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Abstract. RNA viruses are present in a single host as a population of
different but related strains. This population, shaped by the combination
of genetic change and selection, is called quasispecies. Genetic change is
due to both point mutations and recombination events. We present a
jumping hidden Markov model that describes the generation of the vi-
ral quasispecies and a method to infer its parameters by analysing next
generation sequencing data. The model introduces position-specific prob-
ability tables over the sequence alphabet to explain the diversity that can
be found in the population at each site. Recombination events are indi-
cated by a change of state, allowing a single observed read to originate
from multiple sequences. We present an implementation of the EM al-
gorithm to find maximum likelihood estimates of the model parameters
and a method to estimate the distribution of viral strains in the quasis-
pecies. The model is validated on simulated data, showing the advantage
of explicitly taking the recombination process into account, and applied
to reads obtained from two experimental HIV samples.

Keywords: Molecular sequence analysis, Sequencing and genotyping
technologies, Next-generation sequencing, Viral quasispecies, Hidden
Markov model.

1 Introduction

Next-generation sequencing (NGS) technologies have transformed experiments
previously considered too labour intensive into routine tasks [11]. One appli-
cation of NGS is the sequencing of genetically heterogeneous populations to
quantify their genetic diversity. The genetic diversity is of primary clinical rele-
vance, for example, in infection by RNA viruses, such as HIV and HCV. In these
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systems, the high mutation rate of the pathogen, together with recombination,
which can occur when different viral particles infect a single cell, give rise to a
population of different but related individuals, referred to as viral quasispecies.
We denote the different viral strains in this population as haplotypes. Study-
ing the features of the viral quasispecies can shed light on the mechanisms of
pathogen evolution in the host and it is of direct clinical relevance. In fact, the
diversity of the quasispecies is known to affect virulence [19], immune escape
[12], and drug resistance [10].

The quasispecies equation is a mathematical model for RNA virus popula-
tions evolving according to a mutation-selection process [6]. The dynamics of
the model are described by a mutation term accounting for transformation of
one viral haplotype (or strain) into another at the time of replication and a
selection term that accounts for varying replication rates of different strains.
The mutation process is generally considered as the result of point mutations
only, although recombination is known to be frequent in many clinically relevant
viruses, including HIV and HCV. For example, the recombination rate of HIV
is estimated to be about ten fold higher than its point mutation rate. Therefore,
the quasispecies model has been extended to account for both mutation and
recombination [5]. At equilibrium, the model predicts the viral population to
be dominated by one or a few haplotypes, which are surrounded by a cloud of
mutants they constantly generate.

Recent NGS technologies allow for observing viral quasispecies at an unprece-
dented level of detail by producing millions of DNA reads in a single experiment.
However, this high yield comes at a cost, because reads are usually short (up
to 700bp with the latest technology and much shorter than the smallest viral
genomes) and error-prone [8]. As a result, since the data obtained are incomplete
and noisy, a meaningful characterization of viral populations by means of NGS
requires careful analysis of the sequencing data [4].

In this manuscript, we aim at making inference of the viral quasispecies based
on NGS data by explicitly modeling mutation and recombination. To this end, we
use a hidden Markov model (HMM) to generate viral populations, i.e., haplotype
distributions, and their probing by means of NGS. In our model, the haplotypes
are originating from a small number of generating sequences via recombination
(described as change of state in the HMM that selects from which sequence
the haplotype derives) and mutation (described by position-specific probability
tables for the generating sequences). The sequencing reads are obtained from the
haplotypes subject to observation error. HMMs allowing for a switch between
generating sequences, termed jumping HMMs, have been applied, for example,
to sequence alignment of protein domains [18] and to detecting inter-host HIV
circulating recombinant forms [17].

In order to reliably identify the haplotypes shaping intra-host quasispecies,
including variants of low frequencies, sequencing errors must be corrected, as
they will confound the true variation present in the sample. This has been
approached, for example, by clustering reads or flowgrams and removing the
within-cluster variation [15,21,7,22]. Rather than addressing error correction, in
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the present manuscript, we present a novel generative probabilistic model for
making inference of viral quasispecies, i.e., for estimating the intra-patient viral
haplotype distribution. Specifically, we assume that the true genetic diversity
is generated by a few sequences, called generators, through mutation and re-
combination, and that the observed diversity results from additional sequencing
errors. Throughout, the sequencing error rate is assumed to be known (either
from control experiments or from complementary analyses) and fixed.

We present the model for local haplotype inference, meaning that we aim at
inferring the population structure in a genomic region of a size that can be cov-
ered by individual reads. Extending this model to global haplotype inference,
i.e., to longer genomic regions, is straightforward and will be discussed briefly.
Nevertheless, local inference will generally be more reliable and sufficient for
many applications. For example, the HIV protease gene, an important target of
antiretroviral therapy, is 297 bp long, and it is now standard to obtain reads of
400 bp and longer with the Roche/454 GS Junior platform, a common pyrose-
quencing platform for clinical diagnostics. Local haplotype reconstructions can
also be used as a starting point for global reconstruction [20,7,14,2,13].

We show that our model is able to estimate the true distribution of the hap-
lotypes with high reliability, by applying it to simulated data, where we have
access to the ground truth. We also present an application to experimental data
obtained from sequencing mixtures of HIV clones.

2 Methods

2.1 Hidden Markov Model

During infection a viral strain can change either by point mutation, when a single
base is copied with error, or by recombination, when a cell is infected by more
than one viral particle, and viruses in subsequent generations produce a sequence
that is a mosaic of those of the progenitors. The model we present here does
not aim at representing these evolutionary processes mechanistically. Rather,
it is a descriptive probabilistic model, in which the quasispecies is generated
by switching among K different generating sequences, each of length L. These
generators are defined as sequence profiles (μjkv) indicating the probability over
the alphabet A = {A, C, G, T, -} of base v ∈ A at position j of the k-th generating
sequence. The set of sequences generates viral haplotypes H ∈ AL by mutation
(modeled by the probability tables (μjkv)) and by recombination (modeled by
switching to a different profile) as follows.

Let Zj be the hidden random variable with state space [K] = {1, . . . ,K} indi-
cating the parental sequence generating Hj , the haplotype character at position
j. We denote by ρj the probability of recombination, i.e., of switching the gen-
erating sequence right before position j. Each observed read R with bases Rj is
obtained from a haplotype subject to noise (sequencing errors) at rate ε. The
model is depicted in Figure 1 and defined as
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Fig. 1. Graphical representation. of the model. Only one observation i is depicted; for
the full model, the graph is replicated for i = 1, . . . , N .

Pr(Z1 = k) = πk (1a)

Pr(Zj = k | Zj−1 = l) =

{
ρj , if k �= l

1− (K − 1)ρj, otherwise
(1b)

Pr(Hj = v | Zj = k) = μjkv (1c)

Pr(Rj = b | Hj = v) =

{
ε, if b �= v

1− (n− 1)ε, otherwise
(1d)

where n = |A| is the size of the alphabet.
The full model consists, for each observation i = 1, . . . , N , of the hidden

random variables Zi
j (indicating generator sequences) and Hi

j (the haplotypes

of the quasispecies), and the observed reads Ri
j , for all sequence positions j =

1, . . . , L. The model parameters are summarized as θ = (π, ρ, μ), and ε is a fixed
constant.

2.2 EM Algorithm (Baum-Welch)

In the following we compute the likelihood Pr(R | θ) and develop an expectation-
maximization (EM) algorithm for finding the maximum likelihood estimates
(MLE) of the parameters θ. The likelihood factorizes into the product over in-
dependent reads and, for each read, it can be computed efficiently using the
Markov property. We have



346 O. Zagordi et al.

Pr(R) =
∏
i

∑
Zi,Hi

Pr(Zi, Hi, Ri)

=
∏
i

∑
Zi,Hi

∏
j

Pr(Ri
j | Hi

j) Pr(H
i
j | Zi

j) Pr(Z
i
j | Zi

j−1),

where we use the definition Pr(Zi
1 | Zi

0) = Pr(Zi
1). Using the distributive law,

each sum in this expression can be factored along the Markov chain, which gives
rise to the forward algorithm [16]. In this manner, the likelihood can be computed
in O(NLK2) time.

The EM algorithm is an iterative procedure to find local maxima of the like-
lihood as a function of θ by maximizing the auxiliary Baum’s function Q(θ, θ′),
the expected hidden log-likelihood of the data with respect to the posterior dis-
tribution of (Z,H) given θ′. Here, θ′ is the previous estimate of the parameters
(π, ρ, μ). Baum’s function is defined as

Q(θ, θ′) = EZ,H|θ′ [log Pr(R,Z,H | θ)].
It bounds the log-likelihood from below, and repeated iterations of the max-
imization step with respect to θ (M-step) alternated with estimations of the
distributions Pr(Z,H | R, θ) (E-step) are guaranteed to find a local maximum
of the likelihood function.

For the E-step, we compute

Q(θ, θ′) =
∑
j,k,v

Nj(k, v) log μjkv +

L∑
j=2

[
N �=

j log ρj +N=
j log(1− (K − 1)ρj)

]
+

+N �= log ε+N= log(1− (n− 1)ε) +
∑
k

N1(k) log πk,

where N1(k) is the expected number of times a Markov chain starts in state k

at position 1, N �=
j is the expected number of times that a Markov chain switches

from a state k to a state l �= k at position j, N=
j is the expected number of times

it does not switch, and Nj(k, v) is the expected number of times the Markov
chain is in state k and emits haplotype character v at position j. These expected
counts are estimated for all reads by computing posterior probabilities of the
hidden variables H, Z given the data and the current estimate of θ, using the
forward and backward algorithm [16].

In the M-step, the parameters θ are updated by solving

θnew = argmax
θ

Q(θ, θ′) .

This is achieved by setting

πk =
N1(k)∑
k N1(k)

, ρj =
1

K − 1

N �=
j

N
, μjkv =

Nj(k, v)∑
v Nj(k, v)

.
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The two steps are iterated until convergence (defined here as a relative change of
the log-likelihood smaller than 10−6). Since the EM algorithm is only guaranteed
to find a local maximum, we performed 50 random restarts and chose the solution
with the largest likelihood. The initial parameter values were drawn at random
from the following distributions:

π ∼ Dir(2, . . . , 2),

μjk ∼ Dir(2, 2, 2, 2),

ρj ∼ 1

K − 1 +M
Beta(2, 2),

where Dir and Beta are, respectively, the Dirichlet and Beta distributions, and
M the number of positions where ρj is non-zero (see below). Reads are hashed
at the beginning in order to identify identical ones and to avoid unnecessary
computations. The sequencing error rate ε was fixed to 0.01%

2.3 Sparse Recombination Rates

The model (1a–d) allows for recombination at each site j = 1, . . . , L with rate ρj ,
but it is not possible to estimate, for each sequence position of a read separately,
from which generating sequence it has originated. However, despite high recom-
bination rates, real RNA virus populations always display genomic regions that
are conserved or nearly conserved (and that define the virus). In these regions,
the different generating sequences cannot be distinguished because there is no or
little diversity. Therefore, recombination among different sequences is expected
to occur only at a small fraction of genomic sites, i.e., most recombination rates
ρj are expected to be zero.

Sparse estimators of ρ can be found by considering the regularized maximum
likelihood problem

max
θ

log Pr(R | θ)− f(θ).

A natural choice for the regularization term is f(θ) = λ||θ||p, where λ controls
the degree of regularization. Values of p between 0 and 1 result in the desired
sparsity of the parameters. The choice p = 1 is the lasso regularization, and
approximation algorithms for solving it have been proposed [9].

Here, we consider the combinatorial model selection (p = 0) and select an
optimal small subset of non-zero transition parameters ρj . We only allow ρj to
be different from zero atM out of the L−1 positions. In practice, this is achieved
by choosing ρj = 0 as initial value for L− 1−M positions, as they will remain
zero throughout the EM procedure. In each re-start, the M positions for which
we allow ρj > 0 are sampled uniformly at random. We choose M = 3 because
more than three recombination sites are unlikely to be detectable for the size
and the diversity of the genomic regions considered here.

2.4 Estimating the Haplotype Distribution

The quantity of greatest interest we derive from the model is the haplotype
distribution P (H), i.e., the structure of the viral quasispecies. For given model
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parameters θ, we can compute the probability of each haplotype efficiently using
the forward algorithm. The distribution P (H) might be estimated by computing
the probability of each haplotype. However, since there are 4L possible haplo-
types, enumeration is infeasible. We estimate P (H) by sampling from the model
using equations 1a–1c. We sampled 10,000 haplotypes at the MLE of θ obtained
in the previous step. This procedure is efficient because almost all model pa-
rameters μjkv and ρj are very close to either zero or one and as a result the
probability mass will be centered on a few haplotypes.

3 Results

3.1 Simulated Datasets

We assessed the performance of our model on four different datasets, correspond-
ing to different distributions of haplotypes of 300 bp length. In the first dataset,
the haplotypes have frequencies 80%, 10%, 5% and 5% respectively. The two
most frequent ones have a mutual sequence identity of 94%. They recombine to
produce the latter two at recombination breakpoint at position 198. The sec-
ond population serves as a negative control. It consists of three haplotypes with
pairwise similarities 94%, 91%, and 91%, and we sampled reads at frequencies
80%, 10% and 10% without recombination. The third dataset comprises the
same three haplotypes at frequencies 28%, 28% and 26%, and six others at fre-
quency 3% each obtained by recombining the dominating ones at position 198.
The fourth dataset consists again of the same three dominating haplotypes at
frequencies 22%, 21% and 21%, and 24 recombinants at frequency 1.5% each
obtained by recombining the three at two breakpoints at positions 198 and 280.

We performed model selection by evaluating the BIC score, defined as

log Pr(R | θ)− ν logN

2
,

where ν is the number of free parameters of the model. For each distribution
of haplotypes, we sampled 50 datasets of 2000 reads with point mutations at
an error rate of 0.03% per base and evaluated the BIC score. Figure 2 reports
the BIC scores for the three datasets. In all cases, the BIC score is maximum
at the correct number of generators (two for the first dataset, three for the
others). For comparison, we additionally learned a model in which recombination
is not possible, i.e., where ρj = 0 for all j. For datasets 1 and 3, the BIC score
is maximized at K = 2 and K = 3, respectively, but without recombination
the correct number of generators (and of haplotypes) is 4 = 2 + 2 and 9 =
3 + 6, respectively. Thus, the recombination-free model fails to reconstruct the
quasispecies structure in these cases.

In order to study the impact of the sample size, we sampled instances of the
first dataset of different sizes and repeated the model selection procedure. We
analyzed datasets of 500, 750, 1000 and 2000 reads. The results are reported
in Figure 3. For the smallest sample, the BIC score erroneously selects K = 1,
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Fig. 2. BIC score for the four simulated datasets. The model correctly chooses K = 2
for the first dataset and K = 3 for the others. The boxplots summarize results of
50 independent datasets. The numbers in parentheses report the number of original
generators plus the number of recombinants.

whereas for 750 and more reads, the procedure correctly selectsK = 2 generating
sequences indicating that sufficient coverage is an important prerequisite.

For parameter estimation, we sampled an additional set of reads from the
haplotype distribution, and ran the EM algorithm with the value of K inferred
before. Then, we inspected the MLE of the parameters μ, π and ρ. For datasets 1
and 2, where K = 2 and K = 3, respectively, were chosen, the estimates of μjkv

are very close to either zero or one. The recombination parameter ρ is different
from zero before the recombination hotspot and close to it.

In the second dataset, where no recombinants are present, the three gener-
ating sequence profiles corresponded exactly to the original haplotypes (i.e., all
μjkv were either close to zero or to one) and no recombination was found (i.e.,
ρj = 0 for all j). In this case, π represents the frequency of the original haplo-
types. Its estimate was very close to the original distribution and the remaining
discrepancy can be explained by the sampling variance of the reads alone.

We also inspected the estimated parameters when all ρj are constrained to zero
(no recombination), for dataset 1 with K = 2 and dataset 3 with K = 3. The
estimates of μjkv reflected the distribution of bases at each individual position,
but, as expected, the generating sequences cannot predict the original haplotypes.
This is a consequence of the poor performance of the model selection in this case.
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Fig. 3. BIC score for simulated dataset 1 at different sample sizes between 500 and
2000 reads. The model selection correctly selects K = 2 already with 750 reads. The
boxplots summarize results on 50 independent datasets.

We assessed the reconstruction of the population by comparing it to the orig-
inal set of sequences using the proportion close measure, ϕq, defined as the
fraction of inferred haplotypes that match an original one with at most q mis-
matches [7]. Figure 4 reports the proportion close, as a function of the number
of allowed mismatches, for the models with and without recombination esti-
mated from datasets 1 and 3. The advantage of modeling recombinants is evi-
dent as the fraction of the population reconstructed is always higher than in the
recombinant-free case. The proportion close is at least 99% for q ≥ 3.

3.2 Real HIV Dataset

Using our model, we analyzed two sets of experimental NGS reads downloaded
from the Sequence Read Archive (SRA). The first one (SRA run SRR069887)
was obtained by sequencing a clinical sample from an HIV-infected patient in
the context of a study of viral tropism [1]. We selected 1517 reads overlapping a
179 bp long region of the env gene (positions 6321–6499 in the HXB2 reference
strain). We ran the EM algorithm on 50 datasets, generated by bootstrapping
1517 reads each, and selected the model with K = 2 generators (Figure 5, left).
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Fig. 4. Proportion close, ϕq , as a function of q. The fraction of the population re-
constructed with q mismatches is higher than 99% already for q = 3 if one allows
recombination, and, depending on the dataset, for q = 6 or 7 if one does not allow
recombination.

By visual inspection of the estimated parameters, we found two positions where
ρ is significantly different from zero. This translates into 8 possible different re-
constructed recombination patterns and additional haplotypes of low frequencies
generated by mutation.

The second sample (SRA run SRR002680) consists of 3954 reads overlapping
a region of length 155 bp of the env gene (HXB2 positions 7085–7239). Under
the same bootstrapping procedure used for the other dataset, model selection
resulted in K = 3 generators (Figure 5, right).

In order to appreciate the compactness of the model inferred with the jump-
ing HMM, we compared its solutions with those of another tool to reconstruct
haplotypes, implemented in the software ShoRAH [20]. This method does not
take recombination into account and it identified 15 haplotypes in the dataset
SRR069887, which can be further reduced to 10 if one excludes those with fre-
quencies lower than 1% and those which harbor a frameshift due to a deletion.
Similarly, more than 50 haplotypes were found in the dataset SRR002680, which
can be reduced to 18 by the same analysis.
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Fig. 5. BIC scores for experimental datasets based on 50 bootstrap samples

4 Discussion

We have presented a probabilistic model based on a HMM that infers the distri-
bution of haplotypes in a viral quasispecies from NGS data. The model describes
these different viral strains present in the population as originating from different
generating sequences by means of two processes: point mutation and recombi-
nation. Point mutation is captured by the fact that the sequences are modeled
as probability tables over the sequence alphabet. Recombination is modeled via
a change of the sequence from which the haplotype is drawn as indicated by a
change of state, or a jump, in the hidden Markov chain. Due to the possibility to
switch between sequences, the number of tables necessary to describe the popu-
lation structure remains small, whilst offering an excellent fit to the data. This
results in a more compact and structured description of the viral population.

Using the EM algorithm, we find the MLE of the model parameters, namely
the emission and transition probabilities. We have also introduced sparse recom-
bination rates accounting for the fact that only few sites exist where generators
recombine. Our results on simulated data demonstrate the usefulness of incor-
porating such sparsity while inferring haplotypes from recombinant reads.

There are several ways to extend the methodology presented here. For exam-
ple, a different strategy for the regularization of the transition parameters ρj
could be explored. We have observed in some cases a slow optimization of the
likelihood, a behavior that might be related to the unidentifiability of the model,
which implies that there are regions in the parameter space where the likelihood
is flat. A Bayesian approach in which one could run a modified EM algorithm to
maximize the posterior distribution of the parameters might solve this issue. In
this framework, an appropriate prior might also provide efficient regularization.

Additionally, the transition matrix might be generalized allowing a differ-
ent parameter for each pair of different states. This would account better for
recombinant sequences present in the population at different frequencies. In
this case, an efficient regularization of the ρj would be even more necessary.
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Previous work on the analysis of NGS data to estimate genetic diversity have
approached model selection in a non-parametric way by using the Dirichlet pro-
cess mixture [21]. Extension of the HMM in this direction have been proposed
and might be explored in this context as well [3].

Currently, we have presented our results in a local reconstruction setting,
but our method generalizes to global inference. In this scenario, the population
structure inferred locally is extended to longer genomic regions (longer than
the typical read length). This can be achieved, for example, by allowing for
longer generating sequences, along with two additional silent states to describe
the unobserved regions before and after each read in the same fashion as the
pair-HMM can be used for semi-global sequence alignment.

Although no current sequencing technology produces reads longer than 1000
bp, new platforms are foreseen to push this limit further. With such long reads,
the probability to observe recombinations on a single read will be higher, and the
necessity to keep the number of generators small will be even more compelling.
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