMC network
because non-linear functions are involved. Therefore,
the behaviour of the network for a large set of move-
ments is analysed. The simple kinematic MMC net-
work is used to produce movements covering the whole
workspace showing the convergence properties of the
network. This first set of simulations also illustrates
the major shortcoming of the kinematic MMC networks
concerning the relaxation of the network. The network

starts with high velocities and then slows exponentially
down. Therefore, the second set of simulations addresses
how the dynamic extension can overcome this problem.
In these experiments, the performance of the network
for a human arm reaching task is evaluated and it is
shown that the network complies with characteristic
criteria for human arm movement.

3.1 Convergence of the dual quaternion MMC network

In the first experiment, the inverse kinematic problem
has to be solved for a manipulator consisting of three
segments of equal length (1 unit) which are connected
by ball joints. This results in 9 degrees of freedom. In
this positioning task the arm therefore is redundant and
has supernumerous degrees of freedom. The network
was constructed as explained above (the damping fac-
tor was d = 10 for the joint variables and d = 2.5 for
all the other variables. The velocity control is turned
off, dvel = 0.). The goal of the simulation is to show
that the network is able to solve the inverse kinematic
problem and to come up with a geometric correct so-
lution independent of the starting and end point. Ev-
ery simulation consists of a movement with the tip of
the manipulator from a the starting point to a target
point. As points, we used three sets of twelve different
points which are equally distributed around the base of
the manipulator. The first set consists of twelve points
which all lie on a sphere with a radius of three units
which equals the overall length of the arm. That means,
this points are reached by the arm when the arm is fully
stretched and oriented towards this points. The dis-
tance between neighbouring points is identical — the
points are the corner points of a icosahedron. The same
holds true for the second and third set of points used
in the simulation, with the only difference being that
the distances from the base of the manipulator to the
points are changed. For the second set of twelve points
the distance to the base is two segments length and for
the third set of points it is one segment length. Simu-
lations were performed in which each of the 36 points
was used as a starting point and from there movements
to the remaining 35 points where performed.

Before each run the arm was moved from the initial
configuration (fully stretched) over 100 iteration steps
to the starting position. The arm always reached the
starting position during that time. Then the movement
started towards the target position and was measured
for 100 simulation steps. Overall 1260 simulation runs
(35 simulations from 36 different starting points) have
been executed. In principle, many of the start-target
combinations are rotationally invariant. But as non-
linear functions are involved and the starting posture
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Fig. 9 Normalised distance between the tip of the arm and the

target position over time. For all 1260 movements the mean nor-
malised distance is calculated for each iteration step. The dis-

tances are normalised with respect to the distance between start-

ing position and target position (The dashed lines show the stan-
dard deviation around the mean value. The standard deviation is

quite high in the beginning — some movements consist of an fold-
ing and unfolding of the arm taking more time for relaxation.).

can differ between these start-target combinations—at
least for the the starting postures in which the arm is
not fully stretched—it can not in general be assumed
that these combinations are also invariant in the dual
quaternion representation.

In general, the network solves the inverse kinematic
problem for all combinations of starting and end points
covering movements through the whole workspace of
the manipulator. The network has no problem to ex-
ecute all the movements between the targets, even for
diagonal movements for which the manipulator has to
cross its base position in a very short distance, mean-
ing the arm is strongly folded. All movements show the
same characteristics. The target point is approached
initially very fast. Over time the distance between end
effector and target is exponentially decreasing (the ma-
nipulator overshoots the target usually a little bit and
in plots from an individual movement one can see this
as a small damped oscilation), In figure 9, the mean
normalised distance between the tip of the manipula-
tor and the target point is drawn, showing this charac-
teristic. The path of the end-effector follows a slightly
curved line (individual movements are not shown for the
first experiment, but the same properties hold true for
the movements shown below in the second set of exper-
iment on more biological movements). While it is not
the shortest path in Cartesian Space, it is an approxi-
mation to the path which minimises joint movements.
The shape of human arm movements is qualitatively
similar. Human arm movements have been assumed to

follow straight lines, but more recently it is recognised
that movements can deviate from straight lines. Hu-
man arm movements seem to follow straight lines only
when being restricted to two dimensions or when small
movements are made. In contrast, reaching movements
spanning three dimensions and larger parts of the work-
ing space show more curved trajectories Atkeson and
Hollerbach (1985).

a) Velocity profile: Target 1 –> Target 2

b) Velocity profile: Target 1 –> Target 4

Fig. 10 Velocity profiles for two movements. In both cases the

start and target point are lying on the border of the working
range. The arm is therefore fully stretched to reach this posi-

tion. In a) the angle between the arm pointing to the starting

position and the arm after having reached the target position
is ninety degrees. Such a small movement shows the typical ex-

ponential decreasing velocity. In b) the angle between the arm
pointing to the starting position and the arm after having reached
the target position is 180 degrees. In this movement the arm

crosses the whole workspace. Movements covering large parts of
the workspace show velocity profiles with multiple peaks as dur-

ing such movements the arm performs several submovements. At

first the arm is quickly folded, then during a second phase mainly
reoriented (in this phase the tip is moving slowly as it is very near

to the base), and at last the manipulator is unfolding towards the

target with an initial high velocity again.

Looking at the velocity profile of the tip of the ma-
nipulator shows—similar as for classical Cartesian MMC
networks—an initial high velocity which in principle
is then decreasing exponentially (see Fig. 10). These
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movement characteristics are not in agreement with
that of biological movements. In the next section, a
solution for more biologically plausible movements—
given through bell-shaped velocity profiles—as has been
applied in classical MMC networks Schilling (2009) and
has been explained above will be applied to the dual
quaternion network in a special movement task. To con-
clude the first set of simulations: Until now, we have
shown that dual quaternion MMC networks converge
for points covering the whole workspace.

3.2 Control of a human-arm like configuration
including velocity equations

a) b)

x-axis

z-axis

z-axis

y-axis

x-axis

Fig. 11 Set-up of the experiment. The target positions are taken

from Bockemühl et al. (2009). The task is to reach for different

targets, beginning at a predefined starting position. Left (a): dif-
ferent target positions, front view. Right (b): view from behind

and to the right of the reaching subject, as used in the following

figures (target 6 is shown).

In the second set of experiments the extension of the
MMC network through equations including the joint ve-
locities is analysed. In this case, the network represents
an arm comparable to a human arm (upper arm 0.3
m, forearm 0.3 m and hand 0.15 m) with however 9 de-
grees of freedom, i.e., with the elbow as well as the other
joints in the shoulder and in the hand having three de-
grees of freedom instead of only one or two, as is the
case for a elbow or the wrist joint in a real human arm
(Simulation of a seven DoF arm was also performed
but required more parameters to be adjusted. In this
case, for a joint with only one degree of freedom the re-
sulting dual quaternion is afterwards projected onto the
axis of rotation of the joint. Using appropriate damping
factors, the results were qualitatively the same.). The
task was to generate movements towards a set of pre-
specified goals. In the starting position, the upper arm
hangs vertically down from the shoulder, about paral-
lel to the upper part of the body of the subject sit-
ting on a chair. The forearm and the hand are oriented

horizontally, pointing towards the front. The starting
position and the 16 target points are taken from an ex-
perimental set-up investigating human arm movements
(Bockemühl et al., 2009). Target positions are situated
in a plane parallel to the x-z plane (see Fig. 11), z de-
scribing the vertical axis and x describing the transver-
sal axis. Therefore, targets require movements to the
front, left and right, as well as up and down.

Two different types of MMC networks were used
and compared. At first, a MMC network was set up in
which the geometric relations were described by dual
quaternions as explained in the previous section (the
damping factor was d = 10 and dvel = 0). In the second
approach, this MMC network is extended by additional
equations containing dynamic relations of the manipu-
lator, in our case referring to the velocity and accelera-
tion (which can be introduced in the same way as veloc-
ities, see (Schilling, 2009)) of joint movement. The sim-
ple extension introduces a low pass property, meaning
that the velocity changes smoothly over time. Of course,
other characteristics could be used and additional equa-
tions could be included in the velocity calculation, e.g.,
to approximate a muscle like behaviour. But, as will
be shown in the results, the simple extension already
circumvents the problem of the exponential decreas-
ing velocities and produces more biological plausible
velocity profiles (for details, see Schilling, 2009). The
damping factors for these equations will be correspond-
ingly termed velocity damping factors dvel and accel-
eration damping factors dacc (damping factor d = 10,
for the velocity, damping factor dvel = 2.5, and, for
the acceleration, damping factor dacc = 1). The general
characteristics of the MMC network are not changed
by this extension. The dynamic equations are affect-
ing the temporal progress of the network. The reached
end position and the used trajectory remains basically
unaffected (See for a comparison of both approaches
below and in the electronic supplementary material. In
addition, Schilling (2009) compares the behaviour of
the network for different velocity damping factors and
is mainly finding changes in the velocity profiles, while
trajectories are only slightly affected.).

Both MMC networks were able to solve all inverse
kinematic problems, producing smooth trajectories within
30 iteration steps in all 16 cases. Here the comparison
between both MMC versions will be shown for only
one target, target 6, because there was no qualitative
difference to be observed for the other 15 targets (the
corresponding results can be found in the supplemental
material, section 1 — for both types of network all the
movements and velocity profiles are shown and com-
pared.). Figure 12 shows the movement of the arm con-
trolled by the kinematic network and figure 13 shows
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the same for the network including dynamic equations.
The main difference between the two versions can bet-
ter be seen when regarding the velocity profiles (see
figure 14). For the kinematic MMC approach the ve-
locity is high in the beginning and then decreases ex-
ponentially, while in the dynamic case there is a more
bell-shaped velocity profile with a broader distribution
of high velocities (Again, see the velocity profiles in
the electronic supplementary material, section 2, for re-
sults on the other targets.). Furthermore, the end effec-
tor overshoots the target position. Such an overshoot
could of course be compensated by applying a control
law being somewhat more sophisticated than the sim-
ple low-pass characteristic used here which results from
the application of constant damping values.
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Fig. 12 Arm movement controlled by the kinematic MMC net-
work representing joint configurations by dual quaternions. a)

arm position shown for every second iteration step (dashed lines,
end position is plotted by solid lines), view as in Fig. 11 b. b)
Same data seen from back, from side and from top. For coordi-

nates see Fig. 11 b).

Nonetheless, comparing the distances to the target
position, both approaches end up in the vicinity of 1
cm of the target after around 25 iteration steps. The
dynamic approach, however, passes the target the first
time after 15 iteration steps.

For one more target the movements resulting from
the two different network versions are shown. Figure
15 shows the behaviour of the kinematic MMC net-
work when approaching target 4 and figure 16 shows
the movement when using the dynamic version reach-
ing for the same target. Results for all the targets and
comparisons of the velocity profiles are given in the sup-
plemental material
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Fig. 13 Arm movement controlled by the dynamic MMC net-
work representing joint configurations by dual quaternions. a)

arm position shown for every second iteration step (dashed lines,

end position is plotted by solid lines), view as in Fig. 11 b. b)
Same data seen from back, from side and from top. For coordi-

nates see Fig. 11 b).
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Fig. 14 Velocity profile of the end effector. Comparison of move-
ment characteristics of the kinematic MMC and the MMC net-

work including equations for representing velocities.

0
10

20
30

40
50 0

10
20

30
40

50
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

0 50
−40
−30
−20
−10

0
10

View from back

x−axis (to the side)

z−
ax

is
 (u

pw
ar

ds
)

0 50
−40
−30
−20
−10

0
10

View from side

y−axis (to the front)

z−
ax

is
 (u

pw
ar

ds
)

0 50
0

10
20
30
40
50

View from top

x−axis (to the side)

y−
ax

is
 (t

o 
th

e 
fro

nt
)

a) b)

x-axis y-axis

z-axis

Target 4

Fig. 15 Arm movement controlled by the kinematic MMC net-
work representing joint configurations by dual quaternions for

Target 4. a) arm position shown for every second iteration step
(dashed lines, end position is plotted by solid lines), view as in
Fig. 11 b. b) Same data seen from back, from side and from top.
For coordinates see Fig. 11 b).
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Fig. 16 Arm movement controlled by the dynamic MMC net-
work representing joint configurations by dual quaternions for

Target 4. a) arm position shown for every second iteration step

(dashed lines, end position is plotted by solid lines), view as in
Fig. 11 b. b) Same data seen from back, from side and from top.

For coordinates see Fig. 11 b).

4 Discussion

The study of reactive systems in the strict sense (Mataric,
2002, 1999) concentrated on systems that were assumed
to have no internal states and focussed on embodied
systems acting in an environment. In contrast, the un-
derstanding of mechanisms underlying cognition is as-
sumed to take internal representations into account.
Considering internal representations, it appears to be
plausible that their basis is formed by a model of the
own body, which may later be extended to include prop-
erties of the environment (Cruse, 1999, 2003; Schilling
and Cruse, 2008). To learn how internal representations
might be realised and applied by a neuronal system,
concentration on motor control tasks appear to be a
good starting point, because the domain of motor con-
trol is considered a central paradigm for the applica-
tion of internal representations (e.g., Frith et al., 2000).
For simple examples of behavioural elements, one might
think of a swing movement or a stance movement per-
formed by a leg during walking or a reaching movement
performed by an arm. How might neuronal systems be
designed that are able to control such behavioural el-
ements? Most simple solutions are given by fixed ac-
tion patterns, movements elicited by a stimulus and not
changeable by further sensory feedback after the move-
ment has once started. Neural networks controlling such
fixed action patterns may be regarded as containing im-
plicit representations of the body, for example. More
flexible solutions are given by the application of feed-
back controllers. The feedback might be applied using
a positive (Schmitz et al., 2008) or a negative sign, and
it might concern various entities such as position (and
derivatives), force or mixed information. Feedback con-

trollers might be equipped with inverse models and for-
ward models, in particular when the system to be con-
trolled contains redundant degrees of freedom (Kawato
and Gomi, 1992). A most intensively studied paradigm
concerns reaching movements. Given a starting config-
uration of the arm, the hand has to be moved to a
(usually visually) given point in space. The many hy-
potheses being proposed as solutions for the task to
find a trajectory for the hand and an end position of
the arm can be classified into three groups. Two of them
have been most intensively studied. First, the equilib-
rium point controllers and secondly, (different types of)
minimisation procedures (minimum torque (Uno et al.,
1989), minimum jerk (Flash and Hogan, 1985), mini-
mum work (Soechting et al., 1995) and geodesics (Biess
et al., 2007)). Both approaches require inverse mod-
els. Minimisation approaches require the computation
of the complete movement before execution is possible
which is not necessary for the equilibrium point con-
trollers.

Models of the third group that are characterised
by the “passive motion paradigm” (Mussa-Ivaldi et al.,
1988) also do not rely on the inverse kinematic com-
putation in advance. Application of the passive motion
paradigm requires a model that (implicitly or explic-
itly) represents the kinematic properties of the body to
be controlled. Following this paradigm, the tip of the
hand of this “internal model” can then be moved to
any desired endpoint and—as in the case of the arm
of a puppet—the arm segments follow passively, pro-
viding an internally simulated solution to the problem.
The movements of the simulated joints can then be used
to directly control the movements of the corresponding
actual joints.

We are aware of two approaches following this para-
digm, the knowledge model of Rosenbaum et al. (1993,
1995, 2001) and the MMC network studied here. Both
approaches share the advantages of not requiring the
precomputation of the complete movement, being able
to deal with extra degrees of freedom and finding so-
lutions even if some extra degrees of freedom may be
controlled externally (e.g., by fixing these joints). Com-
pared with the knowledge model, to date the MMC ap-
proach has the disadvantage that learning is not possi-
ble yet (apart from a solution concerning linear MMC
nets in Cruse and Hübner, 2008). On the other hand,
the number of neuronal units required is much smaller
in the MMC approach. Furthermore, as all relevant
variables (joint angles, joint and endpoint positions,
as well as velocities) are explicitly addressable (which
also includes the possible introduction of various con-
straints, e.g., joint limits), the MMC model is capable
of representing and exploiting all geometrically possible
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configurations. This property has the consequence that
the MMC net can also be applied as a forward model
just by correspondingly selecting the input variables.

We have addressed how a MMC model, here re-
alised by a network based on dual quaternions, can be
used for solving the inverse kinematic problem which
is in robotics usually thought of as the hard problem.
Closed-form solutions to the inverse kinematic prob-
lem are based on inverting the Jacobian matrix. While
this can only be derived for simple manipulator struc-
tures or specific industrial robots underlying certain
constraints (like positioning of axes), closed-form so-
lutions only exist for a small set of manipulators. This
can be extended through using a pseudo-inverse (e.g.,
(Whitney, 1969)). The inverse kinematic problem is also
approached through numerical methods. On the one
hand, there are approaches also relying on inverting
the Jacobian matrices. These approaches cannot find
a solution when the matrix is singular. On the other
hand, there are optimisation approaches which essen-
tially are performing a sort of gradient descent. One
such example is the cyclic coordinate descent (CCD) al-
gorithm (Luenberger, 1984). CCD is an iterative heuris-
tic search procedure over the joint angles. CCD in-
dividually tries to change the joint angle in order to
minimise the overall positioning error. During one it-
eration step, it computes the position error and then
steps backwards through the whole structure—starting
at the most outer joint—and adjusts each joint value in
order to minimise the position error. CCD has shown to
rapidly find a good approximation and is therefore of-
ten combined with other methods which then take over
and find an exact solution (Wang and Chen, 1991). The
complexity of the approach increases dramatically with
the complexity of the structure. While the MMC ap-
proach is comparable in that for each joint individually
an error term is reduced, the MMC approach is relying
on local relations and not one global error measure-
ment. The main difference is that the MMC network
is distributing the error onto different variables: In the
inverse kinematic the end effector position is changed.
The joints try to compensate for the error and at the
same time the error is distributed to the additional vari-
ables (diagonals) which contribute in the next iterations
in guiding the overall optimisation process. This has
the disadvantage that in the MMC approach the num-
ber of used equations increases in more complex struc-
ture. But this can be counteracted through distributing
the complexity of the manipulator onto different levels
of abstraction (Kindermann and Cruse, 2002; Schilling
and Cruse, 2007). The advantage of the MMC approach
is that each of the multiple computations contributing
to the calculation of a variable can be easily derived and

calculated. Especially all these computations are inde-
pendent and can be carried out at the same time. Unfor-
tunately, this makes it difficult to compare efficiency of
MMC networks and the CCD approach, as procedures
like CCD are working in strict sequence while the MMC
network is a neural network allowing for massive par-
allelisation. The second major advantage of the MMC
network is given by its autoassociator capacities which
allow this network to be applied in addition to forward
or any mixed kinematic problem in a flexible manner.

As mentioned in the Introduction, Morasso and San-
guineti (1994) have introduced such a “holistic” model
by connecting an explicit inverse model with an explicit
forward model. Wolpert and Kawato (1998) proposed a
different approach. In their “MOSAIC” model for each
individual behavioural element, for example, a leg per-
forming a swing, a hand lifting a heavy object, a hand
lifting a light object etc., a pair of models is assumed
to be implemented, each consisting of an inverse model
and a forward model necessary for the corresponding
task. An advantageous property of applying such dedi-
cated models is that during performance of the action,
the inverse models of several behaviours can be active
in parallel and the error (i.e., the difference between
prediction and sensory feedback) can be used to de-
cide which is the model that best matches the task at
hand. A disadvantage compared with the MMC model
is that only already stored behaviours (or a weighted
combination of stored behaviours) can be performed
and estimated. Completely new behaviours that may
result from unusual exploitation of the extra degrees
of freedom may not be able to be produced (for motor
control or for planning) or be evaluated in a sensible
way. A related problem is that linear averaging may
lead to erroneous results.

There is another critical difference between the two
approaches. When the number of behavioural elements
being stored increases, in the MOSAIC model the num-
ber of inverse/forward model pairs increases correspond-
ingly. As most behaviours require movement of the com-
plete body (even if only an arm appears to be moving),
a large number of complete body models may be re-
quired. Therefore, as an alternative approach we pro-
pose to use a unique body model. The individual be-
havioural elements may then be driven by separate net-
works that, however, share this model. Support for a
separation of the body model from task-specific models
has been provided by Cothros et al. (2006). In the ex-
periment people were trained to make targeted move-
ments with their arms while holding a robotic device
through which a novel force field was applied to the
hand. While adaptation to a given force field has been
observed many times before (Shadmehr and Mussa-
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Ivaldi, 1994) and has been termed motor learning (Kawato,
1999), Cothros et al. (2006) studied adaptations to dif-
ferent force field and were especially interested how
these adaptations influence each other. The result was
that subjects who returned to a known force field were
able to completely retain their previous learning. This
result supports the idea that during learning not an ex-
isting model of the complete body plus the current task
is adapted—or even newly learned—but only an addi-
tional model of the object or the associated movement
dynamics is constructed. Additional support comes from
(Davidson and Wolpert, 2004) and more and more evi-
dence is emerging, favouring a modular organisation of
internal models (Imamizu and Kawato, 2008; Ghahra-
mani and Wolpert, 1997; Krakauer et al., 1999).

As for its evolutionary plausibility, this unique body
model might well have been developed through the merg-
ing of several of such dedicated networks, because appli-
cation of a unique model allows to minimise the number
of neurons necessary and to avoid errors resulting from
inadequate averaging between different modules. Ac-
tually, many results indicate that internal models are
widely distributed all over the brain. For specific be-
haviours, the cerebellum is proposed to implement for-
ward and inverse models (Wolpert et al., 1998). For
coordination of hand and eye, Makin et al. (2008) pro-
pose in addition the posterior parietal cortex, including
the intraparietal sulcus and the premotor cortex. Fur-
thermore, some neurological phenomena indicate that
the coupling between sections of the body model can
be weakened (e.g., OBE (Blanke et al., 2004, 2005), see
(Schilling and Cruse, 2008) for discussion).

To summarise: we propose not only to apply spe-
cific and task-oriented models that can serve specific
actions, as found in reactive systems, but to go one
step further and think of ways models can be intercon-
nected and related in a flexible way. To this end, we
propose a universally manipulable model that is able
to represent both active and passive movements that
the real body is able to perform. The model can be
used for motor control (as an inverse model as shown
here), for perception and as a simulator for planning
ahead, i.e., applying actions to the model being decou-
pled from the body (Hesslow, 2002). These actions can
be controlled by specific modules representing knowl-
edge required earlier (i.e., by procedural memory) or
by newly invented behavioural elements.

The next step is to realise a network that is able
to represent a complete body, for example, the body
of a hexapod walker with 18 joints and to use this
body model for planning ahead (for a review on the
use of body models in robotics see (Hoffman et al.,

2010)). It has been shown (Kindermann and Cruse,
2002; Schilling and Cruse, 2007) that this task can be
solved by modularising the structure using modules (e.g.,
representing a leg) connected in a hierarchical manner.
In this article, we only concentrated on one such module
representing an arm or a leg. Based on these results, we
are currently applying this approach to control a six-
legged robot equipped with the faculty to use its body
model for planning ahead and for finding solutions to
new problems.
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APPENDIX

A Dual Quaternions

The Appendix shall, in brief, provide the necessary mathemat-

ical background on dual quaternions. As different authors use

different notations, those used here and the basic calculations
will be established. Quaternions, dual numbers and dual quater-

nions will be introduced. For further reading see, e.g., Hanson
(2005) on quaternions. On dual quaternions, Kavan et al. (2008)

is recommended as an introduction, whereas McCarthy (1990)

provides more details.

A.1 Quaternions

Quaternion algebra was formulated by W.R. Hamilton (Hamil-

ton, 1844). This algebra represents a special case of the geometric
algebras (also termed Clifford algebras).

A quaternion q is a 4-tupel q = w + xi+ yj + zk, with w, x, y, z
being real numbers and i, j, k being the quaternion units. w is the
scalar or real part of the quaternion and (x, y, z) is usually termed

the vector part. Summation and subtraction are executed com-

ponent wise. The quaternion units are given as i2 = j2 = k2 =
ijk = −1 and following from this ij = −ji = k, jk = −kj =

i, ki = −ik = j. The multiplication of two quaternions can be de-
rived from the multiplication of the units. For every two quater-
nions q0 = w0 + x0i+ y0j + z0k and q1 = w1 + x1i+ y1j + z1k

the product of the two quaternions is

q0q1 =(w0w1 − x0x1 − y0y1 − z0z1)+

i(x0w1 + w0x1 + y0z1 − z0y1)+

j(y0w1 + w0y1 + z0x1 − x0z1)+

k(z0w1 + w0z1 + x0y1 − y0x1) (8)
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or using a vector notation this can be subsumed to q0q1 = (w0 +
v0)(w1 + v1) = (w0w1 − 〈v0,v1〉) + w0v1 + w1v0 + v0 × v1.

The multiplication is associative and distributive, but in general
not commutative. The conjugate of a quaternion q is defined as

q∗ = w − xi− yj − zk (9)

For the conjugate of a product of two quaternions p, q the fol-
lowing holds true: (pq)∗ = q∗p∗.

The norm of a quaternion q is defined as

‖q‖ =
p
w2 + x2 + y2 + z2 =

p
q∗q =

p
qq∗ (10)

The inverse of a quaternion q is only defined for q 6= 0:

q−1 =
q∗

‖q‖2
(11)

Quaternions can be used to represent rotations that, on the

one hand, are more compact, more efficient and unambiguous
compared to matrix notations, and, on the other hand, are sin-

gularity free in contrast to representations like Euler angles. A

3D rotation can be described by a rotation axis given by a vec-
tor (ax, ay , az) of unit length and by a rotation angle α. This

rotation can be written as the quaternion

q = cos
“α

2

”
+ (axi+ ayj + azk)sin

“α
2

”
(12)

As can be easily verified, this quaternion is of unit length. Quater-

nions of the norm 1 are the unit quaternions, forming a sub-group

over the quaternions and forming the surface of a hypersphere S3.
The rotation group for three dimensions is the special orthogonal

group SO(3). There exists a mapping between the two groups,
i.e., the group of unit quaternions is a double cover of the group

of rotations in three-dimensional space. In other words, every ro-

tation corresponds to two unit quaternions (q and −q).
A vector (vx, vy , vz) can be represented as a quaternion v =

vxi+ vyj + vzk, i.e., the scalar part is zero. Applying a rotation

onto this vector would then be expressed as

qvq∗ (13)

The concatenation of subsequent rotation operations — q fol-
lowed by p — is given as the multiplication of the corresponding
quaternions. Analogous to the conventions used for matrix mul-

tiplications, the order of the multiplicands is determined by their

frame of reference:

1. If the involved rotations are described with respect to a fixed
coordinate system—e.g., the world coordinate system—then

the concatenation is realised as a left multiplication, i.e., pq.
2. In contrast to this, if the second rotation is defined with re-

spect to the coordinate system generated by the first rotation,

then the concatenation is realised as a right multiplication,
i.e., qp. This is the case for the transformations describing

the kinematics of a manipulator. For example, the rotation
of the second joint is not given with respect to the coordi-
nate frame of the manipulator base or any other fixed world
coordinate system, but is given relatively to the coordinate

system of the prior segment which as such is defined by the
preceding rotation of the first joint.

A.2 Dual quaternions

The algebra of duals is similar to that of complex numbers. A
dual number is a two tupel â = a0 + εaε. a0 is the non-dual part

and aε the dual part with ε being the dual unit for which holds

true ε2 = 0. Summation and subtraction are done component
wise. Multiplication of dual numbers â, b̂ produces âb̂ = (a0 +

εaε)(b0 + εbε) = a0b0 + ε(a0bε + aεb0).

The conjugate of a dual number â is â = a0 − εaε.
The inverse of a dual number exists only if a0 6= 0 and equals

â−1 = 1
a0+εaε

.

Dual quaternions can be regarded as quaternions which ele-

ments are dual numbers instead of real numbers. In other words,
dual quaternions can be regarded as a sum of two quaternions

q̂ = q0 + εqε. Analogous to quaternions, dual quaternion ad-

dition and subtraction is done component wise. Dual quater-
nions are associative and distributive, but in general not com-

mutative. The multiplication of two dual quaternions — q̂0 =

(w0 + x0i + y0j + z0k) + ε(wε0 + xε0i + yε0j + zε0k) and q̂1 =
(w1 +x1i+y1j+z1k)+ε(wε1 +xε1i+yε1j+zε1k) — can be directly

obtained through multiplying out the dual quaternions following

the introduced rules for multiplication for quaternions and dual
numbers (the dual unit commutes with the quaternion units):

q̂0q̂1 = (w0w1 − x0x1 − y0y1 − z0z1)+

i(x0w1 + w0x1 + y0z1 − z0y1)+

j(y0w1 + w0y1 + z0x1 − x0z1)+

k(z0w1 + w0z1 + x0y1 − y0x1)+

ε(w0w
ε
1 + wε0w1 − x0x

ε
1 − xε0x1−

y0y
ε
1 − yε0y1 − z0zε1 − zε0z1)+

εi(w0x
ε
1 + wε0x1 + x0w

ε
1 + xε0w1+

y0z
ε
1 + yε0z1 − z0yε1 − zε0y1)+

εj(w0y
ε
1 + wε0y1 − x0z

ε
1 − xε0z1+

y0w
ε
1 + yε0w1 + z0x

ε
1 + zε0x1)+

εk(w0z
ε
1 + wε0z1 + x0y

ε
1 + xε0y1−

y0x
ε
1 − yε0x1 + z0z

ε
1 + zε0w1) (14)

Differing definitions of the conjugate of a dual quaternion can be

found, as dual quaternions can be regarded as quaternions over

dual numbers or as a sum of two quaternions. Both interpreta-
tions individually can be used to derive conjugation. Following

conjugation of a quaternion this would yield q̂∗ = q∗0 + εq∗ε and
following conjugation of a dual number we obtain q̂ = q0 − εqε.
For the application of describing geometric relations by dual

quaternions and using—analogous to the usage of quaternions—
left multiplication with the dual quaternion and right multiplica-

tion with its conjugate for the calculation of the transformation

(see equation 13), both conjugations have to be combined:

q̂∗ = q∗0 − εq∗ε (15)

The norm for dual quaternions is defined as

‖q̂‖ =
p

q̂∗q̂ =
p

q̂q̂∗

= ‖q0‖+ ε
〈q0,qε〉
‖q0‖

(16)

The inverse of a dual quaternion only exits when q0 6= 0:

q̂−1 =
q̂∗

‖q̂‖2
(17)

The unit dual quaternions are those dual quaternions of unit

norm, i.e., ‖q̂‖ = 1, which means that for every unit quaternion
‖q0‖ = 1 and 〈q0,qε〉 = 0.

The dual unit quaternions with a zero dual part (qε = 0)

are equal to quaternions and therefore are related to rotations
in the same way as are quaternions. These dual quaternions rep-

resent rotations. Furthermore, dual quaternions can be used to
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represent translations. A translation about a vector (tx, ty , tz) is
represented as the quaternion q̂ = 1 + ε

2
(txi + tyj + tzk) which

is also a unit dual quaternion.
Rigid transformations in general are combinations of rotations

and translations. Such concatenations are achieved through dual

quaternion multiplication (for the correct sequence of multipli-
cands see above). As an example, a rotation expressed through

the dual quaternion q̂ = q0 should be followed by the transla-

tion p̂ = 1 + ε
2

(txi + tyj + tzk)(defined in the root coordinate
system from which follows that the translation describing dual

quaternion is left multiplicated):

(1 +
ε

2
(txi+ tyj + tzk))q0 = q0 +

ε

2
(txi+ tyj + stzk)q0

In analogy to the notation of quaternions, every unit dual quater-
nion can be written as:

q̂ = cos

 
θ̂

2

!
+ ŝsin

 
θ̂

2

!
(18)

where ŝ = s0 + εsε is a unit dual vector and θ̂ = θ0 + εθε. This
formulation can directly be interpreted as describing a screw mo-

tion. Following Chasle’s theorem (Daniilidis, 1999; Chasles, 1830)

every rigid transformation can be described as a screw motion,
i.e.,

– a rotation of θ0
2

around the rotation axis given by the vector

s0,
– a translation of θε

2
along the rotation axis s0,

– and defined by the position of the rotation axis in space given
through sε which is the moment of the axis and which can be

obtained by aε = p × s0 with p being a vector to any point

on the axis.

B Computation of the Mean: Quaternion
Interpolation

One disadvantage of most representation formalisms concerns the

question of how to interpolate between two states. While the
translational part is trivial, the rotation is problematic. There-

fore we want to concentrate at first on how to blend an arbitrary
number of rotations before extending this algorithm to trans-
formations in general. Homogenous transformation matrices are

usually seen as the standard representation formalism. Nonethe-

less, blending between two individual matrices is usually done
via a detour. Computer graphics heavily deal with such inter-

polations and use quaternions to interpolate. Even though this
requires one additional transformation from the rotation matrix

to a quaternion and another one back from the quaternion repre-

sentation to a matrix, the advantages outweighs these additional
computations. Furthermore, this procedure is more efficient and

computationally less costly.

Interpolation of quaternions can be easily imagined: Each
unit dual quaternion representing a valid rotation corresponds to

a point on the four-dimensional unit hypersphere. The shortest

circular arc connecting these two points should now be found. To
illustrate this problem, we can think of a two dimensional unit

circle in the x-y plane. If we want to find the point lying in the

middle of the two, one way is to find a rotation which maps one
point onto the other. For the two-dimensional case the centre of

rotation is simply the origin and the angle of rotation is the en-
closed angle of the two radii. The point lying in the middle can

now be calculated by applying a rotation with half the angle on

the first point. In the same way, other points between the two
points on the unit circle can be found and can be used to inter-

polate between these two. This procedure can be extended to the

four-dimensional hypersphere. In the case of the four-dimensional
hypersphere, the center of rotation can not only be described by

the origin, but must be represented by a rotation axis. Together

with the origin, the two points on the unit hypersphere span a
three-dimensional hyperplane. The rotation takes place in this

hyperplane around the origin. The rotation axis can therefore be
described by a vector which is orthogonal to the hyperplane—the

normal. The rotation angle is, again, the angle enclosed by the

two radii and for interpolating between the two points a rotation
of the first point around the same axis by an amount of the orig-

inal rotation angle can simply be applied. This transformation

describing the transformation between two quaternions p and q
can be computed as p∗q. The Spherical Linear Interpolation algo-

rithm (SLERP) (Shoemake, 1985) follows this procedure to blend

two quaternions which each describe a rotation. This approach
produces shortest path, constant speed and shortest path invari-

ance (Shoemake, 1985; Kavan et al., 2007). However, the major

disadvantage of this algorithm is that it can not be extended to
more than two quaternions. When we want to interpolate be-

tween more than two quaternions, we have to start with two and

afterwards we can interpolate the result with the next quater-
nion. Unfortunately, the result of this procedure depends on the

sequence and is not very efficient.

An easy solution which is at the same time fast and efficient

has been proposed by (Govindu, 2004; Kavan and Žára, 2005). In-
terpolation is realised component-wise over the set of quaternions.

It is, therefore, named Quaternion Linear Blending (QLB). Af-
terwards, the result is normalised through projecting it onto the

unit hypersphere. Again, this can be better illustrated for the two

dimensional case: the point lying between the two other points is
constructed as lying on the straight line connecting both points.

Then, the point is projected to the unit circle. This method can

be extended to an arbitrary number of quaternions. It uses the
shortest path and is coordinate invariant. But due to the non-

linearity of the projection onto the unit sphere, it does not result

in constant velocities. Kavan and Žára (2005) have computed the
upper bound for the difference of an interpolation angle produced

by the linear component-wise method and a SLERP like method.

The upper bound is 8.15 deg, but in practice it is usually much
smaller.

How can these methods for blending between quaternions be

extended to dual quaternions? For both methods presented, there

exists an extension to unit dual quaternions. The Screw Linear
Interpolation (ScLERP) is the extension of the SLERP algorithm.

A dual quaternion is not simply describing a rotation around an
axis located in the origin. As mentioned above, a dual quaternion

describes the parameters of a screw motion. In addition to the

axis of rotation and the rotation angle, these parameters describe
the relative position of the rotation axis, given by a translation

vector, and a translation along the rotation axis. In the same

way SLERP is interpolating two rotations by weighting the con-
necting transformation matrix between these two quaternions.
This means SLERP blends rotation axis and rotation angle de-

scribed by the two quaternions individually over time, ScLERP
blends dual quaternions by interpolating individually the parame-

ters describing the screw (for details see Kavan et al., 2006, 2008).

ScLERP preserves the properties of shortest path, constant ve-
locity and coordinate invariance. Again, a simpler solution is the
component-wise interpolation between a set of dual quaternions

(Dual quaternion Linear Blending (DLB)), being easier to com-
pute and being extendable to more than two dual quaternions.

Kavan et al. (2006) proposed an iterative algorithm for comput-
ing a valid dual quaternion as the result of a weighted set of dual
quaternions which would be the equivalent to QLB for the dual

quaternion case. For our case the component-wise interpolation
is sufficient, as the interpolated quaternions stemming from mul-
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tiple computations will converge over time due to the iterative
nature of the MMC approach.

In short, the two approaches differ as SLERP and ScLERP

handle individually the parameters describing the rotation, or the
screw describing the transformation, while the linear blending

works component-wise. As for the linear blending of quaternions,
a normalisation is also needed for DLB which can be computed

easily. The upper bound for the derivation of DLB from ScLERP

is for the rotational part — as for quaternions — 8.15 deg and
for the translational part 15.1% of the translation between the

two dual quaternions involved. DLB is therefore not producing

movements of constant speed, but regarding the usually occur-
ring small differences, it is acting at almost constant speed. DLB

generates the shortest path and coordinate invariance holds true

(Kavan et al., 2008, 2007, 2006).

C Compensation of displacements in rotational
joints

On the one hand, the MMC network can describe a kinematic

chain by using dual quaternions and solve in this way the forward
kinematic problem. On the other hand, for solving the inverse

kinematic problem the mean of multiple computation principle is
used by computing the mean as an interpolation over a set of dual

quaternions. In the introduction of the MMC vector network, we

have mentioned the need for additional constraints which are ap-
plied between the iteration steps of the recurrent network. This

constraints were used in order to keep segments length constant

or to monitor joint angles because the recurrent network searched
for an attractor by distributing the external introduced distur-

bance over all variables without differentiating between vectors

which should keep their length and ones that are flexible (like the
diagonals).

The computation of the kinematic chain through dual quater-

nion can directly address this problem of changing segment lengths:
the multiple computations act on concatenations of dual quater-

nions. The segments can be easily fixed by keeping the according
translation fixed. The joints on the other hand should only repre-

sent rotations and there should be no translational portion in dual

quaternions representing a joint. When disturbing a quaternion
MMC network—like in an inverse kinematic task introducing a

new target position—one introduces an error term which is spread

over all variables which are the dual quaternions representing the
rotation in the joints and rotation as well as translation of the di-

agonals while the translations along the segments are kept fixed.

As a result, it can happen that this lead to translational shares
in the dual quaternions representing a joint.

D0

y

x
L1

L2

θ2

θ1

γ0

δ1

D0

y

x

L1

L2

θ2

θ1
γ0

δ1

a) b)

Fig. 17 Graphical representation: two segments, upper arm

(L1), lower arm (L2), D1

To illustrate the problem: when looking at the multiplica-

tion table of dual quaternions (see equation 14) what one can

basically see is that combining two arbitrary unit dual quater-
nions results in a dual quaternion, in which the dual part depends

on both—rotational shares and translational shares of the dual

quaternions—, but the real part of the dual quaternion which
represents the rotation is just depending on the two involved ro-

tations and does not take the translational parts into account.
This means, that the rotational part, in which we are interested

when computing the joint values for solving the inverse kinematic

problem only depends on the rotational parts of all influencing
transformations. One can compare this to calculating the angular

sum in a triangle. For the planar case this is exactly what we are

doing. For any arbitrary case of three-dimensional rotations the
MMC principle reduces one equation to a triangle in which then

all rotations are concatenated in order to add up to an identity

rotation.

To illustrate the solution in general, we are concentrating
again on a geometric illustration of the problem for one equa-

tion, i.e., one triangle. As an example, we take the first two seg-

ments and the diagonal. When the network is now describing a
current configuration (see figure 17 a)) all the rotation describing

dual quaternions have no translational shares. What happens, if

we now are just elongating the diagonal? The only value that is
changed is the length of the translation along the diagonal. What

the network should do is an extension of the arm which can be
only done by moving the two joints (see figure 17 b)). But none

of the rotations is affected by the modification and therefore, as

argued above, there is no disturbance introduced into the rela-
tions of rotations. Still the rotational parts of the network are in a

stable state. The network will remain in the overall state because

the only other solution would be to distribute the displacement
onto the two other translations. But these are the segments with

a fixed length. So, the network is stuck in this situation. The so-

lution is to use the displacement which accumulates in the dual
quaternions representing the joints as an error signal affecting the

joint value.

How can one account for this error? We explain the solution

directly for the general case, using a three dimensional example
(figure 18), but only concentrate on one equation. One equation

can be described as a triangle, a concatenation of transforma-

tions which always lie in one plane. Suppose, the current state of
the variables is forming a solution, i.e., they represent a coher-

ent configuration. This is indicated in figure 18 a) through the

two black segments and the other transformations represented
as lines on the plane. A change of the translational part of the

transformation describing the endpoint of the kinematic chain—
one of the diagonals or the end-effector vector—is depicted as the

transparent arrow. A translational error arises in all of the rota-

tion describing transformation which shall be compensated (red
transparent bar). For a single joint this translational error has ac-

cumulated along the sequence of transformations, but during the

last transformation the error is only shifted along the segment
actuated by the joint and its relative position is not changing.
The error can therefore be used to construct a desired position of

the following segment end point (shown in figure 18 b) and c)).
One can now calculate a rotation which aligns the vector between

current end point and desired end point. This rotation applied

to the joint rotation compensates for the error. In the example,
the translational error—which is the dual part of the first joint
rotation dual quaternion—of the first joint is moved along the
first segment (red bar in figure 18 b)). To account for this error,
the axis of the first joint is shifted. This can be done by a rota-

tion which can be easily described and applied as a quaternion.
The rotation needed is the one which aligns the current relative
segment translation and the desired segment end point position

which is given as the concatenation of the segment translation
and the error translation (in figure 18 b) and c). These are the
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a)

b)

β

c)

β

Fig. 18 Graphical representation: two segments, upper arm
(L1), lower arm (L2), D1

two vectors delimiting the enclosed rotation angle β. The result-
ing quaternion q̂error representing the compensating rotation can

be set-up

q̂error =

2664
cosβ

2
0

0 0

−1 ∗ sinβ
2

0

0 0

3775
and applied to the dual quaternion representing the rotation in
the first joint.

r̂
′
θ1

= q̂errorr̂θ1 q̂∗error (19)

This dual quaternion is now used as the value for the joint rota-

tion and consists only of a rotation.
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