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Abstract

Critical to the understanding of the genetic basis for complex diseases is the modeling of
human variation. Most of this variation can be characterized by single nucleotide polymorphisms
(SNPs) which are mutations at a single nucleotide position. To characterize an individual’s
variation, we must determine an individual’s haplotype or which nucleotide base occurs at each
position of these common SNPs for each chromosome. In this paper, we present results for a
highly accurate method for haplotype resolution from genotype data. Our method leverages a
new insight into the underlying structure of haplotypes which shows that SNPs are organized
in highly correlated “blocks”. The majority of individuals have one of about four common
haplotypes in each block. Our method partitions the SNPs into blocks and for each block,
we predict the common haplotypes each individual’s haplotype. We evaluate our method over
biological data. Our method predicts the common haplotypes perfectly and has a very low error
rate (0.47%) when taking into account the predictions for the uncommon haplotypes.

The algorithm is available via webserver at http://www.cs.columbia.edu/compbio/hap/1.

Introduction

Critical to the understanding of the genetic basis for complex diseases is the modeling of human
variation. Most of this variation can be characterized by single nucleotide polymorphisms (SNPs)
which are mutations at a single nucleotide position that occurred once in human history and were
passed on through heredity. Approximately 10 million common SNPs[14], each with a frequency of
10% to 50% account for the majority of the variation between DNA sequences of individuals[15].
To characterize an individual’s variation, we must determine an individual’s haplotype or which
nucleotide base occurs at each position of these common SNPs for each chromosome. By correlating
an individual’s haplotypes with the presence of a disease, researchers can better understand complex
diseases. The effort to characterize human variation, currently a major focus for the NIH, will be
a tremendous undertaking requiring obtaining the haplotype information from a large collection of
individuals from diverse populations [14].

Although the two chromosomes of an individual can be separated and analyzed independently
as in Patil et al., 2001 [15], current technology suitable for large scale polymorphism screening
obtains genotype information at each SNP. The genotype gives the bases at each SNP for both
copies of the chromosome, but loses the information as to the chromosome on which each base

1The program will be available at the time of publication.
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Haplotype 0,1 Representation Frequency
CCGAT 00000 66
CTGAC 01001 24
ATACT 11110 10
CTGAT 01000 6
ATGAT 11000 1
ATGCC 11011 1
CCGAC 00001 1

Table 1: Block 6 from Daly et al. 2001, [2]. The block contains 5 SNPs over 11 kilobases. The
horizontal line separates the common haplotypes from rare haplotypes. The first column shows the
haplotypes from the transmitted chromosomes. The second column shows the same haplotypes but
mapped to 0,1 representation. The 0 represents the common nucleotide at the position, while the 1
represents the rare nucleotide at the position. The third column is the frequency of the haplotype
block in the transmitted chromosomes. Note that any chromosome that contained any ambiguity
in the block due either to missing data or heterozygous genotypes for all members of the trio was
omitted.

appears. Consider a SNP where there are two common bases, A or G. There are four possible
cases for the haplotype. Two of the cases are where either both chromosomes contains A or both
chromosomes contain G. We refer to these cases as homozygous genotypes. The other two cases
are where the first chromosome contain A and the second contain G and vice versa. We refer to
these cases as heterozygous genotypes. For this SNP, there are three possible cases for the genotype
information. In the homozygous cases, the genotype will be either A or G respectively and we can
infer that the base appears in both chromosomes. In the heterozygous cases, the genotype will be
H (for heterozygous) and we can infer that in one chromosome, we have an A and in the other
we have a G, but we can not infer on which chromosome each appears. This causes problems in
reconstructing the haplotypes. Consider the example where an individual at four successive SNPs,
with possible values A or G, has a genotype AHHG. In this case, the individual’s haplotypes have
two possibilities: either AAAG on one chromosome and AGGG on the other chromosome or AAGG
and AGAG. Without any other information, such as the genotypes from related individuals, it is
impossible to determine the individual’s actual haplotypes. This problem of haplotype resolution
is often referred to as the phase problem.

Recent studies in linkage disequilibrium [6, 16] characterizing haplotype structure have shown
that SNPs are grouped into “blocks” of limited diversity with the regions between blocks being
“hot spots” of recombination. In each block containing n SNPs, typically around four haplotypes
account for the majority of the haplotypes in the population. Consider the haplotype block shown
in Table 1 consisting of 5 SNPs over 11 kilobases from a recent paper, Daly et al, 2001. We can
map each of these haplotypes to the 0,1 representation where 0 represents the common nucleotide
and 1 represents the rare nucleotide. The 0,1 representation for block 6 is also shown in Table 1.
Note that 90% of the individuals contain one of four common haplotypes.

Haplotypes can be resolved from genotype data by making the assumption that most of the
haplotypes within a block will loosely fit the perfect phylogeny model. This method for resolving
haplotypes was first proposed in Gusfield, 2002 [9]. The perfect phylogeny model assumes an infinite
site mutation model and allows no recombinations [11]. The infinite site mutation model makes
the assumption that at each SNP site, a mutation only happened once in human history. This
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model forbids recurrent mutations or back mutations. The assumptions of the model imply that a
chromosome with a mutation at a SNP is a direct descendant from the chromosome of the ancestor
in which the mutation occurred. Likewise, any chromosome without the mutation can not be a
descendant of a chromosome that has the mutation. Clearly, these assumptions are not realistic
although it is reasonable to assume that recombinations and recurrent mutations are relatively rare
events within a block. Thus, we consider a relaxed model which allows for a certain number of
recurrent mutations and recombinations within a block.

In this paper, we present results for a highly accurate method for haplotype resolution from
genotype data. Our method takes as input a population of genotypes and decomposes the SNPs
into blocks. For each block we predict the common haplotypes as well as the haplotypes of each
individual in the population. We also show that the common haplotypes roughly fit a perfect
phylogeny model. Essentially, our method can effectively predict the haplotypes for unrelated
individuals. This ability significantly reduces the costs and difficulties of characterizing human
variation since it eliminates the need for collecting genotype data from complete trios.

Existing methods effectively assume all of the SNPs are in a single block. These methods
include a variety of methods including the parsimony approach of Clark [1] and related approaches
[7, 8, 12], maximum likelihood methods [4, 5, 10, 13] and statistical methods such as PHASE [18],
and perfect phylogeny-based approaches [9]. All of these approaches suffer from the fact that they
do not explicitly take into account the haplotype block structure. In addition, these methods are
often too inefficient to be practical for large datasets. These methods typically can not scale to
data that contains more than 30 sites. A similar approach to ours is the strict perfect phylogeny
model approach of Gusfield, 2002 [9]. However, in this paper, we show that only if we relax the
assumptions of the perfect phylogeny model does the algorithm work in practice.

Results

Predicting Haplotypes from Genotypes We performed our experiments over the data pre-
sented in Daly et al., 2001 [2]. Our first set of experiments assumes that we are given the block
partition for the 11 blocks in the data. Our second set of experiments assumes that we have no
prior information about the block partition of the 103 SNPs and are only given their genotypes.
We apply our algorithm to determine the block partition. We also use a tiling technique to extend
the haplotype predictions across block boundaries. We evaluate our predictions by comparing them
to the correct haplotypes inferred from the trios.

Predicting Haplotypes within a Block In the first set of experiments, for each of the 11
blocks as defined in Daly et al., 2001 [2] we predicted the common haplotypes from the genotypes
of the children in the trios as well as each child’s haplotype. In all cases but the fourth block, the
predictions for the common haplotypes are consistent with the published predictions as shown in
Table 2. Note, in some cases, the published results use a ∗ character to denote two haplotypes
with a single base difference between them. A significant portion of the data is missing, 10.03%
of the total genotype data. This missing data comes from various sources of experimental error.
We resolve the missing data. Over the 129 individuals and 103 SNPs, our error rate is only 0.53%
in terms of bases, significantly lower the the amount of missing genotype data. If we ignore the
missing data, our error rate in terms of bases is only 0.30%. Over individuals that contain the
common haplotypes, our predictions are perfect. The errors only occur for individuals who have
an uncommon haplotype. The program takes only a few seconds to make each of these haplotype
predictions.
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SNPs Actual Predicted Frequency Error Rate
Common Common
Haplotypes Haplotypes

1-8 GGACAACC GGACAACC 215 0.0000
AATTCGTG AATTCGTG 38

10-14 TTACG TTACG 217 0.0000
CCCAA CCCAA 35

16-24 CGGAGACGA CGGAGACGA 139 0.0078
GACTGGTCG GACTGGTCG 52
CGCAGACGA CGCAGACGA 34

CGGATACGA 15

25-35 CGCGCCCGGAT CGCGCCCGGAT 142 0.0021
CTGCTATAACC CTGCTATAACC 39
TTGCCCCGGCT* CTGCCCCGGCT 35
CTGCCCCAACC* TTGCCCCAACC 25

36-40 CCAGC CCAGC 146 0.0062
CCACC CCACC 51
GCGCT GCGCT 30
CAACC CAACC 12

41-45 CCGAT CCGAT 152 0.0140
CTGAC CTGAC 63
ATACT ATACT 31

78-84 CGTTTAG CGTTTAG 142 0.0044
TGTT*GA TGTTTGA 53
TGATTAG TGATTAG 20
CGTCTAG CGTCTAG 12

TGTTGGA 10

86-91 ACAACA ACAACA 145 0.0129
GCGGTG GCGGTG 71
ACGGTG ACGGTG 14
GTGACG GTGACG 13

92-98 GTTCTGA GTTCTGA 142 0.0078
TGTGTAA TGTGTAA 49
TG*GCGG TGTGCGG 32

TGCGTAA 15

99-103 CGGCG CGGCG 112 0.0031
TATAG TATAG 105
TATCA TATCA 35

Table 2: Predictions over blocks defined by Daly et al. 2001, [2]. The second column shows the
common haplotypes as presented in Daly et al. 2001. The third column shows the predicted
common haplotypes and the fourth gives their frequencies. The fifth column gives the error rate
in terms of bases after resolving all missing data. The error rate is the total number of errors in
the predictions for the divided by the total number of bases in the block. The error rate includes
predictions for the uncommon haplotypes. The overall error rate over the 103 SNPs resolving
missing data is 0.53%.

SNPs Actual Predicted Frequency Error Rate
Common Common
Haplotypes Haplotypes

46-76 CCCTGCTTACGGTGCAGTGGCACGTATT*CA CCCTGCTTACGGTGCAGTGGCACGTATTGCA 137 0.0056
TCCCATCCATCATGGTCGAATGCGTACATTA TCCCATCCATCATGGTCGAATGCGTACATTA 59
CCCCGCTTACGGTGCAGTGGCACGTATATCA CCCCGCTTACGGTGCAGTGGCACGTATATCA 19
CATCACTCCCCAGACTGTGATGTTAGTATCT CATCACTCCCCAGACTGTGATGTTAGTATCT 10

CCCTGCTTACGGTGCAGTGGCACGTATTTCA 9

Table 3: Predictions over data from Daly et al. 2001, [2] (continued).
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Predicting Blocks from Genotypes Typically, we must determine the block partition directly
from the genotype data. We first make haplotype predictions for all possible blocks of up to length
30 using the local haplotype prediction algorithm and discard any blocks with more than five
common haplotypes. This leaves 1140 potential blocks.

Since there are only a few haplotypes in each block, we do not need to check every SNP in the
block to determine which of the common haplotypes an individual has. For each block, we can
define a set of representative SNPs that are sufficient to determine an individual’s haplotypes. In
Table 1, the second, third and fifth SNPs are sufficient to determine the haplotype. For example,
if we observe T , A, and T in these SNPs, we can infer that the individual has the third haplotype
(assuming the individual has one of the common haplotypes). On the other hand, if we observe T ,
G, and C, we can infer the individual has the second haplotype. For this block, there are other
possibilities for a set of representative SNPs such as the first, second and fifth SNPs or the second,
fourth and fifth haplotypes. However, for this block, the minimum number of representative SNPs
is three. That is, no two SNPs can distinguish the four common haplotypes.

A criterion for determining a good block partition is minimizing the sum of the number of
representative SNPs over all blocks. This criterion has been used to partition blocks on a larger
scale [15, 19]. The reasoning behind minimizing the number of representative SNPs is to reduce
the cost of obtaining an individual’s haplotype. If we assume that an individual has only the
common haplotypes, then it is enough to determine what common haplotypes the individual has
at each block position. To determine this, we need to obtain information about the individual’s
SNPs only at the positions of the representative SNPs. This is significantly cheaper than obtaining
information about all of the individual’s SNPs.

Using dynamic programming, we choose the best block partition for the data from Daly et al.
2001, [2] where the objective is to minimize the number of representative SNPs over the entire block
partition. Table 4 shows the predicted block partition which contains 27 representative SNPs. For
each block in the partition, Table 4 gives the number of representative SNPs in the block, the
common haplotypes, as well as the error rate after resolving the missing data. Over the blocks
chosen by the algorithm, the error rate for the 103 SNPs is 0.73% and only 0.47% if we ignore
the missing data. The block partition varies from the partition described in Daly et al., 2001 [2]
(shown in Table 2) since the criterion for defining block partitions vary. Our criterion, to minimize
the number of representative SNPs, is consistent with the criterion in [15] while the criterion in [2]
determines blocks by estimating the recombination frequencies between blocks.

Tiling Block Predictions Over the predicted blocks, for each individual, we can accurately
predict which haplotypes the individual contains for each block. A more difficult problem is to
recover the complete haplotypes of the individual. Given the haplotype block predictions, this
problem reduces to determining which of the individuals haplotypes are on one chromosome and
which are on the other. At each block boundary, there are 2 possibilities for how the haplotype
blocks are arranged on the chromosome. Using the predictions of Table 4, since there are 11 blocks
and each of the two predicted haplotypes can be on either chromosome, there are a total of 210

possible complete haplotypes.
We use a “tiling” technique to extend the haplotype predictions across block boundaries. We

make predictions for a set of “tiling” blocks. These blocks span our original block boundaries. At a
block boundary, we have the predictions for both haplotypes on each side of the boundary as well
as the predictions for the haplotypes of the tiling block that spans this boundary. There are four
possible ways to arrange these six blocks on the two chromosomes. We choose the arrangement
that has the least number of inconsistencies. In some cases it is impossible to determine how to
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SNPs Num Predicted Frequency Error Rate
Rep Common
SNPs Haplotypes

1-10 1 GGACAACCGT 199 0.0016
AATTCGTGGC 34

11-15 2 TACGC 134 0.0108
TACGT 85
CCAAC 34

16-24 3 CGGAGACGA 139 0.0078
GACTGGTCG 52
CGCAGACGA 34

25-36 3 CGCGCCCGGATC 141 0.0019
CTGCCCCGGCTC 35
CTGCTATAACCG 34
TTGCCCCAACCC 23

37-46 4 CAGCCCGATC 139 0.0101
CGCTCTGACT 36
CACCATACTC 29
CACCCTGACT 18
AACCCTGACC 14

47-76 3 CCTGCTTACGGTGCAGTGGCACGTATTGCA 137 0.0044
CCCATCCATCATGGTCGAATGCGTACATTA 58
CCCGCTTACGGTGCAGTGGCACGTATATCA 21
ATCACTCCCCAGACTGTGATGTTAGTATCT 12
CCTGCTTACGGTGCAGTGGCACGTATTTCA 9

77-79 2 CCG 151 0.0232
GTG 51
CTG 40

80-82 1 TTT 205 0.0000
ATT 29

83-91 3 AGCACAACA 144 0.0121
GACGCGGTG 48
GAGGCGGTG 18
GGCGTGACG 13
AGCACGGTG 13

92-98 3 GTTCTGA 142 0.0078
TGTGTAA 49
TGTGCGG 33
TGCGTAA 15

99-103 2 CGGCG 112 0.0031
TATAG 105
TATCA 35

Table 4: Predicted block partition over data from Daly et al. 2001, [2]. The second column gives the
number of representative SNPs. The third column shows the predictions for the common haplotypes
and the fourth gives their frequencies. The fifth column gives the error rate after resolving missing
data. The error rate is the total number of errors in the predictions for the divided by the total
number of bases in the block. The error rate includes predictions for the uncommon haplotypes.
The overall error rate over the 103 SNPs resolving missing data is 0.73%.
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connect the blocks because two possibilities have the minimum number of inconsistencies. We refer
to these cases as unresolvable. Consider the case where one of the blocks contains two copies of
the same haplotype. Since the haplotypes are the same, it is impossible to determine to how to
connect the neighboring haplotypes.

For each individual in the data, we must make 10 choices on how to connect their blocks. Over
the data set of 129 individuals, 784 of these choices are unresolvable. Over the remaining 506
choices, we correctly predict 473 of them for an error rate of 6.5%.

Comparison with PHASE We applied the widely used program PHASE [18] to reconstruct
the haplotypes in order to provide a comparison with our method. PHASE is able to make local
predictions for each of the 11 blocks, however, these predictions took hours for each block. In
practice, since we do not know the block partition, we must make predictions for each of more than
2, 500 candidate blocks in order to determine the optimal block partition. This makes PHASE
impractical for predicting the block partition from the genotypes.

Discussion

Recent studies in haplotype structure have shown that haplotypes are structured into blocks with
limited diversity. A recent paper by Gusfield 2002 [9] suggested the use of perfect phylogeny to
reconstruct the haplotypes. However, the actual haplotypes do not fit the perfect phylogeny
model. For a given set of haplotypes, we can measure the percentage of conflicts to the perfect
phylogeny model. If we consider all haplotypes, even the uncommon ones, the data does not fit the
perfect phylogeny model as shown in Figure 1A. If we consider instead a relaxed perfect phylogeny
model using an error threshold which allows a small number of haplotypes to be excluded when
determining conflicts, we notice that the haplotypes fit the model much better. The results for the
Chromosome 5p31 data are in Figures 1A-C. Clearly, as the error threshold increases, the number
of conflicts significantly decreases. This is due to the fact that the infrequent haplotypes cause the
majority of the conflicts with the perfect phylogeny model.
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Figure 1: Histograms of percentage of conflicts under different error thresholds for the blocks defined
in Daly et al., 2001 [2]. Thresholds are (A) 0% (B) 5% and (C) 10%.

We have demonstrated our method over actual haplotype data collected from 129 trios and
verified the accuracy of our predictions to the correct haplotypes. Our method is highly accurate
and efficient. The predictions differ from the actual haplotypes by less than 1% even after resolving
approximately 10% of the missing genotype data. We also present a method for determining the
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block partition from genotype data and a method for extending haplotype predictions beyond single
blocks.

The program for predicting haplotype structure is publicly available via a webserver at
http://www.cs.columbia.edu/compbio/haplotype/2.

Methods

Dataset Description The data set over which we perform our experiments is a 500 kilobase
region of chromosome 5p31 containing 103 SNPs from the studies of Daly et al., 2001 [2] and Rioux
et al., 2001 [17]. In this study, genotypes for the 103 SNPS are collected from 129 mother, father,
child trios from a European-derived population in an attempt to identify a genetic risk factor for
Crohn’s disease. A significant portion of the genotype data (10.03%) is missing with an average of 10
SNPs per individual’s genotype missing. The 103 SNPs were split into 11 blocks containing from 5
to 31 SNPs and ranging from 3 to 92 kilobases. For each of these blocks, four haplotypes correspond
to 90% of the individual chromosomes. Since this set consists of trios, we can infer each individual’s
haplotypes. This data is publicly available at http://www-genome.wi.mit.edu/humgen/IBD5/.

We use the data to show that the perfect phylogeny model roughly fits the common haplotypes.
To evaluate our predictions of haplotypes, we make predictions over the genotype data of the
individuals and then compare our predictions to the correct haplotypes inferred from the trios.

Inferring Haplotypes from Trios We use data collected in trios to measure the accuracy of
our method. Given the genotypes for a mother, father, child trio, in most cases, we can infer the
haplotypes for each of the individuals. We infer the haplotypes at each SNP independently using
Mendelian genetics. We define each parent to have a transmitted chromosome and an untransmitted
chromosome. The child has both transmitted chromosomes from the parents. Each SNP for each
chromosome can be represented by either 0 or 1 for the common base or mutation base respectively.
For these four chromosomes, there are a total of 16 possibilities. Each SNP in the genotype can be
denoted either 0, 1 or 2 which represents homozygous with the common base, homozygous with the
mutation base, or heterozygous respectively. Although there are 27 possible genotypes for each trio
at a given SNP, many of them are invalid such as the case where the father and child are homozygous
for the common base and the mother is homozygous for the mutation base. In any valid case where
at least one of the genotypes in the trio is homozygous, we can uniquely determine the haplotypes
for that SNP. For example, consider the case where the genotypes for a mother, father, child trio
are 2, 2, 0 respectively. From the child we know that both transmitted chromosomes contain the
common base. This implies that both of the parents must have transmitted the common base to the
child on the transmitted chromosomes and their untransmitted chromosomes contain the mutation
base.

Only in the case where all three of the genotypes are heterozygous is there more than one
possible resolution. For example, if the genotypes for the mother, father, child trio are 2, 2, 2,
then it is possible that the mother’s transmitted chromosome contains the mutation base and the
father’s transmitted chromosome contains the common base, or vice versa.

In the case where there is missing data, only if some of the genotypes are homozygous can we
infer portions of the trio. For example, if both parents are homozygous, then we can infer the
child’s haplotypes even if the child’s genotype is missing.

2The program will be available at the time of publication.
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Measuring Perfect Phylogeny from Haplotypes The perfect phylogeny model implicitly
defines a phylogenetic tree for the haplotype data such as the one for the four common haplotypes
from Table 1 shown in Figure 2. At each edge of the tree, we have a mutation labeled with the
position of the mutation. Under the perfect phylogeny model assumptions, there can only be one
edge for each site in the tree. Once a mutation occurs at an edge, the mutation must be present
in each individual in the subtree rooted at that edge and only in the subtree. Each haplotype at a
node contains all of the mutations along the path from the root node to the current node.

01000

01001 11000

00000

11110

11100
4

3

15

2

Figure 2: The Perfect Phylogeny Tree for the data from Table 1

We can measure how well a set of haplotypes fits the perfect phylogeny model by constructing
a phylogenetic tree for the haplotypes. Typically there is more than one possible phylogenetic tree
for the haplotypes in the data. These trees can be determined by inferring the relations between
sites from the individual’s haplotypes. If there exists an individual which has a mutation at both
sites i and j, we can infer that sites i and j must be along the same path in the tree. We refer to
this relation as descendant (parent-child). For example, in Table 1, site 2 and 5 are descendants
since the second haplotype has a mutation at both sites. If two sites have the descendant relation
and there is also another individual that has a mutation at site i and no mutation at site j, we can
infer that site i must be the parent of site j in the phylogenetic tree, i.e. the mutation at site i must
have occurred before the mutation at site j. For example, from the third haplotype we can infer
that site 2 is the parent of site 5. If there is a pair of sites i and j such that there is an individual
that has a mutation at site i and no mutation at site j and another individual that has a mutation
at site j and no mutation at site i, then we can infer that sites i and j are siblings in the tree.
The common ancestor to any individuals that have either of these mutations has neither of the
mutations. For example, consider sites 1 and 5 in Table 1. ¿From the second and third haplotypes,
we can infer that sites 1 and 5 are siblings.

Not all haplotypes fit the perfect phylogeny model. Consider the sixth haplotype in Table 1
which implies that sites 1 and 5 are descendants. However, as above, sites 1 and 5 are siblings. For
the haplotypes to fit a perfect phylogeny model, a pair of sites can not have both the sibling and
descendant relation. More formally, a conflict with the perfect phylogeny model occurs whenever
there is a pair of sites i and j under the following condition. There is an individual which has
both mutations (denoted 11), an individual with a mutation at site i and no mutation at site j
(10) and an individual with a mutation at site j and no mutation at site i (01). If we consider the
uncommon haplotypes in Table 1, there are many conflicts with the perfect phylogeny model. The
sixth haplotype causes conflicts with site 5 and sites 1, 2, and 4. The seventh haplotype causes
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conflicts with site 5 and 2. Note that these conflicts only occur if we consider the uncommon
haplotypes.

In general, we can use the frequencies of the haplotypes to help determine the relations in the
presence of conflicts with the model. Consider sites 1 and 5 in Table 1. 24 haplotypes have a
mutation at site 5 and no mutation at site 1. 10 haplotypes have a mutation at site 1 and no
mutation at site 5. Only a single haplotype has a mutation at both site 1 and site 5. In this case,
there is much more evidence to support that sites 1 and 5 are siblings rather than descendants.

We can measure how well a block fits perfect phylogeny by counting the number of conflicts
between pairs of sites within the block. For a block containing n SNPs, we can normalize the
count by

(n
2

)
to compare blocks that contain a different number of SNPs. In general, the infrequent

haplotypes cause many conflicts with the perfect phylogeny model. In fact, a single individual can
cause many conflicts which can conceal the fact that the haplotypes of the remaining individuals
fit the perfect phylogeny model. We adapt this measure to evaluate how well the majority of the
data fits the perfect phylogeny model, by introducing an error threshold. We consider a pair of
sites to have a conflict if the number of individuals that contain 11, 10 and 01 are all above the
error threshold. For example consider sites 4 and 5 in Table 1 considering all of the haplotypes. For
these two sites we have 25 individuals that have 01, 10 individuals that have 10 and only a single
individual that has 11. If the error threshold is 0, this would be a conflict. However, if the error
threshold is 1 or higher, the we would not consider the individual who has 11 and there would be
no conflict. Typically, the error threshold is set to a fraction of the size of the data.

Haplotype Resolution Via the Perfect Phylogeny Model The problem of haplotype res-
olution as perfect phylogeny was proposed in Gusfield, 2002 [9]. An overview of the algorithm is
given in Appendix A and the complete algorithm is given in [3].

The basic idea behind the algorithm is to make haplotype resolutions that are consistent with the
perfect phylogeny model. In order to avoid conflicts with the perfect phylogeny model, heterozygous
genotypes at pairs of sites must be resolved consistently. If the pair of sites are descendant (parent-
child), then the pair of heterozygous sites must be resolved such that both mutation bases occur on
one chromosome and both common bases appear on the other chromosome. This type of resolution
is called equal resolution. Likewise, if a pair of sites are siblings, the mutations must occur on
different chromosomes. This type of resolution is called unequal resolution. For example, consider
an individual with genotype 0220. If the second and third sites are siblings in the perfect phylogeny
tree, then the haplotypes for the individual are 0100 and 0010. On the other hand if the pair of
sites are descendant, then the haplotypes are 0110 and 0000. Multiple individuals must have the
same resolution between pairs of sites, otherwise there is a conflict. This reduces the number of
possible resolutions from 2d where d is the number of SNPs where individuals have heterozygous
genotypes in the population to 2n where n is the number of sites. In the case of the block in Table
5, the number of possible resolutions in general is 2173 while if we restrict to the perfect phylogeny
model, the number of possible resolutions is at most 64.

Many of the relations between the sites can be inferred from the genotype data. For example,
if there exists and individual with a 11, 12, or 21 at a pair of sites, we know that the two sites must
be descendant. Likewise, if we know that there are two individuals where one has a 10 or 20 and a
second individual that has a 01 or 02, then we can infer the two sites are siblings. If we can infer
the relationships between sites, we can resolve the pairs of heterozygous genotypes that occur in
those sites. For example, consider the first and third sites of Table 5. They are descendants since
we have several individuals with the pair 12. We would resolve all pairs of individuals which have
heterozygous genotypes in both positions with equal resolution. For the pairs of sites where we can
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Genotype 0,1 Representation Frequency
CHGAH 02002 23
CCGAT 00000 20
HHHHT 22220 11
HTHHH 21222 4
CTGAH 01002 3
CTGAC 01001 2
CCGAH 00002 1
AHHHT 12220 1
HTHHT 21220 1
ATHCH 11212 1
CHGAT 02000 1

Table 5: Genotypes from block 6 from Daly et al. 2001, [2]. The block contains 5 SNPs over 11
kilobases. The block represents SNPs 41-45 of the 103 SNPs. The first column shows the genotypes
from the 129 children with H representing the heterozygous genotype. The second column shows
the same genotypes but mapped to 0,1,2 representation. The 0 represents the homozygous genotype
of the common nucleotide at the position, while the 1 represents the homozygous genotype of the
rare nucleotide at the position. A 2 represents the heterozygous genotype. The third column is the
frequency of the genotype among the 129 children. Note that any genotypes that contained any
missing data were omitted.

not infer the relations, we iterate over possible relations to obtain all of the solutions that fit the
perfect phylogeny model.

Not all genotype data fits the perfect phylogeny model. One type of conflict is a conflict between
a pair of sites referred to as a column conflict. This conflict is analogous to the conflicts described
in building the phylogenetic tree from the haplotypes. These are conflicts between pairs of sites
which arise if there is evidence to support that the pair of sites have both the sibling and descendant
relation. Consider the example of a column conflict between the second and fifth sites in Table 5.
The third and seventh haplotypes imply that the sites are siblings, while the fourth, fifth, sixth,
and tenth imply that they are descendants. A second type of conflict arises because in some cases,
there is no possible genotype resolution to fit the perfect phylogeny model. For example, consider
three sites i, j, and k, and an individual which is has a heterozygous genotype in each site. If i and
j, j and k and i and k are all siblings, there is no valid resolution. If i and j must have unequal
resolution, and j and k must have unequal resolution, then i and k must have equal resolution, but
since i and k are siblings this is a conflict. We refer to this type of conflict as a graph conflict. We
describe how the algorithm is modified to make predictions in the presence of noise in the data and
conflicts in Appendix A.

Maximum Likelihood Model for Local Haplotype Reconstruction We choose the “best”
solution from the set of candidate solutions that roughly fit the perfect phylogeny model using a
maximum likelihood model. The maximum likelihood model estimates the likelihood of observ-
ing the population of genotypes given the predicted haplotype frequencies. The likelihood model
assumes independence between the haplotypes of an individual.

Given a population of n individuals, we denote the two haplotypes of the ith individual as i1 and
i2. We use the notation f(i1) to denote the frequency of the haplotype i1 in the population. The
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likelihood of a haplotype i1 is f(i1)
2n . The likelihood for each genotype of an individual is simply the

product of the likelihoods of their two haplotypes f(i1)f(i2)
(2n)2 . The likelihood of a candidate solution

for a population of genotypes is

L =
n∏

i=1

f(i1)f(i2)
(2n)2

(1)

This model is consistent with previous maximum likelihood models for choosing haplotypes
from genotypes [4, 10, 13, 5, 18]. The main caveat with these previous approaches is that they do
not restrict the possible solutions to the ones that roughly fit the perfect phylogeny model. This
results in far to many possible haplotype resolutions that need to be evaluated using the maximum
likelihood model, and thus the previous algorithms are inefficient and not practical.

Resolving Missing Data Missing data is resolved after the algorithm resolves heterozygous
genotypes. When determining the relations between sites, individuals with missing genotype data
for one of those sites are ignored. Once the maximum likelihood model chooses the best haplotype
resolutions, there are typically several common haplotypes which account for the majority of the
population. At this point missing genotypes are resolved by choosing the most likely SNP based
on the maximum likelihood model. Effectively, we resolve the missing data by choosing the SNP
to match the common haplotypes.

Computing Block Partitions from Genotypes Our method predicts block partitions directly
from the genotype data. We first define a set of candidate blocks. Given a maximum block length,
we slide a window across the data for each block length to define our candidate blocks. For each
candidate block, we apply the local haplotype prediction algorithm to predict the haplotypes. Our
algorithm accurately predicts haplotypes only if there is limited diversity within a block. To ensure
accuracy of our predictions, we discard all candidate blocks that have more than five common
haplotypes. For each remaining candidate block, we determine the number of representative SNPs.
This is done by enumerating over all subsets of the SNPs in the block and checking to see if they
distinguish between the common haplotypes.

To compute the block boundaries for the haplotypes, we use a straightforward dynamic pro-
gramming technique similar to the one presented in [19]. The main difference is that in our setting,
there is no missing data since it is resolved by the local prediction algorithm. Note that the block
partition in Daly et al., 2001 [2] does not assign several SNPs to blocks. We can easily modify the
dynamic programming algorithm to optimize a block partition where several SNPs are allowed to
be left out.

Tiling Local Blocks to Obtain Global Haplotype Structure In order to reconstruct the
complete haplotype, we use a tiling technique. For each haplotype block boundary, we make a
predictions for a tiling block of length 6 which spans the boundary and 3 SNPs on either side. For
each individual, we must determine how to connect the two haplotypes on either side of the block
boundary. We make the choice that is most consistent with the prediction of the tiling block.

Consider the following example where an individual has the haplotypes TACGC and TACGT
for predicted block 2 in Table 4 and CGGAGACGA and GACTGGTCG. The prediction of the
tiling block is CGCGAC and CGTCGG. Using these predictions, it is clear that the complete
haplotype is TACCGCGACTGGTCG and TACGTCGGAGACGA. Note that the actual predic-
tions of the tiling block may not be as accurate as the block predictions. However, as the results
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show, they are accurate enough to make a decision between two choices on how to join together
the haplotypes.

A Appendix

Haplotype Resolution via Perfect Phylogeny The complete algorithm as well as proofs of
correctness are given in [3]. Here we give a summary of the algorithm.

The basic idea behind the algorithm is to determine the relations between the sites which defines
whether we use equal or unequal resolution to resolve individuals containing pairs of heterozygous
genotypes at the sites.

The data consists of the genotypes for n individuals at m sites. For each pair of sites i and j,
we determine whether the pair of sites are either descendant, siblings or ambiguous. If the pair of
sites contains an individual with the genotype either 11, 21, 12 then sites i and j have the relation
descendant. Each of those genotypes implies that there is a haplotype 11. On the other hand,
if the data contains an individual with the genotypes 10 or 20 and another individual with the
genotypes 01 or 02, then sites i and j are siblings. If neither of these cases occur, then the relation
is ambiguous.

The algorithm checks for “graph” conflicts and enumerates the possible solutions simultaneously.
For each site i, we construct the following graph. The graph will determine what the relations of
each site is with i. Each of the m sites is a node in the graph. We connect two nodes with an
edge if both sites contain an individual that has a heterozygous genotype at each site as well as a
heterozygous genotype at node i. For the data to fit the perfect phylogeny model, each graph must
be bipartite. Since the graph is bipartite, we can partition each connected component of the graph
into two parts. One of the parts will correspond to the sites that are siblings and the other part
correspond to the descendants. If either part contains a site where there is a unambiguous relation,
we can determine the remaining relations for the sites in the connected component. For these
connected components, we can resolve the pairs of heterozygous genotypes accordingly. For the
connected components that are still ambiguous, both relations are possible which will correspond
to different solutions. If we iterate over the assignments of these relations and resolve all pairs
of heterozygous haplotypes accordingly, we will arrive to the complete set of possible haplotype
resolutions.

Handling Noisy Data In many cases, the uncommon haplotypes cause conflicts with the perfect
phylogeny model. We adapt the algorithm by requiring more evidence to determine whether a
relation is descendant or sibling. For each pair of sites we count the number of genotypes 11, 21
or 12, the number of genotypes 01 or 02, and the number of genotypes 10 or 20. If the use the
strict perfect phylogeny model, a single individual 11, 21 or 12 will cause the sites to have the
relation descendant even if this individual has an uncommon haplotype. We adapt the algorithm
by introducing an error threshold. If any of these counts are below the error threshold, we set
the counts to 0. For example, consider the genotypes for sites 2 and 5 in Table 5. There are
11 individuals with 13 individuals with genotype 20, 8 individuals with genotype 12 and only 2
individuals with genotype 21 and a single individual with 11. If the error threshold is 3, then we
would determine that the sites have the relation descendant.

In some cases, even with an error threshold, there are individuals that provide evidence that a
pair of sites are both siblings and descendants. In this case we resolve the conflict by choosing the
relation where there is more evidence to support it based on the counts.
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