
TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 1

Store Buffer Design for Multibanked Data
Caches

Enrique Torres, Member, IEEE, Pablo Ibáñez , Member, IEEE, Vı́ctor Viñals-Yúfera, Member, IEEE,
and José M. Llaberı́a

Abstract —This paper focuses on how to design a Store Buffer (STB) well suited to first-level multibanked data caches. The goal is
to forward data from in-flight stores into dependent loads within the latency of a cache bank. Taking into account the store lifetime
in the processor pipeline and the data forwarding behavior, we propose a particular two-level STB design in which forwarding is
done speculatively from a distributed first-level STB made of extremely small banks, whereas a centralized, second-level STB enforces
correct store-load ordering. Besides, the two-level STB admits two simplifications that leave performance almost unchanged. Regarding
the second-level STB we suggest to remove its data forwarding capability, while regarding the first-level STB it is possible: i) to remove
the instruction age checking, and ii) to compare only the less significant address bits.
Experimentation covers both integer and floating point codes executing in dynamically scheduled processors. Following our guidelines
and running SPEC-2K over an 8-way processor, a two-level STB with four 8-entry banks in the first level performs similarly to an ideal,
single-level STB with 128-entry banks working at the first-level cache latency. Also, we show that the proposed two-level design is
suitable for a memory-latency tolerant processor.

Index Terms —Cache memories, Computer architecture, Memory architecture, Pipeline processing.

✦

1 INTRODUCTION

OUT-OF-ORDER processors with precise exceptions
require the enforcement of the memory depen-

dences and the writing of the data cache in program
order. However, in order to speed up the program exe-
cution, processors also add a functionality called store-
to-load data forwarding (data forwarding, for short).
Data forwarding allows an in-flight load reading a given
address to take its data from the previous and nearest, if
any, non-committed store writing to the same address.

In order to accomplish the former functions, namely,
memory dependence enforcement, in-order data cache
writing and data forwarding, a structure usually called
Store Buffer (STB) is employed. A conventional STB
keeps store instructions in program order until their in-
order commitment. Usually an STB is designed as a
circular buffer whose entries are allocated to stores at
Dispatch and deallocated at Commit (Fig. 1). Instruction
dispatch stalls if a store instruction finds all the STB en-
tries already allocated. When a store instruction executes,
it writes its address and data in the allocated entry. As
entries are allocated in order, the relative age of two store
instructions can be determined by the physical location
they occupy in the circular buffer (age ordering).

• Enrique Torres, Pablo Ibáñez and Vı́ctor Viñals-Yúfera are with the
Department of Computer Science and Systems Engineering, and with the
Aragón Institute of Engineering Research (I3A), University of Zaragoza,
Spain. They are HiPEAC members. Enrique Torres is on sabbatical leave
at the ICSI, University of California at Berkeley.
E-mail: see http://webdiis.unizar.es/gaz/miembros.html

• José M. Llaberı́a is with the Department of Computer Architecture,
Polytechnic University of Barcelona, Spain. He is HiPEAC member.

data

cache

CAM RAM

load

load

data

match

address data

STB

address

tag ag
e

se
le

ct
io

n

Fig. 1. Conventional Store Buffer (STB) and simplified
load data path.

The data forwarding logic of the STB consists of a store
address CAM, an age-based selection logic and a data RAM.
A load instruction proceeds as follow: i) when a load
instruction is dispatched it is tagged with an identifier
of the entry allocated to the last store instruction in the
STB; ii) after address computation, the load instruction
concurrently accesses the data cache and the STB; iii)
inside the STB the CAM structure associatively searches
for stores matching the load address. Then the age based
selection logic discards all the stores younger than the
load (using the identifier and a mask logic) and picks up
the youngest store among the remaining ones (using a
priority encoder). Age ordering of STB entries simplifies
the design of the age selection logic; iv) finally, the data
associated with the selected store (if any) is read from the
data RAM and forwarded into the load. If a load address
does not properly match within the STB, the load data
will come from the data cache.

The STB is a critical component of out-of-order proces-

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 2

sors because its data forwarding logic is in the critical
path that sets the load-to-use latency. If the STB latency
is longer than the L1 cache latency, the scheduling of
load-dependent instructions becomes complicated and
performance is severely affected. Moreover, the whole
circuitry that identifies and forwards data is complex
and incurs long delays as STB size increases. If the trend
towards faster processor clocks, wider pipelines and an
increasing number of in-flight instructions goes on, the
latency problem posed by the STB may worsen [1].

On the other hand, multibanked L1 data caches are
considered good candidates to support wide pipelines in
superscalar processors [2], [10], [11], [12], [16], [30], [31].
Multibanking provides low latency and high bandwidth
by physically splitting storage in independent, single-
ported cache banks. But the latency of a big multiported
STB is longer than the latency of a small single-ported
cache bank [19]. Therefore, a multibanked L1 data cache
organization calls for a distributed STB, and distribution
can be achieved in a straightforward way by placing
independent, single-ported STB banks next to each L1
cache bank.

V. Zyuban and P.M. Kogge use a single-level dis-
tributed STB [31]. In their work, when a store is dis-
patched to the selected Issue Queue, an STB entry is
allocated to the store in all STB banks. Because store-
load ordering enforcement and data forwarding are
performed by STB banks, stores can not be removed
from the STB banks until they commit, and Dispatch is
stalled whenever STB becomes full. As we will show
later, a single-level distributed STB, if undersized, can
seriously limit performance due to Dispatch stalls. But,
on the other hand, increasing the STB size may increase
its latency [19].

Our goal is to speculatively forward data from non-
committed stores to loads at the same latency of a
cache bank. By looking into the store lifetime and the
data forwarding behavior we propose to decouple the
different tasks performed by a monolithic STB using
a two-level STB [29]. Forwarding is speculatively done
from a distributed first-level STB (STB1) made up of very
small banks optimized for low latency. A few cycles
later, a second-level STB (STB2) checks the speculative
forwarding made by the STB1 and, if required, enforces
correct memory access ordering by taking the proper
recovery action.

The STB2 entries are allocated in program order when
stores are dispatched and deallocated when they com-
mit, as in a conventional STB. However, as we observe
that stores forward data in a narrow window of time
after store execution, we propose to delay the allocation
of STB1 entries to stores until they execute, and allow
STB1 entry deallocation to proceed before stores commit.
If an STB1 bank is full, new entries are retrieved in FIFO
order. This STB1 allocation/deallocation policy prevents
stalling Dispatch when STB1 banks are full and enables
reducing the STB1 size. Moreover, as we allocate STB1
entries at the Execution stage, every store will only

occupy a single STB1 entry in a single STB1 bank (just
the right one).

The proposed two-level organization allows us to
trade complexity for a small performance decrease.
Namely, we will show that selecting a forwarding store
from the STB1 without considering ages, and comparing
only a subset of the load/store addresses degrades per-
formance marginally. We will also show that the STB2
can be completely freed from the task of forwarding
data, and that the STB2 latency is not a limiting factor
of processor performance.

We evaluate the two-level STB design in a sliced mem-
ory pipeline framework, but the concept is applicable
to other multibanked L1 data cache organizations (for
instance those with a second queue which schedules
memory accesses contending for banks [11], [12], [30]). In
a sliced memory pipeline, the memory pipeline becomes
split into simple and independent slices where every
cache bank is coupled with an address generation unit,
and the target cache bank is predicted before reaching
the Issue Queue stage [16], [30].

This paper is structured as follows: Section 2 outlines
the processor-cache model being used and motivates the
work. Section 3 provides a set of design guidelines for
a two-level STB system. Section 4 details the simulation
environment. Section 5 analyzes performance of integer
benchmarks for the basic two-level STB system working
with line-interleaved multibanked L1 caches. Section 6
introduces several design alternatives aimed at improv-
ing the performance and at reducing the complexity of
the proposed two-level STB. Section 7 is a performance
summary showing figures for integer and floating point
benchmarks. Section 8 extends analysis to memory-
latency tolerant processors. Section 9 discusses related
work and Section 10 concludes the paper.

2 MOTIVATION

The STB is in the critical path of the load execution.
The STB latency increases with the number of STB ports
and entries [1], [19]. If the STB latency is longer than
the L1 cache latency, the scheduling of load-dependent
instructions becomes complicated and performance is
severely affected. To show that, in this section we an-
alyze the performance of a processor with a single-level
distributed STB as a function of the size and latency
of each STB bank. We also characterize the utilization
of a distributed STB showing the average lifetime of a
committed store.

Next we begin outlining the processor and multi-
banked L1 cache models.

2.1 Processor and multibanked L1 cache models

We assume a first-level data cache made of several
address-interleaved L1 cache banks operating as inde-
pendent, pipelined, memory slices [30]. A memory slice
have an Address Generation Unit (AGU), a cache bank and
an STB bank (Fig. 2). We also assume an Issue Queue

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 3

Dispatch Issue
Queue

Register
File

ALU 3 / Data Cache &
STB Bank 3AGU 3

to other ALUs

ALU 0 /
AGU 0

Data Cache &
STB Bank 0

Fig. 2. Simplified data-path example with a four-banked
L1 cache and single level distributed STB.

(IQ) with a fixed number of scheduler ports shared
among integer ALUs and memory slices. Load and store
instructions are dispatched to the IQ carrying a predic-
tion on their target cache bank which was generated
by a Bank Predictor accessed in the front-end stages of
the processor pipeline. The IQ uses the prediction in
order to issue memory instructions to the predicted slice.
Whenever a bank misprediction arises, the mispredicted
load or store instruction is reissued from the IQ to the
right bank.

2.2 Single-level distributed STB

An STB can be distributed in a straight way by placing
independent, single-ported STB banks close to each L1
cache bank [31], an approach we call single-level dis-
tributed STB (Fig. 2). Each STB bank is only responsible
for the address subset mapped to its cache bank com-
panion. Forwarding data to loads and enforcing store-
load ordering is thus locally performed at each STB bank.
In this approach, an entry is allocated in all STB banks
when a store is dispatched because the store address
(and also the destination bank) is still unknown. Later
on, when the store executes in the right slice, a single STB
bank entry is filled. Eventually, when the store commits,
the entries are simultaneously deallocated in all STB
banks. Thus, the STB bank size determines the maximum
number of in-flight stores.

A single-level distributed STB, if undersized, can seri-
ously limit performance due to Dispatch stalls. Besides,
increasing the STB size may increase its latency, which in
turn also limits performance. Next, we study how single-
level distributed STB performance depends on the STB
bank size and latency. After that, we analyze how STB
entries are used during store lifetime.

For these experiments we model an 8-way dynami-
cally scheduled processor with four memory slices and
a 256-entry Reorder Buffer having in-flight up to 128
loads and 128 stores (a number large enough not to
stall Dispatch). More details of cache and processor pa-
rameters, memory pipeline, benchmarks, and simulation
methodology are given in Section 4.

2.3 Processor performance versus number of STB
entries

Fig. 3 shows the variation of the average IPC of SPECint-
2K benchmarks in the simulated processor with a single-
level distributed STB (1L) when the number of entries of

4 6 8 12 16 32 64 128
1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

2.25

STB entries per bank

IPC

1L

Fig. 3. Single-level distributed STB (1L) with four banks.
IPC harmonic mean vs. number of entries per STB bank.
X-axis in logarithmic scale.

each STB bank goes from 4 to 128 (notice that the total
STB size is four times that number). The computed IPC
assumes that the STB and the L1 cache banks have the
same latency, no matter the simulated STB size.

As can be seen, if undersized, a single-level distributed
STB limits performance severely: 4-entry STB banks
show a 40.5% IPC drop relative to 128-entry STB banks.
Below 32 entries the IPC slope is very steep (-9.3% IPC
from 32 to 16 entries). A 32-entry STB sets the IPC 3.7%
below the upper bound. From 64 entries on the STB does
not limit processor performance.

2.4 Processor performance versus STB latency

The STB logic that checks dependences and forwards
data is complex and incurs long delays as the STB size
increases [1], [19]. Besides, if the STB latency is higher
than the L1 cache latency, there appear structural haz-
ards and the scheduling of load-dependent instructions
complicates. To take the two latencies into considera-
tion every load is tagged on Dispatch with a predicted
latency (either L1 cache latency or STB latency). Af-
terwards, resource allocation1 and speculative wake-up
of dependent instructions take place according to the
predicted latency.

It is easy to predict what loads are going to be for-
warded by the STB and tag them with the STB latency.
In this section we will use a simple, tagless, 4K-entry
bimodal predictor, since the obtained IPC is similar when
using an oracle-like predictor (under 1% IPC improve-
ment across all tested configurations).

In order to determine the negative effect on perfor-
mance of having an STB slower than the L1 cache, we
simulate a system with four 32-entry STB banks varying
their latency from 2 to 7 cycles (2 cycles equal the L1
cache latency, hollow bar in Fig. 4). We simulate two
models of latency prediction. The first model blindly
predicts L1 cache latency for all loads (black bars). The
second model (grey bars) uses the bimodal predictor.

1. Resource examples are bypass network and write ports to register
file; their management adds complexity to the IQ scheduler.

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 4

IPC

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2 3 4 5 6 7

STB latency (cycles)

Blind Predictor
Bimodal Predictor

Fig. 4. Single-level distributed STB performance for four
32-entry STB banks. STB bank access latency increases
from 2 cycles (L1 cache latency, hollow bar) to 7 cycles
(L1 cache latency plus 5 cycles). Black and grey bars
show the IPC harmonic mean with a blind predictor, and
a 4K-entry bimodal predictor of loads to be forwarded by
STB, respectively.

17.7 cycles 28.7 cycles

8.5

Dispatch CommitExecute

77.6%

100%

last data forwarding

forwarding
cyclesall

stores

stores

22.4%

committed
stores

allocate fill de-allocate

Fig. 5. Store lifetime in a single-level distributed STB with
four 128-entry STB banks (arithmetic means).

As we can see, if loads take just one extra cycle to
reach, access and get data from STB banks, the IPC loss
resulting from blind prediction is almost 8%. Even if we
add a bimodal predictor, the IPC degrades 3% per each
additional cycle.

2.5 STB entry utilization

Looking at STB utilization is a key factor to overcoming
the size-latency tradeoff and increase STB performance.
Fig. 5 indirectly shows STB utilization by plotting the
average lifetime of a committed store.

On average, each store spends 46.4 cycles in STB: 17.7
cycles from Dispatch to Execution and 28.7 cycles from
Execution to Commit. When stores execute they fill a
single STB bank with a <data, address> pair, but only
22.4% of stores will forward data to some load. Stores
tend to forward data soon after they execute: on average,
the last use of an STB entry occurs 8.5 cycles after the
store execution (75% of data forwarding occur within
the next 7 cycles, and 90% within the next 14 cycles).
Therefore, from a data forwarding standpoint we notice
that: a) only a few STB entries forward data to loads, b)
the data forwarding is performed in a narrow window
of time after store execution, and c) each STB entry is

Issue
Queue

Register
File

L1 Cache, Bank 0

L1 Cache, Bank 3

STB1

STB2

STB1ALU 3/
AGU 3

ALU 0/
AGU 0

to other ALUs

Dispatch

Fig. 6. Simplified data-path example with a two-level
distributed STB and a four-banked L1 cache.

allocated too early (at dispatch time) and deallocated too
late (at commit time).

Summarizing, we can conclude that big (and possibly
slow) STB banks are required in order not to stall Dis-
patch, but STB latencies larger than cache access times
hurt performance. And another important fact: from a
forwarding perspective STB entries are poorly managed.

3 BASIC TWO-LEVEL STB DESIGN GUIDE-
LINES

Our goal is to keep STB bank latency equal to or under
L1 cache bank latency. However, allocating and deallo-
cating STB entries to stores at Dispatch and Commit,
respectively, requires large (and slow) STB banks in order
not to stall Dispatch frequently.

To overcome this limitation, we propose a two-level
STB design with allocation and filling policies specific to
each level (Fig. 6). A two-level STB decouples the dif-
ferent tasks performed by a single-level STB as follows.
The STB1 only performs speculative data forwarding,
while the STB2 checks store-load ordering, performs
data forwarding at STB2 speed (whenever STB1 fails to
do it), and updates caches in program order. Thus, a
load instruction can obtain the data from either an L1
cache bank, an STB1 bank or the STB2. Anyway, we will
blindly predict L1 cache latency for all load instructions.

3.1 First level STB description

The STB1 has to be as simple and small as possible
to match the L1 cache bank latency. To that end, we
distribute the STB1 in single-ported banks and reduce
their size by limiting the number of cycles an STB1
entry remains allocated to a particular store. From the
forwarding behavior exhibited by stores (Fig. 5), we
can limit the time a store stays in the STB1, probably
without performance losses, if we enforce the following
two guidelines:

1. Delay allocation of STB1 entries until stores reach
Execution stage. Thus, before execution no store wastes
STB1 entries. Delaying allocation could shorten store
lifetime in STB1 around one third as we pointed out in
Fig. 5. Allocation is now done after bank check, and thus
a single entry is allocated to each store in only one single
STB1 bank.

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 5

2. Deallocate STB1 entries before stores commit. We
can deallocate entries early because most data forward-
ing happens in a short period of time (see Fig. 5 again).
This fact suggests a FIFO STB1 replacement policy, so
that the Dispatch stage never stalls even though the STB1
gets full. As entries are allocated in issue order, an STB1
bank keeps only the stores most recently issued to that
bank.

As we will see in Section 5, following these guidelines
allows us to design a two-level STB with very small STB1
banks (8 entries). However, the entry allocation in the
STB1 is not based on the store instruction age but on
the issue order. That is, the entry index in the STB1 does
not reflect the relative instruction age with respect to
other entries. Therefore, the age based selection logic of
our STB1 requires a CAM structure that explicitly keeps
store instruction ages (age-CAM) instead of the mask
logic of a conventional STB. The age-CAM compares the
load age with the age of each STB entry and activates
those entries older than the load. Next, the youngest of
the activated entries is selected.

Notwithstanding, in Section 6.3 we will see that the
two-level organization allows us to trade STB1 complex-
ity for a small performance decrease. Namely, we will
show that selecting a forwarding store from STB1 can
be done without considering ages (removing age-based
selection). The STB1 selects the last-inserted store with
a matching address. So, the store that forwards data is
selected by using only a priority encoder, eliminating
the CAM structure that explicitly keeps store age in our
first STB1 design. Note also that the mask logic of a
conventional STB is not required. Moreover, complexity
can be further reduced by comparing only a subset of
the load/store data addresses (partial address comparison).
Both simplifications, removing age-based selection and
partial address comparison, help to match the latencies
of STB1 and L1 cache even more, while also reducing
area and energy consumption of the STB1.

3.2 Second level STB description

On the other hand, the STB2 keeps all in-flight stores but
it is placed outside the load-use critical path. At dispatch
time, as in a conventional STB, entries are allocated to
stores in STB2, where they remain until they commit.
So, Dispatch stalls when running out of STB2 entries,
irrespective of the STB1 size. Notice that the maximum
number of in-flight stores is the number of STB2 entries.

As STB1 banks do not keep all in-flight stores, any
data supplied to a load by the L1cache/STB1 ensemble
is speculative and must be verified in the STB2. To that
end, the STB2 acts as a conventional STB, selecting the
forwarding store if it exists. Besides, the identifier of this
store is compared with the identifier of the forwarding
store in STB1. This operation, which we call data forward-
ing check, detects a forwarding misspeculation whenever a
load finds a matching store in the STB2 and the load was
not forwarded from the STB1 or it was forwarded by a

wrong store. In these cases STB2 starts a recovery action
which consists in the non-selective re-dispatch to the IQ
of all the instructions younger than the load (see Section
4.3).

Alternatively, the load-dependent instructions could
be re-issued selectively from the IQ as in any other
latency misprediction. However, the extra IQ occupancy
of the selective method and the small number of data for-
warding misspeculations make the non-selective mech-
anism a better option [29].

In our simulations, as a STB2 we model a conventional
multiported STB. Nevertheless, in Section 6.2 we will
show that STB2 can be completely freed from the task of
data forwarding. Additionally, some published STB op-
timizations targeted at reducing area (number of ports),
energy consumption (banking, filtering accesses) or both
[3], [17], [21], can be added to our STB2 profitably.

The default STB2 forwarding check latency is 8 cycles:
AGU (1cycle), TLB (1cycle), STB2 (4 latency cycles plus
2 transport cycles); anyway, as we will see in Section 5,
performance does not depend on the STB2 latency.

4 SIMULATION ENVIRONMENT

We have modified SimpleScalar 3.0c [4] in order to model
a Reorder Buffer and separate integer and floating point
IQs. Latency prediction (cache bank, L1 cache hit/miss,
etc.), speculative memory instruction disambiguation,
speculative instruction issue, and recovery have been
carefully modelled. The memory hierarchy has three
cache levels and a set of interconnection buses whose
contention has also been modelled. We assume an out-
of-order 8-issue processor with eight stages from Fetch
to IQ and one stage between IQ and Execution. Other
processor and memory parameters are listed in Table 1.

Next, Section 4.1 presents the memory data path and
the load/store pipeline timing. Section 4.2 describes how
data is distributed across L1 banks and how memory
instructions are routed to an L1 bank. Section 4.3 ex-
plains how the processor recovers from mispredictions,
and finally Section 4.4 shows the benchmarks used in
our simulations.

4.1 Memory data path

The L1 data cache is sliced into four independent paths
(Fig. 7). Each path has an address generation unit (AGU),
a cache bank and an STB1 bank.

The cache bank has only one read/write port shared
between loads, committed stores and refills from the L2
cache. Cache banks are tied to the L2 cache through a sin-
gle refill bus of 32 bytes which also supports forwarding
from STB2 (later we remove this capability). From each
STB1/cache ensemble, there is a single data path to the
Bypass Network shared among supplies from the STB1
bank, the L1 cache bank, the L2 refill, and the STB2 data
forwarding.

Requests to the L2 cache are managed by an L2 Queue
(L2Q) after accessing L2 tags as Intel Itanium II does [15].

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 6

TABLE 1
Microarchitecture parameters.

fetch and decode
width

8 L1 I-cache 64KB, 4-way
L2 Unified Cache

256 kB, 8-way

branch predictor:
hybrid

(bimodal, gshare)
16 bits

L1 D-cache 2 cycles 16 banks, 7 cycles

banks 4 line size 128 B

reorder buffer entries 256 ports/bank 1 r/w L2 MHSR 8 entries
in-flight loads 128 bank size 8 KB, 4-way

L3 Unified Cache
4MB, 16-way

in-flight stores 128 line size 32 B 19 cycles

integer/FP IQ entries 64 / 32 L1 MHSR 16 entries line size 128 B
integer/FP units 8 / 4 Store-Set Pred. 4K-entry SSI Table Bus L3-main mem. 8 cycles/chunk

128-entry LFS Table main mem. lat. 200 cycles

M
S

H
R

L2Q

B0

B1

B14

B15

B1

B2

B3

to Memory

fr
om

L1 Data Cache

L2 Data Cache

L3 Datacommitted
stores Cache

to Bypass

STB1

B0

STB2

Cache

refill from L2
and forward
from STB2

Bank
AGU0

A
G

U
s

fr
om

A
G

U
s

Network

Fig. 7. Simplified memory hierarchy and data-path show-
ing a two-level distributed STB. For clarity only the con-
nection detail in Bank0 is shown.

The L2Q can send up to four non-conflicting requests per
cycle to the sixteen interleaved 2-cycle cache banks (16B
interleaving). A refill to the L2 cache takes eight banks.
The model can stand 16 primary L1 misses and 8 L2
misses.

Enforcing load/store ordering. Stores are not issued
until both data and address registers become avail-
able. Memory dependence prediction is used to execute
load instructions and their dependent instructions before
knowing the addresses accessed by older store instruc-
tions. We use the Store-Sets disambiguation predictor as
described in [5]. The predictor is accessed in the front-
end stages of the processor pipeline and the predicted
ordering is managed by the IQ, which will delay the
issue of a load until an older store has been issued
if a dependency between them has been predicted.
Memory ordering misspeculations are discovered when
stores execute, possibly many cycles after loads and their
dependent instructions have left the IQ.

Load instructions. After the Address Generation (in
the AGU), a memory access takes one cycle to access
the L1 cache bank and the STB1 in parallel, plus an extra
cycle to reach the bypass network (line 1 in Fig. 8, cycles
2-3). The forwarding speculation check performed by
STB2 is known several cycles past the L1 cache latency
(line 2, cycle 8), but only affects load execution if an STB1

forwarding misspeculation arises. A load experiencing
an L1 cache miss is reissued from the IQ in time to catch
the data coming from the L2 cache refill (line 3, cycle 7).
On an L2 cache miss, a request is sent to the L3 cache
(line 4) which in case of hit delivers data to the bypass
network in cycle 22.

Store instructions. The L1 cache is write-through and
no-write-allocate. Store instructions are committed to L2,
and whenever they hit the L1 cache (filtered by the L2
cache directory) they are placed in an 8-entry coalescing
write buffer local to each cache bank (not shown in Fig.
7). Write buffers update L1 cache banks in unused cycles.

4.2 L1 data distribution (cache & STB1 banks)

Banks are line-interleaved. Because memory instruction
routing is made from the IQ prior to computing ad-
dresses, a bank prediction is required by the IQ sched-
uler. Bank prediction is done in the front-end stages
of the processor pipeline and bank check is made con-
currently with address computation by evaluating the
expression A+B=K without carry propagation [6]. The
IQ is notified during the cycle following bank check (line
1, IQn, cycle 2 in Fig. 8). A correct bank prediction does
not need further information, but a misprediction comes
along with the correct bank number. So, the IQ will be
able to route the mispredicted memory instruction to the
correct bank.

As a bank predictor we have chosen a global predictor
because it is able to yield several predictions per cycle
easily [22]. We have also chosen to predict each address
bit separately (2 bits for 4 banks) [30]. As a bit predictor
we have used an enhanced skewed binary predictor, origi-
nally proposed by Michaud et al. for branch prediction
[14]. Every bit predictor has 8K entries for the three
required tables and a history length of 13, totalling
9KB per predictor. Table 2 shows the accuracy of four-
bank predictors. Each individual execution of a memory
instruction has been classified according to the bank
prediction outcome (right or wrong). Store instructions
roughly have half the bank mispredictions experienced
by load instructions. See [28] for a detailed comparison
of bank predictors.

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 7

line cycle 1 2 3 4 5 6 7 8 9 10 11 12 . . . 18 19 20 21 22

L1/STB1 hit

BC IQn

1 AGU TLB/m m WB

STB1

2 STB2 access tr STB2 bus1

3 L2 cache hit MSHR Tag2 L2Q tr L2 Bank bus1

4 L3 cache hit tr Tag3 tr L3 data bus2 L2 Bank bus1

Fig. 8. Memory pipeline timing after the register read stage. BC, IQn, tr, stand for Bank Check, IQ notification, and
transport cycles, respectively. busX and TagX stand for bus use and tag access, respectively. TLB and m stand for
Translation Look-aside Buffer access and L1 cache access (two cycles, 2 and 3), respectively. The cycles before L2
hit and L3 hit are used to determine L1 miss and L2 miss, respectively.

TABLE 2
Bank predictor accuracy for 4 banks (%).

load instr. store instr. all memory instr.
right 89.32 95.38 91.46
wrong 10.68 4.62 8.54

4.3 Recovery from misspeculations

L1 cache latency is blindly predicted for all loads, and
thus dependent instructions are speculatively woken-
up after the L1 cache latency elapses. Therefore, there
are three sources of load latency misprediction: bank
misprediction, L1 cache miss and store-load forwarding mis-
speculation. Additionally, the processor has two more
sources of misspeculation: memory ordering misspeculation
and branch misprediction.

The modelled processor implements three recovery
mechanisms: namely, recovery from Fetch (branch mis-
prediction), recovery from the Renamed Instruction Buffer
(Memory ordering and store-load forwarding misspec-
ulations), and recovery from the IQ (bank misprediction
and L1 cache miss).

Recovery from Fetch. All the instructions younger
than the branch instruction are flushed out of the
pipeline and the instruction fetch is redirected to the
correct target instruction. The minimum latency is 13
cycles.

Recovery from the IQ. In order to allow recovering
from the IQ, all speculatively issued instructions that
depend on a load are kept in the IQ until all load
predictions are verified (first, bank check in AGU; next,
tag check in the cache bank). Once a latency mispredic-
tion has been detected, the already issued instructions
dependent on the mispredicted load are re-issued at the
right moment, either after the load is re-routed to the
correct bank or after the cache miss is serviced. Notice
that recovery is selective because re-issuing only affects
dependent instructions.

Recovery from the RIB. Usually, to recover from
a memory ordering misspeculation the load and all
younger instructions (dependent or not) are flushed out
of the pipeline and subsequently re-fetched from the in-

Dispatch Issue
Queue

Register Rename

RIB

Fig. 9. Renamed Instruction Buffer (RIB) and its location
in the processor.

struction cache. However, the re-fetched instructions are
just the same ones that have been flushed. So, to reduce
the misspeculation penalty, recovery can be supported
by a structure that keeps already renamed instructions;
we call this structure Renamed Instruction Buffer (RIB).
As recovery is not done at the Fetch stage, we do not
have to checkpoint the Register Map Table2 on every
load instruction as it is done with branch instructions.

The RIB is a FIFO buffer located between the Reg-
ister Rename and the Dispatch stages, able to keep
all the renamed in-flight instructions (Fig. 9). So, the
RIB is continuously being filled, in program order, with
instructions already renamed and tagged with all the
predictions computed in the early stages. To simplify the
RIB design we have chosen not to update RIB entries
when a memory instruction is executed and a bank
misprediction is discovered, even though in not doing
so a further recovery from the RIB would re-experience
the same bank misprediction.

Recovery consists in re-dispatching the offending load
and all subsequent instructions to the IQ, taking them
sequentially from the RIB. So, the RIB has only one
write and one read port. A similar buffer was suggested
by Lebeck et al. in [13] to tolerate long latency cache
misses. However, that proposal is more complex because
it makes a selective recovery and updates the buffer
information when instructions execute.

4.4 Workload

We use SPECint2K compiled to Alpha ISA, simulat-
ing a contiguous run of 100 million instructions from

2. Table used to rename logical registers to physical registers.

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 8

TABLE 3
Simulated SPECint2K benchmarks and input data set.

Bench. Data set Bench. Data set Bench. Data set

bzip2 program-ref gzip program-ref twolf ref
crafty ref mcf ref vortex one-ref
eon rushmeier-ref parser ref vpr route-ref
gcc 166-ref perl diffmail-ref

TABLE 4
Simulated SPECfp2K benchmarks and input data set.

Bench. Data set Bench. Data set Bench. Data set

ammp ref facerec ref mgrid ref
applu ref fma3d ref sixtrack ref
apsi ref galgel ref swim ref
art 110-ref lucas ref wupwise ref

equake ref mesa ref

SimPoints [24] after a warming-up of 200 million in-
structions. We also use SPECfp2K for a limited set of
experiments. Table 3 and Table 4 show input data sets
for SPECint2K and SPECfp2K, respectively.

All figures (except otherwise noted) show the IPC
harmonic mean (y-axis) across different STB bank sizes
(x-axis in logarithmic scale). Other measures show arith-
metic mean values. We have computed the reported IPCs
by excluding MCF because it is strongly memory-bound.
Nevertheless, a summary of individual program results,
including MCF, is shown in Section 7.

5 BASIC TWO-LEVEL STB PERFORMANCE

In this section we present the performance results ob-
tained by our basic two-level STB proposal explained
in Section 3. We also compare the basic two-level STB
with the single-level STB, and with the two-level system
previously proposed by H. Akkary et al. [1]. Finally, we
analyze the sensitivity of the basic two-level STB system
performance to the STB2 latency.

H. Akkary et al. proposed a two-level STB in the
context of a processor without multibanked cache [1].
In this organization, both the STB1 and the STB2 are
monolithics (not multibanked). STB1 entries are allocated
to stores at dispatch time in FIFO order. When the STB1
becomes full, the oldest store is moved to the STB2.
Both STBs can forward data but at different latencies.
In order to reduce the number of STB2 accesses they
use a Membership Test Buffer (MTB), which detects the
forwarding misspeculations. We model a multibanked
version of this proposal (2L MTB). As the MTB has the
latency of an L1 cache access, on a forwarding misspecu-
lation 2L MTB uses the same recovery mechanism than
on a latency misspeculation. In our simulations we use
an oracle predictor instead of the MTB and thus the
2L MTB results are optimistic.

Fig. 10a shows variation of the IPC as the number
of STB1 bank entries goes from 4 to 128 for four STB
systems: the single-level STB system presented in Section
2.2 (1L), the basic two-level STB presented in Section 3
(2L), the basic two-level STB when reducing the STB2
latency from 8 cycles to just the cache latency plus 1
cycle (2L 1c), and the 2L MTB system. The computed
IPC assumes that the first-level STB access latency is
equal to the L1 cache latency, no matter the STB size
we simulate.

For all STB bank sizes the proposed two-level system
outperforms the single-level system and the 2L MTB
system. This is so because the proposed two-level system
makes better use of STB1 bank entries, allocating them
only when data is available and deallocating them as
new stores enter the STB1. Therefore, the performance
gap increases as the number of STB1 entries decreases.

Fig. 10b presents the STB1 load coverage for the basic
two-level STB (2L) and 2L MTB. Namely, 100% load
coverage means that any load needing data forwarding
from an older in-flight store is fed from the STB1. As
we can see, in our proposed 2L system, even for very
small STB1 banks, the STB1 load coverage is very high.
As an example, only less than 1% of the loads requiring
forwarding (0.13% of the total loads) are not forwarded
from an 8-entry STB1. Note also that below 32 entries
the coverage of 2LMTB is much lower than that of the
proposed 2L system.

In order to get an insight about how the STB2 forward-
ing check latency affects performance, we simulate the
basic two-level STB system again, but this time reducing
the STB2 forwarding check latency from the cache la-
tency plus 5 cycles to the cache latency plus just 1 cycle
(2L 1c). As the number of forwarding misspeculations
is very low, the proposed two-level system has an IPC
which is almost independent of the STB2 latency, see 2L
vs. 2L 1c in Fig. 10a.

Next, in Section 6 we improve the basic two-level
distributed STB design in several ways.

6 DESIGN ENHANCEMENTS

Both the store behavior in the pipeline and the high load
coverage achieved by the basic two-level distributed STB
design suggest several enhancements that we explore in
this section. The first one increases performance and the
last two reduce complexity.

First, as the contention in the issue ports to the mem-
ory slices is an important drawback in sliced mem-
ory pipelines, we propose reducing the IQ contention
by identifying stores that do not forward data (non-
forwarding stores), sending them by any free issue port
to memory, bypassing STB1 and going directly to STB2.
Second, we simplify the STB2 design by removing its
data forwarding capability. Finally, we simplify the STB1
data forwarding logic by eliminating age checking in the
selection logic and reducing the number of address bits
used to compare.

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 9

(a)

 % STB1
load coverage

(b)

STB entries per bank STB entries per bank

IPC

4 6 8 12 16 32 64 128
0

20

40

60

80

100

4 6 8 12 16 32 64 128
1.25

1.35

1.45

1.55

1.65

1.75

1.85

1.95

2.05

2.15

2.25

1L
2L
2L_1c
2L_MTB

Fig. 10. IPC for the single-Level distributed STB (1L), the basic two-Level STB (2L and 2L 1c), and 2L MTB (a).
STB1 load coverage for the basic two-Level STB system and the 2L MTB (b). X-axis in logarithmic scale.

TABLE 5
Non-Forwarding Store Predictor (%).

predicts forward predicts not forward
right 25.45 64.05
wrong 10.03 0.47

6.1 Reducing contention for issue ports to memory

Contention in an L1 multibanked cache appears when
a burst of ready memory instructions are targeted to a
single bank. In this situation, all memory instructions
contend for a single issue port to memory and perfor-
mance may suffer. We have previously seen that the
greatest part of stores do not forward data. Because
this behavior is highly predictable, we could detect such
stores and divert them through any free issue port to
memory, bypassing the STB1 and going directly to the
STB2. To that end, we propose using a predictor we
call Non-Forwarding Store Predictor (NFS predictor) that is
accessed in the front-end stages of the processor pipeline.
Stores classified as non-forwarders can be issued by
any free issue port to memory, thus increasing effective
issue bandwidth. Notice that the NFS predictor is further
acting as a store insertion filter because the STB1 holds
only stores classified as forwarders, which can increase
the STB1 effective capacity.

A trade-off exists in the predictor design. By reduc-
ing the number of stores classified as forwarders, we
reduce contention for issue ports. However, forwarding
misspeculations may increase because more forwarder
stores would be classified as non-forwarders. We design
the predictor in order to reduce stores wrongly classified
as non-forwarders. As an NFS predictor we use a simple
bimodal predictor having 4K counters of 3 bits each
indexed by instruction address.

Table 5 shows some predictor statistics. 64% of stores
are classified as non-forwarders, reducing contention for
issue ports to memory and reducing STB1 pressure.
However, 0.47% of stores which forward data before
committing are wrongly classified as non-forwarders,
causing a forwarding misspeculation.

Fig. 11.a shows the IPC for basic two-level SYB sys-

tems with and without an NFS predictor. The system
with an NFS predictor (2L NFSP) always achieves a
better IPC than a system without it (2L).

In order to separate the contributions of contention
reduction and STB1 store filtering we simulate a system
with an NFS predictor used only to filter store insertion
in the STB1, and not to reduce contention for issue ports
to memory (2L nfsp).

Making use of free issue ports to memory consistently
improves performance across the whole range of STB1
sizes (2L NFSP vs. 2L nfsp). However, by only filtering
store insertion, performance increases for small STB1 of
4-6 entries, but it decreases above 8 entries (2L nfsp vs.
2L).

To explain the performance decrease introduced by
filtering store insertion, in Fig. 11.b we have plotted
the load coverage of a system enhanced with an NFS
predictor (2L NFSP) and a system without it (2L). We
see that an NFS predictor performs well with very small
STB1 banks of 4 or 6 entries. But beyond 6 entries,
load coverage is better without an NFS predictor due to
the 0.47% stores that do forward data but are wrongly
classified (see Table 5).

Summarizing, in spite of the performance loss due
to load coverage decrease, using an NFS predictor in-
creases performance for all analyzed bank sizes because
contention for issue ports to memory is consistently
reduced. This enhancement is particularly important if
store contention is a big issue, for example when cache
bank mirroring is used to increase load bandwidth [8],
[25], [29].

6.2 Removing STB2 data forwarding capability

In order to forward data from STB2 we need as many
data read ports as there are cache banks, and the IQ
Scheduler must handle two latencies for load instruc-
tions. To that end, a load is first issued by the IQ
hoping that it will be serviced from the STB1/L1cache
and then the IQ speculatively wakes up its dependent
instructions. If the STB2 discovers later that a forwarding
misspeculation has arisen, a recovery action is under-
taken. The load is tagged so that it can be re-issued by

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 10

4 6 8 12 16 32 64 128
1.95

2.00

2.05

2.10

2.15

2.20

STB entries per bank

IPC

2L
2L_nfsp
2L_NFSP

4 6 8 12 16 32 64 128
90

91

92

93

94

95

96

97

98

99

100

2L
2L_NFSP

STB entries per bank

a) b)

 % STB1
load coverage

Fig. 11. a) IPC for 2-level STB systems with an NFS predictor (2L NFSP), without it (2L), and with an NFS predictor
used only to filter store insertion in the STB1 (2L nfsp). b) STB1 Load coverage for two two-level systems with a
Non-Forwarding Store predictor (2L NFSP) and without it (2L).

4 6 8 12 16 32 64 128
1.95

2.00

2.05

2.10

2.15

2.20

STB entries per bank

IPC

2L_NFSP
2L_NFSP_NoFW

Fig. 12. IPC for 2-Level STB systems having STB2 for-
warding capability (2L NFSP) or not (2L NFSP NoFW).

the IQ now assuming forwarding from the STB2.

As STB2 service is very infrequent (see Fig. 10b) we
remove the STB2 store-load data forwarding capability.
In turn, this STB2 simplification allows a simpler IQ
scheduler (single load latency) and also removes the
STB2 data-forwarding read ports and their counterpart
input ports to the Bypass Network. Now, every time
the STB2 discovers a forwarding misspeculation, the
load is re-issued by the IQ in order to obtain the data
from the cache after the offending store commits. By
looking at simulations, we have realized that usually
after a forwarding misspeculation, by the time the load
instruction is re-executed for the first time, the matching
store has already written the cache.

Fig. 12 shows a system with STB2 forward-
ing capability (2L NFSP) and a system without it
(2L NFSP NoFW). Both are basic two-level STB systems
with an NFS predictor.

We have found a performance decrease ranging from
0.8% to 0.2% across all tested STB1 bank sizes. In partic-
ular, for 8-entry STB1 banks, the IPC loss is about 0.3%.
Therefore, the forwarding capability can be removed
from STB2 without noticeably hurting performance. This
loss of performance comes from a small number of loads
waiting until a matching store commits.

6.3 Simplifying STB1 data forwarding logic

As we have seen in Section 3, our main objective is to
design a store-load forwarding logic as fast as a small
single-ported cache bank. In this section we present
two STB1 simplifications which help to reduce the STB1
latency: first, we eliminate the age-based selection circuit,
and second, we reduce the number of bits used to com-
pare addresses. These simplifications add new forms of
data forwarding misspeculations to the already existing
ones. However, the overall two-level STB operation, in
which the STB2 checks the data forwarding for all loads,
supports all these new forms of misspeculation without
adding new complexity.

6.3.1 Removing age-based selection
This simplification removes the CAM structure (age-
CAM) that compares ages in the selection logic. Now,
the most recently allocated entry having a matching
address will forward data. Explicit ages are still needed
but they are not used within the critical STB1 data
forwarding path. Namely, explicit ages are needed to:
i) purge the proper STB1 entries (branch misprediction,
data forwarding misspeculation, etc.), and ii) label the
loads fed by the STB1 so that the STB2 can detect
forwarding misspeculations.

Because entries are allocated out of order, purging
can make holes in STB1 (for instance, purging due to
branch misprediction). In order to keep STB1 complexity
as low as possible we propose not using compacting
circuitry, even though effective capacity may shrink. All
simulations below have been done according to this
assumption.

When removing age-based selection the following cor-
ner case can arise: let us suppose a store following, in
program order, a load to the same address carrying a
wrong bank prediction. If the store is issued immediately
after the load, the load reaches the correct STB1 bank
after the store. A few cycles later the STB2 discovers
this load suffering a forwarding misspeculation, and it
starts a (non-selective) recovery from the RIB. As the
load is re-dispatched from the RIB keeping the same

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 11

address
pr

og
ra

m
 o

rd
er

A: store Z
B: store Z STB1 STB1 STB1 STB1
C: store Y C A B B head

load Z D C D C tail

D: store Z i) ii) iii) iv)

Fig. 13. Four examples of Forwarding Misspeculations
in a 2-level STB design with 2-entry STB1 banks. Store
instructions are inserted by the tail and removed by the
head.

bank prediction (wrong), the initial situation happens
once again.

To make sure that program execution makes forward
progress and that a load is not endlessly serviced from a
younger store, the load is tagged when it is re-dispatched
so that its re-execution does not check the STB1 again.

6.3.2 Partial address comparison

This simplification reduces the size of each entry in
the CAM structure that compares addresses (address-
CAM). We compare only the N least significant bits of
load/store addresses. In general, partial address com-
parison is used in some processors to conservatively
delay the load execution on a partial address match with
previous stores [15]. Instead, we will use partial address
comparison to speculatively forward data from a store
to a load on a partial address match.

6.3.3 Misspeculation examples

Fig. 13 shows a code in which a Load instruction should
be fed from data of the Store labelled B. We assume
all addresses converge into a 2-entry STB1 bank, and
each example shows a possible misspeculation arising
when the Load instruction finds the STB1 filled with the
contents depicted. Entries in the STB1 are assigned FIFO
as stores A,B,C and D are executing in any relative order.
In all examples store B has already been executed but it
is still not committed.

The first two examples (i, ii) happen in an STB1
without simplification, and we assume Store B could
have been deallocated from the STB1 by the execution of
other stores or that Store B could never even have been
inserted in the STB1 after being filtered by the NFSP.
In the first case (i), data is wrongly supplied by the L1
cache as there is no older store in the STB1 matching the
load address. In the second case (ii), data from store A is
wrongly forwarded by the STB1 because Store A is older
than the load and their addresses match.

The third example (iii) shows a forwarding misspecu-
lation appearing when removing the age-based selection
circuit out of the STB1. Store B is present in the STB1
but data is wrongly forwarded from the younger store
D because it is the last executed store having the load
address.

The last example (iv) shows a forwarding misspec-
ulation appearing when the STB1 compares only an

4 6 8 12 16 32 64 128
1.95

2.00

2.05

2.10

2.15

2.20IPC

STB entries per bank

2L_NFSP_NoFW
2L_NFSP_NoFW_NoAGE
2L_NFSP_NoFW_NoAGE_@12
2L_NFSP_NoFW_NoAGE_@10
2L_NFSP_NoFW_NoAGE_@8

Fig. 14. IPC for 2-level STB systems with explicit
age checking (2L NFSP NoFW), without age checking
(2L NFSP NoFW NoAGE), and with a partial address
comparison of n bits (2L NFSP NoFW NoAGE @n).

address bit subset. In this case, the data will be wrongly
forwarded from store C as long as the selected address
bit subset has the same value in addresses Y and Z.

6.3.4 Performance impact of the STB1 simplifications
Fig. 14 shows the IPC for several two-level systems. All
of them are basic two-level STB systems with an NFS
predictor and an STB2 without the forwarding capability.

The baseline in this section is 2L NFSP NoFW,
where the STB1 forwards data by both checking in-
struction ages and doing full address comparison. In
2L NFSP NoFW NoAGE, the STB1 performs full ad-
dress comparison but does not check ages. In the other
three systems (2L NFSP NoFW NoAGE @n) the STB1
does not check ages and compares only n address bits
taken from the n+2 least significant address bits, where
the 2 removed bits correspond to the bank number.

Removing age checking degrades performance around
0.6% across all STB1 bank sizes (2L NFSP NoFW vs.
2L NFSP NoFW NoAGE). Thus, store selection can be
done regardless of age with negligible performance loss.
Degradation happens mainly when a store forwards data
to an older load.

Once age checking has been removed,
comparing only 12 address bits causes a negligible
performance degradation (0.1%) across all
STB1 bank sizes (2L NFSP NoFW NoAGE vs.
2L NFSP NoFW NoAGE @12). Degradation increases
when using 10 or 8 address bits (around 0.8% and 3.3%,
respectively). Thus, store selection can be done with
partial-address comparison.

7 INDIVIDUAL PROGRAM RESULTS

In this section we summarize the impact of all design
decisions by looking at the individual program behavior
of SPECint2K (Fig. 15) and SPECfp2K (Fig. 16).

Both figures show performance of a single-level
distributed system (1L) and two implementations
of a two-level system. The 1L system uses 128-
entry STB banks which are reachable within L1

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 12

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rt

ex vp
r

H
M

 (
m

cf
)

H
M

1L
2L_RIB_NSFP
2L_RIB_NFSP_NoFW_NoAGE_@12

IPC

Fig. 15. Individual IPC for all SPECint2K programs.

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

H
M

1L
2L_RIB_NSFP
2L_RIB_NFSP_NoFW_NoAGE_@12

IPC

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

Fig. 16. Individual IPC for all SPECfp2K programs.

cache latency. Both two-level systems (2L NFSP and
2L NFSP NoFW NoAGE @12) have 8-entry STB1
banks and use an NFS predictor. The second two-level
system removes STB2 forwarding and has an STB1 that
does not check instruction ages and compares only 12
bits of data addresses.

As Fig. 15 shows, all SPECint2K programs follow the
same trends. We can see that removing STB2 forwarding
capability, performing STB1 data forwarding without age
checking and comparing a 12-bit address subset end up
in negligible performance losses. So, a two-level STB
system with a single load latency and made up of simple
8-entry STB1 banks performs similar to an ideal 128-
entry one-level STB.

With respect to SPECfp2K, Fig. 16 shows that the
behavior of the three configurations is also very similar
across all programs. The two-level systems with 8-entry
STB1 banks performs just like the idealized one-level
system. Comparing both two-level systems, we can con-
clude that the simplifications added reduce performance
by a negligible 0.1%.

The sensitivity of the IPC to the number of STB1
entries in SPECfp2K is not shown because performance
is almost flat; the IPC variation is within 0.4% across
all reported STB1 sizes. In order to explain such results,
Table 6 presents some key statistics about the forwarding
behavior of SPECint2K and SPECfp2K.

First and second rows show the average percentage of
Store instructions and forwarding Store instructions, respec-
tively. The last two rows show Store lifetime in a single-

TABLE 6
Forwarding behavior for SPEC2K (INT & FP) in a

single-level distributed STB with 128-entry STB banks.

INT FP

of stores / # of instructions 12.6 % 9.6 %

of forwarding stores / # of stores 22.4 % 11 %

Store lifetime
(in cycles)

From Dispatch to Commit 46.4 88

From Execution to last forwarding 8.5 18

level distributed STB with 128-entry STB banks.
Time from Dispatch to Commit is the average number

of cycles a store has allocated an STB2 entry, while
Time from Execution to last forwarding is the minimum
average time we would like a forwarding store to have
an STB1 entry allocated. Both SPECfp2K lifetimes double
those of SPECint2K, and so the required number of STB
entries seems to have to increase in both levels to sustain
performance.

However, this higher demand does not imply perfor-
mance degradation because it is compensated by a lower
number of store instructions (from 12.6% to 9.6%) and
by a lower number of forwarding stores (from 22.4% to
11%).

8 MEMORY-LATENCY TOLERANT PROCES-
SORS

In order to hide the effect of long memory access delays,
some techniques which increase the number of in-flight
instructions have been proposed [1], [7], [13], [26]. Of
course, such techniques increase the number of store
instructions to be kept in STB.

In this section we study the behavior of a two-level
STB working in a memory-latency tolerant (MLT) proces-
sor. To model such a processor we have set the Reorder
Buffer, Instruction Queue and STB2 to 2048 entries, and
the Miss Request Queue to 64 entries in our simulator.

Fig. 17 shows the IPC for SPECint2K and SPECfp2K,
for an efficient two-level STB system working both
in the baseline processor described in Table 1
(2L NFSP NoFW NoAGE @12) and in the MLT
processor (MLTP 2L NFSP NoFW NoAGE @12). We
have also plotted the performance of the one-level
distributed STB and the Akkary two-level STB working
in the MLT processor (MLTP 1L and MLTP 2L MTB)
[1].

As shown in other works, increasing the number
of in-flight instructions has a great impact on float-
ing point performance but a limited one on integer
performance (MLTP 2L NFSP NoFW NoAGE @12 vs.
2L NFSP NoFW NoAGE @12) [1], [8], [26].

The MLT processor with one-level STB requires a large
number of STB entries to achieve a good performance
(MLTP 1L). The MLTP 2L MTB performance decreases

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 13

STB entries per bank

4 6 8 12 16 32 64 2048
1.40

1.60

1.80

2.00

2.20

2.40IPC

4 6 8 12 16 32 64 2048
1.00

1.5

2.00

2.50

3.00

3.50

4.00IPC

STB entries per bankMLTP_2L_RIB_NFSP_NoFW_NoAGE_@12
2L_RIB_NFSP_NoFW_NoAGE_@12
MLTP_1L
MLTP_2L_MTB

SPECint2k SPECfp2k

Fig. 17. SPECint2k and SPECfp2k IPC for efficient two-level STB systems working in the MLT processor
(MLTP 2L NFSP NoFW NoAGE @12) and in the baseline processor (2L NFSP NoFW NoAGE @12). Also
shown is a one-Level distributed STB and the Akkary two-level STB working in the MLT processor (MLTP 1L and
MLTP 2L MTB).

TABLE 7
Forwarding behavior for SPEC2K (INT & FP) in a

single-level distributed STB with 2048-entry STB banks
working in an MLT Processor.

INT FP

of stores / # of instructions 12.6 % 9.6 %

of forwarding stores / # of stores 28 % 18 %

Store lifetime
(in cycles)

From Dispatch to Commit 207.5 320.2

From Execution to last forwarding 10 15.7

a 10% for SPECint2k and a 11% for SPECfp2k when
reducing the STB1 bank size from 2048 to 8 entries.
However, when considering our two-level STB, perfor-
mance is almost independent of the number of STB1
entries (MLTP 2L NFSP NoFW NoAGE @12). Namely,
reducing the number of STB1 bank entries from 2048
to 8 performs only 0.6% worse for SPECint2k, and 2%
for SPECfp2k. So, our two-level STB proposal seems to
be a valuable design option for memory-latency tolerant
processors.

To get an insight into such good results of the pro-
posed two-level system, Table 7 shows the forwarding
behavior of SPECint2K and SPECfp2K executing on the
MLT processor.

When comparing the forwarding behavior of MLT and
base processors (Table 6) we see a significant increase
in the time a store remains within the pipeline (from
Dispatch to Commit time it gets multiplied by four).
As there are more in-flight instructions, the number of
forwarding stores increases 25% and 64% for SPECint2K
and SPECfp2K, respectively. However, the time from
Execution to last forwarding barely increases or even
decreases (from 18 to 15.7 cycles in SPECfp2K). This tem-
poral locality in the store-to-load data forwarding, which
is the underlying cause of the good results achieved

by the proposed two-level STB design, seems to be a
quality of the workload and the out-of-order execution
model. The temporal locality can be explained in two
ways, either the store and its dependent loads are close
together in the instruction stream, or, when they are
apart, instructions between them belong to a separate
dependent chain and are executed before or after them.

Finally, notice that an MLT processor with a two-level
STB having the largest number of STB1 entries (2048)
performs better than an MLT processor with an equally
sized one-level STB. This is because the two-level STB
has an NFS predictor which reduces contention in the
issue ports to memory.

9 RELATED WORK

Yoaz et al. introduce the concept of Sliced Memory
Pipeline and exemplify it with a two-banked first-level
cache [30]. They propose to steer store instructions to
both banks. However, we have shown that memory
issue port contention is a problem and consequently,
spreading stores to all STB banks can hurt performance.

Zyuban et al. partition a Load/Store Queue (LSQ)
into banks [31]. When dispatching a store, an entry
is allocated in all LSQ banks and it remains allocated
until the store commits. A large number of LSQ entries
is needed not to stall Dispatch, as we have shown in
Section 3.

Racunas and Patt propose a new dynamic data dis-
tribution policy for a multibanked L1 cache [18]. As in
the preceding work, they use a partitioned STB (local
STB) whose entries are allocated to stores at dispatch
time and deallocated at commit time. Therefore, local
STB banks need a large number of entries not to stall
Dispatch. Allocation to a local STB bank is done using
bank prediction. Store information (address, data, etc.)
has to be transferred between local STB banks in two
situations: i) when a store allocation misprediction hap-
pens, and ii) when a cache line is dynamically transferred

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 14

from one bank to another, in which case all local STB
entries related to that line have to be moved from the
initial bank to the target bank. When transferring stores
from one bank to another, room should be assured in
the target bank. Local STB banks use age information
to decide which store instruction forwards data when
several stores match a load address; on the other hand, a
global STB with forwarding capability is used to forward
data to all loads experiencing bank mispredictions.

In contrast to the two proposals above, we can use
STB1 banks with a very small number of entries because
they are allocated late and deallocated early. As STB1
entries are allocated just after checking the predicted
bank, our design does not need inter-bank communi-
cation. Besides, our two-level proposal enables a low-
complexity design which has STB1 banks that do not use
age information nor full-address comparison to specula-
tively forward data, and which has an STB2 that does
not require any forwarding capability.

Akkary et al. propose a hierarchical store queue or-
ganization to work along with a centralized cache on a
Pentium 4-like processor (one load per cycle) [1]. It con-
sists of a fast STB1 plus a much larger and slower back-
up STB2 (both centralized) and a Membership Test Buffer
(MTB) to reduce the number of searches in the STB2. The
MTB is on the load execution critical path. Moreover,
the MTB is managed out-of-order and speculatively.
Thus, maintaining precisely its contents is difficult. In
this paper we model an oracle MTB and therefore the
conflicting stores and the false positives from loads that
match younger stores do not exist. We show that the
performance of this approach is outperformed by our
proposal. In a later work Gandhi et al. propose a new,
centralized, two-level STB scheme [9]. In the absence of
long-latency load cache misses a conventional one-level
STB performs all the duties required. In the shadow of
such a long-latency cache miss they switch responsibility
to a two-level STB made up of a first-level forwarding
cache and a second-level simplified STB2. In this second
operating mode, forwarding is mainly done through a
specific forwarding cache, which is speculatively written
by stores in execution order. After a cache miss service, a
limited form of speculative forwarding through the STB2
is also used, which avoids associative search by using
indexed references to the STB2.

Because our first-level STB is a multibanked structure
and entry allocation is delayed until store execution, very
small STB1 banks suffice for good performance. There-
fore, associative search is limited to very few entries.
Also, we evaluate our multibanked STB1 proposal in a
multibanked cache configuration which requires analyz-
ing issues such as how to manage multiple STB1 banks
and how to cope with memory issue port contention.
Moreover, we suggest simple designs for both the STB1
(no age checking, partial-address comparison) and the
STB2 (no forwarding).

Baugh et al. [3], and Roth [20] use a two-level STB
design in which data forwarding is restricted to the first

level. On the one hand, Baugh et al. use a centralized
STB1 whose entries are allocated in program order at
dispatch time but only by those store instructions pre-
dicted as forwarders [3]. Furthermore, to reduce the
STB1 search bandwidth they use a simple predictor
to predict which load instructions might require for-
warding. Instead, we propose a distributed STB1 whose
entries are allocated at Execution, together with a Non-
Forwarding Store Predictor that reduces contention in
the issue ports to memory. Like us, their second-level
STB is used only as a checking device, but it is split in
address-interleaved banks and its entries are allocated at
Execution.

On the other hand, Roth uses a centralized queue
(FSQ1) as an STB1 in parallel with a multibanked
forwarding buffer (F1) which keeps unordered stores
and handles simple forwarding cases [20]. FSQ1 entries
are allocated in program order by those stores which
forwarded incorrectly from F1 in the past. Likewise,
loads that were incorrectly fed from the F1 in the past
are steered to the FSQ1. The second level STB is a
FIFO buffer used only for store commit. Forwarding
misspeculations are discovered by compelling selected
(vulnerable) loads to re-access the data cache at commit
time. In contrast, our proposal does not have to split the
load/store stream among forwarding sources, because
the STB1 is the only forwarding provider.

T. Sha et al. propose eliminating the associative search
in age-ordered STBs by using two predictors [23]. One of
them identifies, for each load, the most likely forwarding
STB entry. The other predictor is used to delay difficult-
to-predict loads until all but the youngest of their poten-
tial forwarding stores have committed.

Stone et al. suggest using an address-indexed store-
forwarding cache to perform speculative store-load for-
warding, together with an address-indexed memory
disambiguation mechanism [27]. Dependences among
memory instructions are predicted and enforced by the
instruction scheduler.

In order to eliminate load searches in the Store Queue,
Setthumadhavan et al. propose using a Bloom filter [21].
They also use another filter to decide which loads should
be kept in the Load Queue, thus reducing the Store
Queue bandwidth and the Load Queue size. Similarly,
Park et al. reduce the STB search bandwidth by using
a Store-Load pair predictor based on the Store-sets pre-
dictor [17]. They also split the STB into multiple smaller
queues with variable latencies. The ideas in both papers
could be applied to our second-level STB in order to
reduce power consumption and the number of STB2
ports by either reducing the number of searches or the
number of entries to be searched.

10 CONCLUSION

High-performance out-of-order processors need to effi-
ciently forward data among non-committed stores and
loads. The STB is the structure in charge of that; it keeps

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 15

all in-flight stores, it supports address-based associative
search and age-based selection for every issued load, and
it forwards the right data whenever a match takes place.
In a balanced design size and bandwidth of the STB
should be proportional to the instruction window size
and the issue width, respectively. Large and multiported
STBs, can either compromise the processor cycle time,
increase the forwarding latency or both.

In this paper we find out that the store-load forward-
ing is performed in a narrow window of time after store
execution, showing up that from a forwarding point of
view the conventional allocation/deallocation policy of
STB entries can be improved a lot. Therefore, we suggest
a two-level STB in which the first level only deals with
data forwarding (speculatively). Owing to the temporal
locality of the store-load forwarding activity that first-
level STB (STB1) can be really small and therefore very
fast (as fast as the L1 cache). The second-level STB
(STB2), out of the data forwarding critical path, checks
the speculative forwarding and, if necessary, starts re-
covery. The two-level STB design has been applied to
a processor with a sliced memory pipeline, where in
consequence STB1 is distributed in several banks.

An STB2 entry is allocated at store dispatch, and
deallocated at store commit. However, the allocation of
an STB1 entry is delayed until the store executes, and
the deallocation can proceed before the store commits.
If an STB1 bank is full, entries are managed in FIFO
order. Such STB1 allocation/deallocation policy allows
reducing the STB1 size, allocating the entry only in the
right STB1 bank, and not stalling the Dispatch stage
when STB1 banks become full.

Moreover, the proposed role distribution between lev-
els enables three design simplifications that do not hurt
performance noticeably: i) forwarding capability can be
removed from the STB2, ii) the STB1 does not use
instruction age to select a forwarding store, and finally
iii) the number of bits used to compare addresses in the
STB1 can be greatly reduced.

A non-forwarding store predictor can be used to re-
duce contention for the issue ports to memory. Stores
having a non-forwarding prediction are issued by any
free memory port, thus increasing effective issue band-
width.

Following our guidelines a two-level STB with 8-entry
STB1 banks (STB1 without age checking and with partial
address comparison, and STB2 without forwarding ca-
pability) performs similarly to an ideal single-level STB
with 128-entry banks working at first-level cache latency.
Both the concept and the guidelines are suitable to other
multibanked L1 data cache organizations (for instance
those with a second queue which schedules memory
accesses for banks). Microarchitectural techniques such
as multithreading aimed at improving throughput, and
the trend towards more in-flight instructions to hide the
ever growing memory latency are going to increase STB
storage requirements. In this latter scenario we have
shown that our proposal can help in designing a fitted

STB.

ACKNOWLEDGMENTS

This work was supported in part by Diputación Gen-
eral de Aragón grant ”gaZ: Grupo Consolidado de In-
vestigación”, Spanish Ministry of Education and Sci-
ence grants TIN2007-66423, TIN2007-60625, Consolider
CSD2007-00050, and the european HiPEAC-2 NoE.

REFERENCES

[1] H. Akkary, R. Rajwar, S. T. Srinivasan, Checkpoint Processing
and Recovery: Towards Scalable Large Instruction Window Pro-
cessors, Proc. 36th International Symp. on Microarchitecture (MI-
CRO), pp. 423-434. Dec. 2003.

[2] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, Dynami-
cally managing the communication-parallelism trade-off in future
clustered processors, Proc. 30th International Symp. on Computer
Architecture (ISCA), pp. 275287, June 2003.

[3] L. Baugh and C. Zilles, Decomposing the Load-Store Queue
by Function for Power Reduction and Scalability, IBM P=AC2̂
Conference, pp. 52-61, Oct. 2004.

[4] D.C. Burger and T.M. Austin, The SimpleScalar Tool Set, Version
2.0, UW Madison Computer Science Technical Report #1342, June
1997.

[5] G.Z. Chrysos and J.S. Emer, Memory Dependence Prediction
Using Store Sets, Proc. 25th International Symp. on Computer
Architecture (ISCA), pp. 142153, June 1998.

[6] J. Cortadella and J.M. Llabera, Evaluation of A+B=K Conditions
without Carry Propagation, IEEE Trans. Computers, vol. 41, no.
11, pp. 1484-1488, Nov. 1992.

[7] A. Cristal, O. J. Santana, M. Valero, ”Toward Kilo-instruction
Processors,” ACM Trans. Architecture and Code Optimization
(TACO), vol. 1, no. 4, pp. 389-417, Dec. 2004.

[8] J. Edmondson et al., ”Internal Organization of the Alpha 21164,
a 300-MHz, 64-Bit, Quad-Issue, CMOS RISC Microprocessor,”
Digital Technical Journal, vol. 7, no. 1, pp. 119-135, January 1995.

[9] A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan and K. Lai,
”Scalable Load and Store Processing in Latency Tolerant Proces-
sors,” Proc. 32th International Symp. on Computer Architecture
(ISCA), pp. 446-457, June 2005.

[10] P. Hsu, Design of the R8000 Microprocessor, IEEE Micro, vol.14,
pp. 23-33, April 1994.

[11] C. N. Keltcher, K. J. McGrath, A. Ahmed, P. Conway C. N.
Keltcher, K. J. McGrath, A. Ahmed, P. Conway, The AMD Opteron
Processor for Multiprocessor Servers, IEEE Micro, vol. 23, no. 2,
pp. 66-76 March/April 2003.

[12] A. Kumar, The HP PA-8000 RISC CPU, IEEE Micro, vol. 17, no.
2, pp. 27-32, March-April 1997.

[13] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg,
A Large, Fast Instruction Window for Tolerating Cache Misses,
Proc. 29th International Symp. on Computer Architecture (ISCA),
pp. 59-70, May 2002.

[14] P. Michaud, A. Seznec, and R. Uhlig, Trading Conflict and
Capacity Aliasing in Conditional Branch Predictors, Proc. 24th
International Symp. on Computer Architecture (ISCA), pp. 292-
303, June 1997.

[15] S.D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T.J.
Sullivan, and T. Grutkowski, The implementation of the Itanium
2 Microprocessor, IEEE Journal Solid State Circuits, vol. 37, no.
11, pp. 1448-1460, Nov. 2002.

[16] H. Neefs, H. Vandierendonck, and K. De Bosschere, A Technique
for High Bandwidth and Deterministic Low Latency Load/Store
Accesses to Multiple Cache Banks, Proc. 6th International Symp.
High-Performance Computer Architecture (HPCA), pp. 313-324,
Jan. 2000.

[17] I. Park, L. O. Chong, and T.N. Vijaykumar, Reducing Design
Complexity of the Load/Store Queue, Proc. 36th IEEE/ACM
International Symp. on Microarchitecture (MICRO), pp. 411-422.
Dec. 2003.

[18] C. Racunas and Y.N. Patt, Partitioned First-Level Cache Design for
Clustered Microarchitectures, Proc. 17th International Conference
on Supercomputing (ICS), pp. 22-31. June 2003.

TRANSACTIONS ON COMPUTER, VOL. X, NO. Y, FEBRUARY 2009 16

[19] A. Roth, ”A High-Bandwidth Load/Store Unit for Single- and
Multi-Threaded Processors”, CIS Technical Report MS-CIS-04-09,
Univ. of Pennsylvania, Jun. 2004.

[20] A. Roth. ”Store Vulnerability Window (SVW): Re-Execution Fil-
tering for Enhanced Load Optimization,” Proc. 32th International
Symp. on Computer Architecture (ISCA), pp. 458-468, June 2005.

[21] S. Sethumadhavan, R. Desikan, D. Burger, C.R. Moore, and S.W.
Keckler, Scalable Hardware Memory Disambiguation for High
ILP Processors, Proc. 36th IEEE/ACM International Symp. on
Microarchitecture (MICRO), pp. 399-410. Dec. 2003.

[22] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design Tradeoffs
for the Alpha EV8 Conditional Branch Predictor, Proc. 29th Inter-
national Symp. on Computer Architecture (ISCA), pp. 295-306,
May 2002.

[23] T. Sha, M. Martin and A. Roth, Scalable Store-Load Forwarding
via Store Queue Index Prediction, Proc. 38th IEEE/ACM Inter-
national Symp. on Microarchitecture (MICRO), pp. 159-170. Nov.
2005.

[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, Automat-
ically Characterizing Large Scale Program Behaviour, Proc. 10th
international conference on Architectural support for program-
ming languages and operating systems (ASPLOS), pp. 45-57, Oct.
2002.

[25] G.S. Sohi and M. Franklin, High-Bandwidth Memory Systems
for Superscalar Processors, Proc. international conference on Ar-
chitectural support for programming languages and operating
systems (ASPLOS), pp. 53-62, April 1991.

[26] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
”Continual Flow Pipelines, ” Proc. 11th international conference
on Architectural support for programming languages and oper-
ating systems (ASPLOS), pp. 107-119, October 2004.

[27] S. S. Stone, K. M. Woley and M. I. Frank, Address-Indexed Mem-
ory Disambiguation and Store-to-Load Forwarding, Proc. 38th
IEEE/ACM International Symp. on Microarchitecture (MICRO),
pp. 171-182. Nov. 2005.

[28] F. Torres, P. Ibáñez, V. Viñals, and J. M. Llaberı́a, Contents Man-
agement in First-Level Multibanked Data Caches, Proc. 10th In-
ternatinal Euro-Par 2004 Conference, Lecture Notes on Computer
Science 3149, pp. 516-524, Sept. 2004.

[29] F. Torres, P. Ibáñez, V. Viñals, and J. M. Llaberı́a, Store Buffer
Desing for Multibanked Data Caches, Proc. 32th International
Symp. on Computer Architecture (ISCA), pp. 469-480, June 2005.

[30] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, Speculation Tech-
niques for Improving Load Related Instruction Scheduling, Proc.
26th International Symp. on Computer Architecture (ISCA), pp.
42-53, May 1999.

[31] V. Zyuban and P.M. Kogge, Inherently Lower-Power High-
Performance Superscalar Architectures, IEEE Trans. Computers,
vol. 50, no. 3, pp. 268-285, March 2001.

Enrique Torres received the MS degree in com-
puter science from the Polytechnic University of
Catalunya in 1993, and the Ph.D. degree in com-
puting science from the University of Zaragoza
in 2005. He was an assistant professor in the
Polytechnic Schools of the University of Girona.
He is an assistant professor in the Computer
Science and Systems Engineering Department
(DIIS) at the University of Zaragoza, Spain. He is
also on sabbatical leave for study and research
at the University of California in Berkeley where

he is member of the International Computer Science Institute (ICSI).
His research interests include processor microarchitecture, memory
hierarchy, and parallel computer architecture. He is member of the IEEE,
and the IEEE Computer Society. He is also a member of the Aragón
Institute of Engineering Research (I3A), and the European HiPEAC
NoE.

Pablo Ib áñez received the MS degree in com-
puter science from the Polytechnic University of
Catalunya in 1989, and the Ph.D. degree in com-
puter science from the University of Zaragoza
in 1998. He is an associate professor in the
Computer Science and Systems Engineering
Department (DIIS) at the University of Zaragoza,
Spain. His research interests include processor
microarchitecture, memory hierarchy, and paral-
lel computer architecture. He is member of the
IEEE, and the IEEE Computer Society. He is

also a member of the Aragón Institute of Engineering Research (I3A),
and the European HiPEAC NoE.

Vı́ctor Vi ñals-Yúfera received the MS degree in
telecommunication, and the PhD degree in com-
puter science from the Polytechnic University of
Catalunya (UPC) in 1982 and 1987, respectively.
He was associate professor in the Barcelona
School of Informatics (UPC) in the 1983-88 pe-
riod. Currently, he is professor in the Computer
Science and Systems Engineering Department
(DIIS) at the University of Zaragoza, in Zaragoza
(Spain). His research interests include proces-
sor microarchitecture, memory hierarchy and

parallel computer architecture. He is member of the ACM and the
IEEE Computer Society. He is also a member of the Aragón Institute
of Engineering Research (I3A), and the European HiPEAC NoE. He
belongs to the Juslibol Midday Runners Team.

Jos é M. Llaberı́a received the MS degree in
telecommunication, and the MS and the PhD
degrees in computer science from the Polytech-
nic University of Catalunya (UPC) in 1980, 1982,
and 1983, respectively. He is a professor in the
Computer Architecture Department at UPC, in
Barcelona, Spain. His research interests include
high-performance architectures, memory hierar-
chy, multicore architectures, and compiler tech-
nology. He is also a member of the European
HiPEAC NoE.

