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ABSTRACT

Next generation high-throughput sequencing (NGS) is poised to replace array-based
technologies as the experiment of choice for measuring RNA expression levels. Several
groups have demonstrated the power of this new approach (RNA-seq), making significant
and novel contributions and simultaneously proposing methodologies for the analysis of
RNA-seq data. In a typical experiment, millions of short sequences (reads) are sampled
from RNA extracts and mapped back to a reference genome. The number of reads
mapping to each gene is used as proxy for its corresponding RNA concentration. A sig-
nificant challenge in analyzing RNA expression of homologous genes is the large fraction of
the reads that map to multiple locations in the reference genome. Currently, these reads
are either dropped from the analysis, or a naive algorithm is used to estimate their un-
derlying distribution. In this work, we present a rigorous alternative for handling the
reads generated in an RNA-seq experiment within a probabilistic model for RNA-seq data;
we develop maximum likelihood-based methods for estimating the model parameters. In
contrast to previous methods, our model takes into account the fact that the DNA of the
sequenced individual is not a perfect copy of the reference sequence. We show with both
simulated and real RNA-seq data that our new method improves the accuracy and power
of RNA-seq experiments.
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1. INTRODUCTION

Next generation high-throughput sequencing (NGS) technologies are rapidly establishing

themselves as powerful tools for assaying a growing list of cellular properties including sequence

and structural variation, RNA expression levels, alternative splice variants, protein-DNA/RNA inter-

action sites, and chromatin methylation state (Wang et al., 2009; Schuster, 2008; Marioni et al., 2008;

Mortazavi et al., 2008; Johnson et al., 2007; Cokus et al., 2008). NGS enables thousands of megabases of

DNA to be sequenced in a matter of days with very low cost compared to traditional Sanger sequencing.
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It provides tens of millions of short reads, which can then be mapped back to a reference genome or used

for de novo assembly. The advantages offered by NGS are underlined by the sheer wealth of significant

novel discoveries not possible with existing chips and prohibitively expensive with previous sequencing

methods.

As with any new technology, there are a host of new problems to solve in order to maximize the benefit

of the data produced. In the case of NGS, many of the new methods adapt classic problems such as

alignment and assembly to the relatively short, inaccurate, and abundant set of reads. Other methods, such

as the one presented here, aim at optimizing the analysis of NGS assays previously done using microarray-

based technologies such as quantifying gene expression levels from RNA data (RNA-seq). A first step in

such an analysis is mapping the reads to a reference genome and aggregating the counts for each genomic

location. Under the assumption that NGS samples short reads at random from the sequenced sample, the

sequences with higher concentration will produce more reads. In the case of arrays, this corresponds to a

higher probe intensity. Indeed, it was recently shown that the RNA-seq read counts and expression array

probe intensities are highly correlated measurements for RNA expression levels (Mortazavi et al., 2008;

Marioni et al., 2008).

Accurate estimation of the number of reads mapped to each genomic location critically depends on

finding the location on the reference genome from which each read originated. While the majority of the

reads produced by an NGS experiment map to a unique location along the genome, due to short read

length, sequencing errors, and the presence of repetitive elements and homologs, a significant percentage

of reads (up to 30% from the total mappable reads) are mapped to multiple locations (multireads). In the

vast majority of RNA-seq experiments that have been published so far, the analysis consisted of simply

disregarding the multireads from subsequent analyses. However, as previously noted (Mortazavi et al.,

2008), if the multireads are discarded, the expression levels of genes with homologous sequences will be

artificially deflated. If the multireads are split randomly amongst their possible loci, differences in

estimates of expression levels for these genes between conditions will also be diminished leading to

lower power to detect differential gene expression. Several groups have proposed a more intuitive

alternative for dealing with multireads (Hashimoto et al., 2009; Mortazavi et al., 2008). Although there

are small differences, they both adopt a heuristic approach, dividing the multireads amongst their

mapped regions according to the distribution of the uniquely mapped reads in those regions. Intuitively,

if there is a unique segment in the homologous region, then the distribution of the multireads in the

repetitive segment of the region will follow the same distribution as the reads in the unique segment. This

approach, although intuitive, is not optimal, as it does not thoroughly model the contribution of the

multireads.

We note that a number of recent articles (Nicolae et al., 2010; Li et al., 2010; Jiang and Wong, 2009;

Guttman et al., 2010; Trapnell et al., 2010) address related problems for the inference of expression

levels using NGS data. The methods of Guttman et al. (2010) and Trapnell et al. (2010) address the

inference of the transcripts using gapped alignments of reads across splice junctions aggregating reads

into transcript structures followed by inference of expression levels of the inferred transcripts. Trapnell

et al. (2010) use a Bayesian inference procedure based on importance sampling for estimating the

abundance levels of the inferred transcripts. In this work, we assume the genome is fully annotated, and

thus we do not infer the transcripts but focus only on estimation of their abundance levels. Particularly,

we focus on solving the ambiguity in gene expression levels due to reads mapping to multiple locations in

the genome. However, ambiguity can exist in the form of reads mapped to the same gene but coming

from different isoforms. Several methods have been proposed for isoform expression inference (Nicolae

et al., 2010; Li et al., 2010; Jiang and Wong, 2009; Trapnell et al., 2010) ranging from Poisson modeling

of NGS data to Bayesian Network modeling of the short read data. All these methods assume no

difference between reference genome and the genome in the experiment and treat all mismatches as

sequencing errors. Our work focuses specifically on resolving the ambiguity of homologous gene ex-

pression levels due to reads mapped to multiple locations, allowing for variation in the genomic data as

opposed to the reference genome.

In this work, we propose a rigorous framework for handling multireads that is applicable to several

different assays including RNA-seq. In contrast to previous approaches, which were heuristic in their

nature, we propose a generative model that describes the results of an RNA-seq experiment including

multireads. An important feature of our model is that it takes into account genetic variation between

the reference human genome sequence and the sequence of the studied sample, improving accuracy in
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some instances and allowing for simultaneous expression analysis and genotyping. We further developed

algorithms for estimating the parameters of the model using a maximum likelihood approach. We show

through simulations and real RNA-seq data that our method significantly improves the accuracy and

power of detecting differentially expressed genes under several measures. Particularly, our results

on real data demonstrate that, in an RNA-seq experiment comparing two tissues, we can potentially

discover many more genes that are differently expressed between the tissues. In addition, our treatment

of genetic variation allows us to simultaneously call variants (e.g., locations where the sequenced sample

varies from reference), and use the location of these variants to further resolve the location of the

multireads.

An implementation of our method is freely available for download as part of the software package

SeqEm at http://seqem.icsi.berkeley.edu/seqem/.

2. METHODS

We will first describe our probabilistic generative model for an RNA-seq experiment. Let

G¼ (G1, . . . ,Gn) be n contiguous DNA regions representing genes or other potentially expressed se-

quences. For each Gi, we define the RNA cellular concentration of the gene as Pi, s.t.
Pn

i¼ 1 Pi ¼ 1.

P¼ (P1, . . . ,Pn) can be interpreted as the normalized expression levels for the regions in G. Our model

assumes that reads of length l are generated by randomly picking a region R from G according to the

distribution P, and then copying l consecutive positions from R starting at a random position in the gene.

The copying process is error-prone, with probability e(k) for a sequencing error in the kth position of the

read. The model is easily adapted to multi-length reads, but a fixed length is used here for simplicity. This

process is repeated until we have a set of m reads R¼ r1, . . . , rm generated according to the model

described above. The objective of an RNA-seq experiment is to infer P from R.

The first step in an RNA-seq experiment consists of mapping the results of an NGS run to the refer-

ence genome. Mapping methods such as ELAND (http://www.illumina.com), Maq (Li et al., 2008), and

bwa (Li and Durbin, 2009) provide for each read its most probable alignment, its position, and how many

mismatches the alignment contains. Due to sequencing errors, some reads may not align perfectly. Fur-

thermore, multireads align to more than one position, especially if the sequenced regions overlap with

repeated genomic sequences such as homologous genes or repeats like ALUs, LINEs, and SINEs.

In the context of our model, each read ri originated from one of the regions in G, but due to sequencing

errors it may not align perfectly to that region; furthermore, due to repeated sequences, it may also align to

other regions. Put differently, for each region Gj and read ri, we have a probability pij¼P(rjjGi), the

probability of observing rj given that the locus of the read was gene Gi. In practice, for each read rj, this

probability will be close to zero for all but a few regions. The likelihood of observing the m reads can be

written as:

L(P;R)¼
Ym
j¼ 1

P(rjjG,P)¼
Ym
j¼ 1

Xn
i¼ 1

P(Gi)P(rjjGi)¼
Ym
j¼ 1

Xn
i¼ 1

Pipij

Unfortunately, we do not know the expression levels P. A natural way of finding estimates for P is given

in the following problem formulation for the Maximum Likelihood Expression Inference (MLEI) problem:

Definition 1 (MLEI). Given a set or reads r1, � � � , rm and a set of regions G1, � � �Gn, find a probability

Pi for every region Gi so that
P

i Pi¼ 1, and so that the likelihood of the data L¼ Qm
j¼ 1

Pn
i¼ 1 Pipij is

maximized.

As shown in Halperin and Hazan (2006), the likelihood objective function is concave, and the max-

imization of this function is polynomially solvable since there is a separation oracle as long as the

pij coefficients are fixed. We present here an Expectation-Maximization (EM) algorithm for the MLEI

problem. Since this problem is concave, the EM algorithm will converge to the optimal solution.

2.1. EM algorithm for inferring expression levels

We now describe an algorithm for solving the MLEI problem. We are searching for P¼fP1,P2, � � � ,Png
such that the likelihood of the data is maximized. Let M be the underlying true unobserved matching of
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reads to regions. Then the following is an EM algorithm that searches for P that maximizes L(P; R). Let P(t)

be the current estimate of P.

E step:

Q(PjP(t))¼EMjR,P(t) [ log L(P;R,M)]

¼EMjR,P(t) [
Xm
i¼ 1

( logPM(i) þ log piM(i))]

¼
Xm
i¼ 1

Xn
j¼ 1

[( logPj þ log pij) ·
P(t)
j pijPn

j¼ 1 P
(t)
j pij

]

M step:

P(tþ 1) ¼ argmax
P

Q(PjP(t))

¼ argmax
P

[
Xm
i¼ 1

Xn
j¼ 1

aij logPj þ
Xm
i¼ 1

Xn
j¼ 1

aij log pij]

where aij ¼ P(t)
j
pijPn

j¼ 1
P(t)
j
pij
. Given that pij (the probability of read j if it came from region j) are fixed, maxi-

mizing the above function reduces to finding

P(tþ 1) ¼ argmax
P

Xm
i¼ 1

Xn
j¼ 1

aij logPj ¼
Xn
j¼ 1

(
Xm
i¼ 1

aij) logPj

It can be easily shown that the maximum is achieved at:

P(tþ 1)
j ¼

Pm
i¼ 1 aijPm

i¼ 1

Pn
j¼ 1 aij

,8j

Since the likelihood function is concave (Halperin and Hazan, 2006), the above EM is guaranteed to

converge to the optimal solution. Although it does not have the same polynomial time guarantee as the

method in Halperin and Hazan (2006), in practice it outperforms their HAPLOFREQ method. It also

provides a basic framework for the extension of the MLEI problem to the case of joint estimation of

expression levels and variants where the sequenced sample differs from the reference genome. Since

single-nucleotide polymorphisms (SNPs) are the most common source of variation in the human genome,

we focus primarily on single nucleotide variants although other type of variants can be easily incorporated

into the model. The model of reads with SNP variants is more realistic and may also be more powerful for

certain cases, since SNPs can be used to distinguish genomic locations in homologous regions. We

demonstrate in the Results section that the solution obtained by the EM estimates the gene expression levels

P more accurately than the heuristic methods of either ignoring the multireads altogether or dividing them

among the regions they map to.

2.2. Joint estimation of expression levels and SNP variants

In the above formulation, we implicitly assumed that the probabilities pij were fixed and easy to

compute since we had a fixed reference dataset. All differences between reads and reference were

assumed to be due to errors, and pij was simply a function of our model parameters. In practice,

however, the sequenced DNA may be slightly different than the reference genome, particularly in SNP

positions. To model the SNP locations, we introduce a variable Xk ¼fX1
k ,X

2
kg with X1

k ,X
2
k 2 fA,C,T ,Gg

for each genomic position k, which denotes the genotype of the sequenced sample at that location.

The values of Xk are unknown, and they have to be inferred. We can assume that we have a prior

distribution of Xk that corresponds to the distribution of the allele frequencies in the genome; this

distribution can be empirically estimated (depending on the ancestry of the sample) from the HapMap

(The International HapMap Consortium, 2007) data and particularly the ENCODE (The ENCODE
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Project Consortium, 2007) regions, as well as the 1000 genomes project when the data becomes

available. Particularly, we can have an estimate of the distribution of allele frequency across positions

that are not known to be SNPs based on the ENCODE regions, and for the other positions we have their

allele frequencies from dbSNP or from HapMap. Now, if the plausible alignment of read ri to region Gj

spans the positions X1, :::,Xl, assuming that sequencing errors are independent of each position, we can

write pij as:

pij ¼
Y
k

c(Xk, r
k
i , k)

where

c(Xk, r
k
i , k)¼

�(k), if X1
k 6¼ rki ,X

2
k 6¼ rki

1� �(k), if X1
k ¼ rki ,X

2
k ¼ rki

0:5, otherwise

8<
:

e(k) is the error rate function in a read at position k. The dependency of the error rate on the position comes

from technological constraints as the error rate is expected to increases with the length of the reads (see

Dohm et al. [2008] for empirical estimates of Solexa error rates). Based on this, the problem of joint

estimation of expression levels and SNP variants can be defined as follows:

Definition 2 (MLEI-SNP). Given a set or reads r1, � � � , rm and a set of regions G1, � � �Gn, find a

probability Pi for every region Gi and genotype Xk ¼fX1
k ,X

2
kg 2 fA,C,T ,Gg2 for every location k, so thatP

i Pi¼ 1, and so that the likelihood of the data L¼ Qm
j¼ 1

Pn
i¼ 1 Pipij is maximized, where

pij ¼
Ql

k¼ 1 c(Xk, r
k
i , k).

EM extension with SNP variants. In order to maximize the likelihood of the data, we are now looking

for both P¼fP1,P2, � � � ,Png s.t
P

Pi¼ 1 and genotype calls X¼fx1, � � � , xkg for every genomic lo-

cation so that the likelihood of the data L(P,X;R)¼ Qm
j¼ 1

Pn
i¼ 1 Pipij is maximized, where pij is defined

as before:

pij ¼
Y
k

c(Xk, r
k
i , k)

The EM algorithm can be adapted as follows:

E step:

Q(P,XjP(t),X(t))¼EMjR,P(t),X(t) [ log L(P,X;R,M)]

¼EMjR,P(t),X(t) [
Xm
i¼ 1

logPM(i)piM(i)]

¼
Xm
i¼ 1

Xn
j¼ 1

[( logPjpij) ·
P(t)
j pX

(t)

ijPn
j¼ 1 P

(t)
j pX

(t)

ij

]

M step:

(P(tþ 1),X(tþ 1))¼ argmax
P,X

Q(P,XjP(t),X(t))

¼ argmax
P,X

[
Xm
i¼ 1

Xn
j¼ 1

aij logPjpij]

¼ argmax
P,X

[
Xm
i¼ 1

Xn
j¼ 1

aij logPj þ
Xm
i¼ 1

Xn
j¼ 1

aij log pij]

Since the two terms in the above equation are independent, we can maximize them separately. Just as

before the first term in the equation above is maximized when P(tþ 1)
j ¼

Pm

i¼ 1
aijPm

i¼ 1

Pn

j¼ 1
aij
, where

aij ¼ P(t)
j
pX

(t)

ijPn

j¼ 1
P(t)
j
pX

(t)

ij

.
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The second term is more complicated as we need to find X* that maximizes
Pm

i¼ 1

Pn
j¼ 1 aij log pij.

However, since the term depending on pij is a log of a product, we can decompose it into independent

contributions for each genomic location k and optimize each Xk independently. Namely,

Xm
i¼ 1

Xn
j¼ 1

aij log pij ¼
Xm
i¼ 1

Xn
j¼ 1

aij log
Y
k

c(Xk, r
k
i , k)

¼
Xm
i¼ 1

Xn
j¼ 1

aij
X
k

log c(Xk, r
k
i , k)

¼
X
k

X
read i spans k

aij log c(Xk, r
k
i , k)

and thus we set

X(tþ 1)
k ¼ arg max

Xk ¼ (x1
k
, x2

k
)

X
read i spans k

aij log c(Xk, r
k
i , k)

In practice, we can speed up the computations by noticing that, in the M step when finding new estimates

for Xtþ 1
k , we only need to consider locations k, at which there are at least c> 0 mismatches to the reference.

3. RESULTS

In this section, we present results on both simulated and real data sets showing the superior accuracy of

our approach when compared to three previously proposed heuristic approaches for this problem. The first

method we compare to is the standard method that ignores all multireads and estimates the expression

levels P
uniq
i as the percentage of unique reads mapped to region i amongst all uniquely mapped reads. The

second method estimates Pi by dividing the ambiguous reads uniformly between each region it maps to.

Namely, P
unif
i ¼ 1

m

P
j:j maps to i

1
h(i)

, where h(i) is the number of locations read ri maps to. A more intuitive

approach (Hashimoto et al., 2009; Mortazavi et al., 2008) is to divide each read amongst each location it

maps to according to weights, where the weights are given by the distribution of the uniquely mapped reads

in those regions; we denote this method as the weighted approach.

Performance measures. We use two correlated measures for the distance between the estimated and

true distributions of the RNA expression levels P. Pi denotes the true expression level of a gene and P̂Pi is

the estimated expression level. The first measure we use, the error rate, is computed as 1
n

P
i
jPi � P̂Pij

Pi
, and it

quantifies the average distance between the true and the estimated expression level in a region. A second

approach to measure the accuracy of the estimates is the ‘‘goodness-of-fit’’ measure between the two

distributions, in terms of chi-square difference:
P

i
(Pi � P̂Pi)

2

Pi
. This measure is of particular interest as it is

correlated to the power to detect differentially expressed regions.

Simulated datasets. In the first set of experiments, we assessed the performance of our framework on

RNA-seq by simulating short reads based on chromosome 1 from the human genome as a reference

sequence. We focused on known homologous genes, since they are the genes that are most affected by

multireads. To do this, we downloaded the 756 human homologous genes from chromosome 1 from the

Homologene (http://www.ncbi.nlm.nih.gov/homologene/) database. We removed all overlapping genes and

genes with no other homologs in human resulting in 51 genes over 95kb.

The human reference genome does not contain information about possible polymorphisms, however it is

expected that we will see both homozygous and heterozygous variants when sequencing a random individual in

comparison to the reference. Given that the sequencing sample is different from the reference at a locus where

the SNP allele frequency is f, the probability for a heterozygote is 2f (1� f) and for a homozygous variant

different from the reference is f2(1� f)þ f (1� f)2¼ f (1� f). Thus, given that a site is different from the

reference, the probability of a heterozygote is 2/3, and of a homozygote is 1/3, regardless of the allele frequency

f. As done elsewhere (Li et al., 2008), we used this observation when simulating a sample. First we pick a set of

variants (where the sample differs from reference) with a rate of 10�3 (which is the approximate frequency of

SNPs in the genome) and then we randomly set 2/3 of the variants as heterozygous and 1/3 homozygous. In

order to make the simulations as close to the actual data as possible, we also picked genotypes for the sample at

known HapMap SNPs from the distribution given by the HapMap CEU frequencies.
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For each of the 51 homologous genes, we randomly chose Pi according to the uniform distribution, and

normalized so that
P

i Pi¼ 1; Pi represents the true expression rate for gene i. We generated xi reads for this

region, where xi ¼ C · L(i) ·Pi

T
. C is a parameter of the simulation denoting the coverage rate, L(i) is the length

of the gene in base-pairs (we only count the exons) and T is the length of the read. Although currently

available NGS technologies such as Solexa (http://www.illumina.com) or ABI SolID (http://solid

.appliedbiosystems.com/) produce reads of length 20–40 base-pairs it is expected that the read length will

increase dramatically to up to 100 bp and more in the near future. For this reason, we use simulations for

two tag lengths (T¼ 32 and T¼ 100) thus simulating both currently available technologies and future

technological developments. For each read at every location we inserted errors using a rate of e¼ 0.01;

similar results were obtained on simulations using an empirical error model that was estimated by Dohm et

al. (2008) (data not shown). The reads were mapped to chromosome 1 hg18 using the bwa (Li and Durbin,

2009) mapping algorithm with default parameters.

Inferring expression levels in homologous genes. In our first set of results, we compared the EM

algorithms with or without SNP variant calling to previously employed methods. Figure 1 shows that both

EM algorithms outperform the other methods for both 32- and 100-bp length reads as well as for the

different accuracy measures. Indeed for reads of length 32 the error rate decreases from approximately 30%

for the uniq method that uses only the uniquely mapped reads to approximately 20% for both EM methods.

The improvement, although still substantial, is more modest for reads of length 100, probably due to a

smaller number of multireads as compared to reads of length 32.

To further highlight the effect of including the multireads in subsequent analyses as opposed to the

general approach of using only the uniquely mapped reads, we assessed the quality of SNP variant

inference with or without multireads. To maintain a meaningful comparison, we called SNP variants based

on unique reads under the same likelihood method for calling SNPs as in the EM algorithm of Section 2.2.

Table 1 shows the true and false positive rates for SNP variant calling showing that the e–m–snps method

outperforms the uniq method for all studied coverages when compared to the method that employs only the

uniquely mapped reads.

Detecting differential expression. Using the same set of genes as before we simulated pairs of ex-

periments with different expression levels for the genes. Using the true expression levels and a standard chi-

square test (a¼ 0.01), we first computed a set of differentially expressed genes between the experiments

FIG. 1. Accuracy of gene expression inference based on simulated RNA-seq data for different read lengths and

different accuracy measures. Results are given as averages over 100 simulated datasets. The EM methods outperform

the heuristic methods of assigning reads as well as the approach of ignoring multireads.
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which serve as the gold standard ‘‘true’’ differentially expressed genes. We assessed the capacity of

identifying the differentially expressed genes when different methods were used for estimating P0
is. The EM

method shows the overall best performance, area under ROC curve of 0.83, compared to 0.75 for the uniq

method and 0.81, 0.82 for the unif and weighted methods. For a¼ 0.05 cutoff, EM achieves (true positive,

false positive) rates of (97.5%, 24.5%)—compared to (88.4%, 20.8%) for uniq method, (95.9%,26.6%) for

unif method, and (96.6%,26.4%) for weighted method.

Real dataset. We also applied our methods to a real RNA-seq data set from Marioni et al. (2008)

consisting of two runs of an Illumina Genome Analyzer with half of the lanes containing human liver RNA

and half kidney. We mapped all the reads with bwa (Li and Durbin, 2009) to the human genome sequence

build hg18 and counted the number of reads in exons (we used the exon annotation of UCSC genome

browser, http://genome.ucsc.edu/). The read counts per gene were highly correlated across lanes and did not

exhibit a lane effect for most lanes (Marioni et al., 2008). We used the data from lanes one and two from

the first run to estimate kidney and liver expression levels. We used the weighted method and our EM

method to estimate the read counts for each gene. In this case, we do not know the true expression levels of

the genes so we can not report which method is more accurate. Instead, we measure the number of genes

exceeding a 5 · log2 fold change between each of the methods. The 5 log2 fold change threshold we chose

has the property that all genes exceeding this threshold in both the weighted and EM methods also exceed

this threshold on the Affymetrix arrays. This suggests it is so conservative that it is 100% specific with 0

false positives. It would be useful to examine specificity and sensitivity at other thresholds but the true set

of differentially expressed genes (i.e., a gold standard) for making such a comparison does not exist yet, and

thus we restrict ourselves to the extreme 5 log2 fold change.

For genes with uniquely mapped reads, these methods will perform identically, so we restricted our

analysis to the 2207 genes with more than 200 multireads. For this set of homologous genes, our EM

method found 94 highly differentially expressed genes, while the weighted method reported only 86, a

decrease of 8.5%. All of the genes found to be highly differentially expressed using the weighted method

were contained in the set found using EM. To verify that the additional eight genes we found using EM were

not false positives, we examined their expression levels in the GeneAtlas project (Su et al., 2004), a

comprehensive survey of gene expression in human tissues. For seven of the eight additional genes, we

found that GeneAtlas expression levels were consistent with the EM findings; the probe intensities were

greater than 50 in one tissue and less than 10 in the other. Figure 2 shows an example for the gene

ENSG00000138075 (ABCG5). Note that ABCG5 has a known homolog ABCG8, so it is one of the cases

that our method addresses. Only one of these eight genes predicted to be differentially expressed by EM

was not differentially expressed in the GeneAtlas. Overall, these data confirm the increased power of our

method, suggesting that the additional differentially expressed genes found by the EM are true positives.

4. CONCLUSION

Given the dropping cost of sequencing and the numerous advantages that RNA-seq has over expression

array-based experiments, it is likely that in the near future RNA-seq will become a pervasive choice for

measuring cellular RNA expression levels. Many of the analyses conducted so far have utilized varying

Table 1. Variant Calling Rates on Simulated Datasets

with Reads of Length 32 for Various Coverages

Coverage Method TPR FPR

1· uniq 18.00% 2.39E-05

e-m-snps 18.26% 4.97E-05

5· uniq 53.19% 3.27E-05

e-m-snps 55.52% 3.99E-05

10· uniq 69.67% 4.82E-05

e-m-snps 73.55% 4.13E-05

20· uniq 79.23% 3.50E-05

e-m-snps 83.65% 2.26E-05

Results given in averages over 100 simulated datasets.
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methods, and it is currently unclear which strategies will prove to be the most accurate and powerful.

Considering the rich literature discussing proper analysis of microarray data over the last fifteen years, it is

likely that methods for this new technology can be significantly improved.

This work addresses an important aspect of RNA-seq analysis: how to handle reads from homologous and

repetitive elements that map to multiple genomic locations. Our results clearly show that naive approaches

significantly underestimate the true expression of homologous genes. Unlike previous heuristic approaches,

we present methods based on a rigorous probabilistic generative framework for an RNA-seq experiment and

show that our approach consistently outperforms all previous attempts at solving this problem. We also

applied our approach on a real RNA-seq data set to find several new highly differentially expressed genes

when compared to previous approaches; these findings were confirmed by existing expression array data sets.

We have identified several areas of improvement that we plan to address in future work. Currently, our

method is limited to the use of consensus genes and may be improved by additionally modelling isoforms,

splice variants, allelic heterogeneity, and un-annotated genes. In addition, the problem of multireads

extends beyond RNA-seq experiments. For example, in both ChiP-seq and RIp-seq scenarios, array-based

methods are replaced with an NGS approach, and so analysis methods must again handle multireads.

Instead of determining the distribution of multireads as in RNA-seq, a binary signal is returned specifying

whether or not a particular transcription factor binds to a specific genomic location. Solving the multiread

problem in this context can potentially increase the power of detecting interesting loci, particularly when

these loci fall within repetitive elements of the genome.
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FIG. 2. Expression levels of gene ABCG5 in the GeneAtlas (http://biogps.gnf.org) project with high expression in

liver and fetal-liver. Gene ABCG5 is shown to be highly differentially expressed between liver and kidney in Marioni

et al. (2008) RNA-seq data only when using our EM method for inferring gene expression levels.
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