Haplotype Inference in Complex Pedigrees
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Abstract. Despite the desirable information contained in complex pedi-
gree datasets, analysis methods struggle to efficiently process these datasets.
The attractiveness of pedigree data sets is their power for detecting rare
variants, particularly in comparison with studies of unrelated individ-
uals. In addition, rather than assuming individuals in a study are un-
related, knowledge of their relationships can avoid spurious results due
to confounding population structure effects. However, a major challenge
for the applicability of pedigree methods is the ability handle complex
pedigrees, having multiple founding lineages, inbreeding, and half-sibling
relationships.

A key ingredient in association studies is imputation and inference of hap-
lotypes from genotype data. Existing haplotype inference methods either
do not efficiently scales to complex pedigrees or their accuracy is limited.
In this paper, we present algorithms for efficient haplotype inference and
imputation in complex pedigrees. Our method, PhyloPed, leverages the
perfect phylogeny model, resulting in an efficient method with high accu-
racy. In addition, PhyloPed effectively combines the founder haplotype
information from different lineages and is immune to inaccuracies in prior
information about the founders.

1 Introduction

Both genetic and environmental factors affect the etiology of complex
conditions such as cancer or Alzheimer’s disease. In an attempt to reveal
the genetic factors of these conditions, many researchers use pedigree
studies, in which the genomes of a set of related cases and controls are
compared. Regions in which the allelic distribution of the cases differs
from the expected distribution given the pedigree relationships are sus-
pect for direct or indirect involvement in the disease mechanism.
Current studies focus on analyzing single nucleotide polymorphisms (SNPs),
which are mutations that occurred once in history and propagated through
the population. Common SNPs are usually bi-allelic with both of the al-
leles appearing in at least 5% of the population. Current genotyping



technologies allow us to genotype a set of a million SNPs spread across
the whole genome for less than a thousand dollars per person. Thus,
large scale studies, involving hundreds of thousands of SNPs and thou-
sands of individuals, are feasible. Indeed, if the genealogical data exists,
it is possible to obtain a pedigree for thousands of individuals (e.g. the
Hudderite data with more than 1600 individuals [1], and animal breeding
data [17]).

Although many current study designs employ population case-control
designs, with unrelated individuals, there are substantial advantages to
using pedigree study designs. Designing population-based studies may
be problematic due to confounding effects such as population substruc-
ture and heterogeneity within the case population, (i.e., the set of cases
consists of a few subsets, where each subset has a different disease that
is manifested in the same way, but is genetically and probably biolog-
ically different). These phenomena may reduce power or lead to false
discoveries. However, incorporating related individuals into association
studies bypasses these problems by correcting for sources of heterogene-
ity and population substructure. Knowing relationships between family
members, as in a pedigree, can assist in obtaining a more accurate esti-
mate of each individual’s haplotypes, which are sequences of alleles on a
chromosome that were inherited from the same ancestor. Haplotypes can
be used for imputation of unobserved genotypes or alleles, which have
been useful in finding new associations [2]. Furthermore, imputation in
family-based association studies has been shown to increase power [5, 3].
The theoretical usefulness of large pedigree datasets is diminished in
practice by computational issues. Pedigree analysis is known to be NP-
hard [16], and all known algorithms have exponential running time. The
classical trade-off for running time is between being exponential in the
number of loci (and linear in the number of individuals) or exponential
in the number of individual (and linear in the number of loci), for ex-
ample, the Elston-Stewart and Lander-Green algorithms respectively (8,
14]. More recent work, in the form of Superlink [10], heuristically opti-
mizes this trade-off. Among the MCMC approaches to pedigree analy-
sis, blocked Gibbs sampling has been successfully applied to large pedi-
grees [13,18]. Blocked Gibbs samplers are a generalization of Gibbs sam-
plers where a set of variables is updated at each step rather than a single
variable. These samplers elegantly deal with inbreeding by conditioning
and rely on the random steps of the Markov Chain to propagate the effect
of inbreeding through the graphical model. Convergence occurs quickly
in practice. However correctness is typically proved via irreducibility of
the state space for a particular problem instance, and these proofs them-
selves may correspond to difficult computational problems [4, 13].

In this paper, we consider a special case of the pedigree haplotyping prob-
lem for complex pedigrees, having multiple lineages. Specifically, we are
interested in regions of the genome that are sufficiently linked that there
is little evidence of recombination during pedigree meiosis. Further, there
are two cases for these regions. First, if there is little evidence of ancestral
recombinations or recurrent mutations in the founding haplotypes, the
perfect phylogeny model [11] would apply to the pedigree haplotypes.
The perfect phylogeny model has been shown to be realistic as long as



the studied region is physically short [6, 7, 9]. Second, if there is evidence
of ancestral recombinations in the region, then ancestral recombinations
must be allowed, and the founding haplotypes are not restricted to a
perfect phylogeny. We make no other assumptions about recombination
rates or founder allele frequencies. These two cases allow us to make
simplifying assumptions and allow efficient computation over large and
complex pedigrees without compromising accuracy.

To solve the first case of the problem, we propose a blocked Gibbs sam-
pler with running time polynomial in the number of SNPs and linear
in the number of individuals. Roughly, PhyloPed, our method, chooses
overlapping blocks of individuals that correspond to lineages in the pedi-
gree. A single sampling step updates the haplotype assignments for all
the individuals in the lineage of interest. The algorithm considers each
lineage in turn, updates that lineage, and continues until convergence.
PhyloPed begins the blocked Gibbs sampler at an initial state that is
a feasible haplotype configuration that is compatible with the perfect
phylogeny. In practice, the initial haplotype state can often be obtained
quickly, though in the worst case, due to disallowing recombination, the
running time may be exponential in the number of individuals. In the
case that the founder haplotypes could not have come from a perfect
phylogeny, PhyloPed reverts to the second case, without the perfect phy-
logeny, and runs the same blocked Gibbs sampler from an initial haplo-
type configuration with unrestricted founder haplotypes (with running
time exponential in the number of SNPs). Furthermore, PhyloPed does
not require knowledge of recombination rates or founder-allele frequen-
cies. The perfect phylogeny allows more accurate haplotype inference,
for a small number of SNPs.

2 Methods

We represent a pedigree on a set of individuals I as a directed graph
having individuals as nodes (either circles or squares) and relationships
indicated by edges and marriage nodes (solid diamonds, see Figure 1).
The pedigree edges are usually implicitly directed, with the edges be-
ing directed downwards. Parent-child relationships are drawn with a
vertical arrangement of nodes and edges, with edges from the parent
down to a marriage node and from the marriage node down to the
child (Fig. 1). The founders of the pedigree are individuals F C [
whose parents are not represented in the graph. According to conven-
tion, assume that every non-founder has both their parents represented
in the pedigree, so that every marriage node has two parents above
and adjacent to it. For each of the M bi-allelic SNPs, every individ-
ual w has an unordered single-locus genotype g, at SNP m. An in-
dividual with a fully observed genotype has a single set of possible
alleles g, € {{0,0},{0,1},{1,1}}. An individual with an unobserved
or partially observed genotype has several possible sets of alleles g;, €
{{£0,0}, {0, 1}, {1, 1}}, {{0,0}, {0, 1}}, {{0, 1}, {1, 1}}}.

We denote a haplotype by a sequence of binary alleles, h € {0, 1}M7 where
M is the number of SNPs in a region of the genome. Let the m’th allele
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Fig. 1. Pedigree Example and Key

of haplotype h be denoted h(m). A pedigree state associates an ordered
pair of haplotypes (or multi-locus genotype), sw = (hw, hi,), with each
individual w € I. The haplotypes of an individual are consistent with
the observed genotypes provided that at each SNP m, all known alleles
are represented in the haplotypes, meaning that {h.(m), hi,(m)} C gu-
Let C(w, sw) be an indicator variable that is 1 when the haplotype state
sw 1s consistent with the observed genotypes. Let S(w) be the set of all
haplotype states that are consistent with w’s observed genotype.

We assume that the M SNPs are tightly linked and are effectively un-
able to recombine when passed from one generation to the next. In
other words, haplotypes are passed according to Mendelian inheritance.
More precisely, we define an individual’s haplotype state s.,, as non-
recombinant when the haplotype h,, inherited from the father, f(w), ex-
actly matches one of the father’s haplotypes, hw = hy(w) Or hy = h’f(w),
and similarly h.,, inherited from the mother, m(w), matches one of the
mother’s haplotypes.

Mendelian inheritance gives the probability that each of the father’s (or
mother’s) haplotypes are inherited by the child: Pr{hw = hyw)|hyw) #
W) = 1/2 and Prlhew = hgw)lhpw) = P}, = 1. This assumption
determines a family of probability distributions over states of the pedi-
gree, given genotype data for some of the individuals. Our goal is to find
the haplotypes that maximize the conditional distribution of pedigree
states given genotype data for some individuals.

Lineage Decomposition. Rather than computing the joint distribution
of haplotype assignments to all the founders, we decompose a complex
pedigree into tree-like lineages. Roughly speaking, each lineage is a block
of variable that will be updated in a single iteration of the blocked Gibbs
sampler, and the lineages are not necessarily disjoint from each other.

A lineage is defined as follows. Let H(w) denote the set of children of
node w. Founders p and ¢ are called a monogamous founding pair (MFP)
if and only if H(p) = H(q) (i.e. there are no half-siblings of the founders’



children). Assume that the pedigree contains only monogamous married
pairs of founders. The lineage of the monogamous founding pair (p,q) is
the induced subgraph of the pedigree that contains all the descendants
of p and ¢. Formally, the lineage L(p, q) is a directed, acyclic graph that
contains a source node for each p, ¢ and a node for each descendant of p, q.
This means that L(p,q) is the smallest subgraph of the given pedigree
such that L contains both founders p, ¢ and, if L contains a node w, then
L contains the children of w. If a parent of w is not in L then that parent
is called the non-lineage parent.

L(12) L(34)

Fig. 2. These are the lineages for the pedigree in Fig. 1. The non-lineage parents are
dashed, and individuals 6 and 5, respectively, are parents of individuals in the lineages
L(1,2) and L(3,4)

For example the lineages of the pedigree in Fig. 1 are shown in Fig. 2 as
two distinct pedigree sub-graphs. Notice that parents of lineage members
fall into four categories: 1) founders participating in the MFP, and 2) non-
lineage founding parents, 3) non-lineage parents (non-founders who are
descendants of another lineage) and 4) lineage descendants (descended
from the MFP).

Our goal is to chose a haplotype state for the pedigree from the posterior
distribution of haplotype states given the genotype data of the pedigree
and assumptions about haplotype sharing between lineages. A side effect
of this is that PhyloPed infers all missing alleles, including haplotypes
(and genotypes) for ungenotyped individuals. To find a haplotype state,
we consider each lineage separately and calculate the distribution of hap-
lotype states for the monogamous pairs of founders, given the genotype
data of their descendants and probabilistic assumptions about the states
of the non-lineage founders and non-lineage parents. The calculation pro-
ceeds in three phases:

1. Find a consistent, non-recombinant state for the pedigree. If there
is such a state that is also compatible with some perfect phylogeny
on all of the observed genotypes [11,9], choose that state (see Sup-
plement). Otherwise, when the founder haplotypes require ances-



tral recombinations or back mutations, choose any consistent, non-
recombinant state for the pedigree haplotypes.

2. Decompose the pedigree into lineages, as described above.

3. Tterate over the collection of lineages: first, compute the distribution
for the MFP haplotypes conditioning on the genotypes in the lineage
and conditioning on the current states of the non-lineage parents,
and second, sample new haplotype states for the lineage descendants
from the computed distribution.

Inference for a Single Lineage. To describe step 3 in detail, we need
to establish a few assumptions. First, assume that we have a consistent,
non-recombinant state for the pedigree (for details, see Supplement).
Also, assume for the moment that there is a known prior probability
for founder haplotypes, a(h) for the 2™ possible haplotypes. Each time
inference is performed on a lineage, the algorithm removes inbreeding
loops by randomly choosing an individual to condition on. This is done
by successively finding the oldest inbred descendant (whose parents are
not inbred) and flipping a coin to choose which parent will be designated
the non-lineage parent for the duration of the iteration.

For a single, non-inbred lineage, we can compute the probability of the
MFP haplotypes by conditioning on 1) the haplotype assignments of the
non-lineage parents, 2) the genotypes, and 3) the prior probability a.
The child of a non-lineage parent inherits either one of the two equally-
likely non-lineage haplotypes, if the non-lineage parent has a haplotype
assignment, or one of the 2™ possible founder haplotypes drawn from
a, if the non-lineage parent is an ungenotyped founder. The prior and
transmission probabilities yield a tree-like graphical model from which
to learn the MFP haplotype distribution. For the lineage L(p,q), let
&p.q(%, 7, k,1) be the marginal probability of the haplotype assignment
(4,7) to p and (k,!) to g conditioned on the genotypes in the lineage and
the haplotype assignments of the non-lineage parents. This is a marginal
probability, because it is computed by summing over possible haplotype
assignments for lineage descendants.

Some fairly standard bottom-up dynamic-programming equations yield
the MFP marginal ¢p,4(4, 7, k,1) and incomplete marginals, or messages,
for the lineage descendants (see the peeling algorithm in

[15]). The descendant marginals are incomplete, because they are com-
puted by summing only over possible haplotype assignments to their de-
scendants (rather than summing also over possible assignments to their
ancestors), and are conditioned only on the genotypes of their descen-
dants (rather than all of the lineage genotypes). For an MFP child, r, with
two lineage haplotypes (4, ), define ¢,(¢,j) as the incomplete marginal
probability of r having haplotypes (4,7) conditioned on the genotypes
of r’s descendants. Similarly, for all other lineage descendants, with one
lineage haplotype, define ¢, (i) as the incomplete marginal probability
of w having lineage haplotype ¢ conditioned on the genotypes of w’s
descendants (see the Supplementfor equations).

When considering all possible haplotype assignments, computation of
these conditional probabilities takes time O(N* - L) where N = 2™ is
the number of possible haplotypes and L is the number of individuals



in the lineage. Recall that m is small and the computation is feasible,
because all the SNPs are in a short region of the genome and are in
linkage disequilibrium. In cases where only perfect phylogeny haplotypes
are considered, the running time is reduced to O((m+1)*L). This follows
from the fact that a perfect phylogeny contains at most m+1 haplotypes.
In order to update the haplotype state of a lineage, we use a top-
down random propagation algorithm that chooses a new pair of hap-
lotypes for each individual in the lineage (similar to the random prop-
agation algorithm described in [15]). Random propagation allows us
to choose haplotype assignments for each person from the correct, or
complete, marginal haplotype distribution for that individual. For the
pair of founders, p,q, haplotypes (i, 7, k,l) are chosen proportional to
a(@)a(j)a(k)a(l)pp.q(i, j, k,1). Children, r, of the MFP are randomly as-
signed haplotypes (h., h,.) € {(3, k), (1,1), (4, k), (4,1)}, conditional on the
MFP haplotype assignment (3, j, k,1), with probability proportional to
¢r(hr, hy). All other lineage descendants, w, are given a lineage hap-
lotype h. conditional on the haplotypes (hl(w)7h2(w)) of their lineage
parent [(w). So, Pr[hw = hy)] is proportional to ¢uw(hi(w)). And the
non-lineage haplotypes h;, is chosen from the set {h,(w), fiy(,y } Of hap-
lotypes for the non-lineage parent n(w) and probability proportional
to a(hy,)C(w, huw, hy,). The random propagation scheme is also accom-
plished in time O(N*L), except when perfect phylogeny haplotypes are
known, making the running time O((m + 1)*L).

Inference for Multiple Lineages. We now extend our algorithm to con-
sider several monogamous founding pairs simultaneously. We no longer
assume that there is a fixed « distribution or that the haplotype states
never change. Instead, we use an iterative process that computes a new
haplotype distribution o at each iteration ¢ and maintains a consistent,
non-recombinant haplotype state for all the individuals in the pedigree.
For each iteration, ¢, consider each MFP (p,q) and its lineage L(p, q):

1. Given the previous estimate of a‘~!, perform the bottom-up dy-
namic programming calculation to compute ¢} ,(i,j, k,1), ¢4(3,5)
and ¢, (i) for the MFP (p, q).

2. Use a'™' together with the various ¢’ probabilities in the random
propagation scheme to sample a new haplotype state for the indi-
viduals in the lineage.

After obtaining an updated ¢} ,(4, 4, k, 1) for each MFP (p,q), compute
the updated prior distribution as the marginal average

af(h) o Z(p,q) Mg, 4 (8) + My 4 (5) + 104 (K) + 1005, 4 (1)

where the marginal mj, 4(i) = 32,37, 32, é1.4(i, 4, k,1) and similar defi-
nitions apply for m} ,(5), m’ ,(k), and m}, ,(I). The iterations continue
until the [; deviation between o' and o'~ falls below a pre-determined
threshold. Clearly the running time of our method depends on the num-
ber of iterations until convergence. In practice, the {1 deviation of the
o' estimates drop rapidly and most of the blocks in Fig. 3 converged in
roughly 6-8 iterations (see Supplement).

Correctness. We have described a blocked Gibbs sampling scheme where
in each iteration, the updated block is a non-inbred subgraph of a pedi-



gree lineage. Each update step uses a mixture of bottom-up recursion and
top-down sampling to update the haplotype assignments in each block.
A Markov Chain employing this update algorithm will converge to the
correct posterior probability distribution when the haplotype states of
the pedigree form an irreducible state space. In each update iteration,
the haplotypes for the lineage individuals are updated conditional on the
haplotypes assigned to the non-lineage parents, while the haplotypes of
the non-lineage parents and all other pedigree individuals are unchanged.
If the unchanged haplotypes are drawn from the stationary distribution,
then after an update, all the haplotypes together represent a sample from
the stationary distribution. This would by true for any blocking scheme,
but we have chosen the lineage blocking scheme for ease of computation.

3 Results

Pedigree Simulations. In order to test the accuracy of our method, we
simulated a set of pedigrees with their corresponding haplotypes. Given
a pedigree, founder haplotypes were generated uniformly at random from
the phased HapMap CEU haplotypes for Chromosome 1. We considered
only common SNPs (with minor allele frequencies at least 0.05). We
performed multiple trials, where each trial consisted of a distinct sample
of SNPs chosen to have a specific density along the genome. This allowed
us to vary the mean physical distance between neighboring SNPs. Each
sample of SNPs was arbitrarily partitioned into non-overlapping blocks
of a fixed length for haplotype inference.
The non-founders were generated in successive generations using Poisson-
distributed recombinations (without interference), where the recombina-
tion rate was a function of the physical distance, such that there is an
average of two recombinations on the length of Chromosome 1. Consid-
ering each non-founder in turn, we obtained one haplotype from each
parent by uniformly choosing one of the parental haplotypes to provide
the allele for the first SNP. Alleles for successive SNPs were chosen either
to be non-recombinant or recombinant according to the recombination
rate. We refer to the complete simulation output (of phased haplotypes)
as the gold-standard data.

We chose pedigrees with fixed structure. For each pedigree we fixed the

number and set of individuals to be genotyped in the data input to each

of the phasing algorithms (and removed the phase information for all of
the ungenotyped individuals).

L1 10 copies of a 20-individual family with 1 lineage and exactly 13
genotyped individuals (1000 blocks of 3 SNPs with 11kbp between
SNPs)

S1 single family with 10 lineages and 59 individuals, exactly 24 of them
being genotyped on 1000 blocks of 3 SNPs.

M1 5 copies of the family from S1, with exactly 24 individuals genotyped
in each family (1000 blocks with 3 snps).

M2 10 copies of a 10-individual family with 2 lineages and exactly 5
genotyped individuals (10,000 blocks of 3 SNPs).

H1 single 16-individual, 2-lineage pedigree with half-siblings and exactly
9 genotyped individuals on 300 blocks of 5 SNPs.



Comparison. We compared our approach to two others, Merlin

[5] and Superlink [10]. Both Merlin and Superlink perform a maximum-
likelihood calculation on a similar graphical model of inheritance in a
pedigree, where recombination rates and founder allele frequencies are
given as fixed parameters of the model. However, Merlin employs a dif-
ferent elimination order for the EM algorithm than does Superlink and
has an option for non-recombinant haplotype inference (this option was
not used here, because it seemed to make little difference to inference ac-
curacy). PhyloPed uses a graphical model of inheritance that is similar
to that used by Merlin and Superlink but does not require the founder
allele frequencies or recombination rates.

The input data consisted of the pedigree relationships and the genotype
data for only the typed pedigree members. Merlin and Superlink were
additionally provided with the correct recombination rates and with ei-
ther an uninformative prior for the founder alleles or the perfect prior
(i.e., the correct allele frequencies). Every phasing program was run on
consecutive, non-overlapping blocks of & SNPs, and all programs ran
on the same blocks. The output of each of the phasing programs was
compared to the gold-standard data, and again the comparison used the
same k-sized blocks. In cases where phasing programs provided a list of
possible phasings, the first phasing was tested for accuracy. Accuracy
was measured as the percentage of haplotype assignments in the phase
estimate that matched the haplotypes in the gold-standard haplotype
data. Notice that in this definition of accuracy the parental origin of the
haplotype is irrelevant. Notice also that if the assumptions of PhyloPed
are not satisfied, meaning that a particular family required recombinant
haplotypes, then PhyloPed produced no estimate, and we conservatively
chose to penalize our method by scoring the lack of a prediction as zero
accuracy.

Simple vs Complexr Pedigrees. For the single-lineage pedigree L1, we
simulated blocks of size k = 3 with the average physical distance between
SNPs being 11kbp. All methods estimated haplotypes with similar accu-
racy (Table 1, row L1). This suggests that the models have few practical
differences on simple pedigrees.

For multi-lineage pedigrees S1, M1, M2, and H1, we see that PhyloPed
outperforms the other methods (Table 1, rows S1,M1, and HI, and
Fig. 3). Most of these results were generated for blocks with k¥ = 3 SNPs,
because larger blocks were infeasible for Merlin. However, pedigree H1
was simulated with & = 5 SNPs, and still PhyloPed outperforms the
others.

Violations of Assumptions. We consider two violations of the assump-
tions for the three methods. First, we consider the performance of the
three methods for different physical distances between SNPs in the block
(resulting in a range of recombination rates). PhyloPed consistently out-
performs Superlink and Merlin even as the recombination rate increases
(Fig. 3). Second, it is possible for the founder allele frequencies to be un-
known, even while the recombination rates may be known. We provide



both Superlink and Merlin with uninformative founder allele frequen-
cies (i.e. frequency 0.5 for all alleles). In this scenario, Merlin performs
comparable to when it is given a perfect prior, but Superlink’s accuracy
decreases dramatically.

Perfect Prior Uninformative Prior

Pedigree | Method Avg | Std-Dev Avg | Std-Dev
L1 PhyloPed 0.867 0.030 0.867 0.030
Merlin 0.855 0.018 0.857 0.018
Superlink 0.836 0.034 0.819 0.023
S1 PhyloPed 0.809 0.065 0.809 0.065
Superlink 0.796 0.064 0.642 0.066
M1 PhyloPed 0.808 0.060 0.808 0.060
Superlink 0.795 0.058 0.636 0.058
H1 PhyloPed 0.816 0.161 0.816 0.161
Merlin 0.750 0.138 0.761 0.124
Superlink 0.799 0.116 0.717 0.148

Table 1. Average accuracy and standard deviation. In all cases, PhyloPed dra-

matically outperforms Merlin. PhyloPed is substantially better than Superlink, when
given a non-informative perfect prior. When given the perfect prior, Superlink performs
no better than PhyloPed. In cases where Superlink and PhyloPed have comparable per-
formance, we see that the uninformative prior particularly hurts Superlink’s accuracy.
Merlin was unable to execute S1 and M1 due to running time.
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Fig. 3. Accuracy Against Recombination Rate. This plot shows results of 10,000
blocks for M2 the 2-lineage, 10-individual family. The accuracy of each method was
computed for different physical distance between neighboring SNPs.



4 Discussion

We have introduced PhyloPed which leverages the population genetics of
the founders to produce superior haplotype estimates for multi-lineage
pedigrees. Specifically, PhyloPed assumes that the founder haplotypes
are drawn from a perfect phylogeny and that haplotypes are inherited
without recombination in the pedigree. As we have shown, this approach
works very well for short regions with dense SNPs.

In addition to the perfect phylogeny model, there are several other rea-
sons that PhyloPed outperforms other methods. Intuitively, Occam’s ra-
zor suggests that our method would be preferable on blocks having little
recombination. Assuming no recombination provides not only fewer phas-
ing options to consider but also fewer parameters and less over-fitting.
PhyloPed requires no prior information, either for the recombination
rates or for the founder allele frequencies, which avoids the possibility
that an inaccurate prior might mislead our algorithm.

Many factors influence the accuracy of haplotype estimation, includ-
ing the complexity of the pedigree, the number and relationships of
genotyped individuals, and the number of linked SNPs. The number
of genotyped individuals in the pedigree and their relationships with the
other pedigree members influences the number of constraints available
for haplotype estimation. Typically, having genotypes for more individ-
uals yields better haplotype estimates. Similarly, simultaneous phasing
of larger numbers of linked SNPs can reveal more haplotype informa-
tion, provided that the pedigree is not so large that the computational
burden is infeasible. This paper has focused on inference in deep and
complex pedigrees and partitioned the genome into blocks before phas-
ing. In order to properly treat the whole genome, future research should
consider partitioning schemes and methods for producing whole genome
haplotype estimates from the estimates for each partition. One possible
approach is using an HMM, similar to some of the tag SNP research for
unrelated individuals [12].

Pedigrees should not be made unnecessarily complex. Multiple-lineage
pedigrees are only useful in the case where each founding lineage pro-
vides information about either the phenotype or the relatedness of geno-
typed individuals. For example, estimation of haplotypes in a nuclear
family whose members are genotyped and phenotyped would not ben-
efit from the introduction of grandparents whose additional degrees of
freedom provide no additional constraints on the haplotypes or pheno-
types. However, if a pair of grandparents are the common ancestors of
this nuclear family and another genotyped family, then the grandpar-
ents’ presence in the pedigree (along with the additional family) would
provide useful constraints.

Within 10 years, it is plausible that cost-effective sequencing methods
will provide haplotypes for samples. However, the availability of haplo-
types for some individuals in the pedigree does not obviate the need for
phasing the unsampled individuals. Algorithms such as the one presented
here provide consistent resolutions for the ancestry of each haplotype
and yield haplotype assignments for pedigree members whose DNA is
unavailable. Notice that phasing the unsampled individuals is (nearly)



equivalent to the problem of finding the recombinations that produced
the observed haplotypes.

There are a number of open problems, and further work is needed to
take full advantage of the information provided by both genotype and
sequence data. For instance, other population genetic models could be
applied to the founder haplotypes. These models have the added benefit
of inferring which recombinations occurred in the pedigree versus in the
ancestral haplotypes. Another important question for sequencing data
is how best to take advantage of known information about identity by
descent.

PhyloPed Implementation and Supplementary Materials.
Available at: http://phyloped.icsi.berkeley.edu/phyloped/
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