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ABSTRACT

We present two adaptive schemes for dynamically choosing
the number of parallel instances in parallel evolutionary al-
gorithms. This includes the choice of the offspring popula-
tion size in a (1+λ) EA as a special case. Our schemes are
parameterless and they work in a black-box setting where no
knowledge on the problem is available. Both schemes double
the number of instances in case a generation ends without
finding an improvement. In a successful generation, the first
scheme resets the system to one instance, while the second
scheme halves the number of instances. Both schemes pro-
vide near-optimal speed-ups in terms of the parallel time.
We give upper bounds for the asymptotic sequential time
(i. e., the total number of function evaluations) that are not
larger than upper bounds for a corresponding non-parallel
algorithm derived by the fitness-level method.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms

Algorithms, Design, Performance, Theory

Keywords

Parallel evolutionary algorithms, dynamic population size,
island model, spatial structures, offspring populations, run-
time analysis

1. INTRODUCTION
Parallelization is becoming a more and more important

issue for solving difficult optimization problems [1]. Various
implementations of parallel evolutionary algorithms (EAs)
have been applied in the past decades [17]. An obvious
way of using parallelization is to parallelize single opera-
tions of an EA such as executing fitness evaluations on dif-
ferent processors. This particularly applies to EAs using
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large offspring populations. So-called island models use par-
allelization on a higher level. The idea is to parallelize evo-
lution itself, by having subpopulations, called islands, which
evolve in parallel. Good solutions are exchanged between
the islands in a migration process.

One of the most important questions when dealing with
parallel EAs is how to choose the number of processors in or-
der to decrease the parallel optimization time, defined as the
number of generations until an EA has found a global opti-
mum. Assume a setting where we can choose the number of
processors to be allocated, but we have to pay costs for each
processor in each generation it is being used. This situation
is common in cloud computing or in large grids where pro-
cessors are shared with other users. The total cost for all
processors over time is called sequential optimization time.
The task is now to choose the number of processors to be
used such that the parallel optimization time is small, but
at the same time the sequential time is reasonable. Allocat-
ing too many processors would waste computational effort
and hence unnecessarily increase the sequential optimization
time. Allocating too few processors implies a large parallel
optimization time.

During the run of an EA, the “ideal” value for the number
of processors is likely to change over time. One typical situa-
tion is that in the beginning of a run improvements are easy
to obtain and only few processors are needed. The better
the best fitness, the tougher it gets to find further improve-
ments and then more processors are required. It therefore
makes sense to look at adaptive mechanisms that can adjust
the number of processors which are being used during the
run of the EA. This obviously only makes sense in a set-
ting where allocating and deallocating processors on-the-fly
is possible and the cost for these operations and the cost for
the communication between the processors are rather small.
Hence we focus on balancing the parallel and sequential op-
timization times.

In the following we present adaptive schemes for choos-
ing the number of processors that apply both to offspring
populations as well as island models of EAs. We accompany
our schemes by a rigorous theoretical analysis of their run-
ning time. Both schemes double the number of processors
if the current generation fails to produce an offspring that
has larger fitness than the current best fitness value. Other-
wise, if the generation yields an improvement, the number
of processors is decreased again. The difference between the
two schemes lies in the way the number of processors is de-
creased.
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The first scheme, called Scheme A, simply resets the num-
ber of processors to 1; only the best individual or island
survives. This is to avoid an overly large number of pro-
cessors when moving from a situation where improvements
are hard to find to a situation where improvements are easy.
This happens, for instance, if the EA escapes from a local
optimum and then jumps to the basin of attraction of a
better local optimum.

The second scheme, Scheme B, tries to maintain a fair
number of processors over time; it also doubles the popula-
tion size in unsuccessful generations and it halves the pop-
ulation size in successful generations. This strategy makes
more sense in case the EA encounters similar probabilities
for improvements over time. Both schemes are parameterless
and oblivious with respect to the objective function. They
can be applied in a black-box setting where no knowledge is
available about the problem.

In terms of offspring populations we consider the
(1+λ) EA that maintains a single best individual and in
each iteration creates λ offspring. A best offspring replaces
its parent if its fitness is not worse. The λ offspring creations
and function evaluations can be parallelized on λ processors.
Concerning island models, we assume that migration sends
copies of each island’s best individual to each other island in
every generation. So, whenever one island finds an improve-
ment of the current best individual in the system, this is
immediately communicated to all other islands. The island
model then behaves similarly to offspring populations, but
it is more general as the islands can work with populations
of size larger than 1.

To unify the notation for island models and offspring pop-
ulations, we simply speak of the population size in the fol-
lowing; this means the number of islands in the island model
and the offspring population size for the (1+λ) EA, respec-
tively.

For EAs using either Scheme A or B we show that the
expected parallel optimization time can be decreased drasti-
cally. In comparison to the well-known fitness-level method,
in the parallel optimization time for every fitness value the
expected waiting time for an improvement can be replaced
by its logarithm. This can drastically reduce the paral-
lel optimization time, in particular for problems where im-
provements are hard to find. The expected sequential time
remains reasonable. We prove upper bounds on the ex-
pected sequential optimization time that are asymptotically
no larger than upper bounds for a single instance obtained
via the fitness-level method. For problems where the fitness-
level method gives tight bounds, our results show that the
two schemes automatically yield decreased expected parallel
optimization times, without increasing the expected sequen-
tial time.

The mentioned bounds are general in the sense that they
apply to islands running arbitrary elitist algorithms. Exam-
ple applications are given that apply simultaneously to the
(1+λ) EA and to islands of population size 1. Various func-
tions are considered: OneMax, LO, the class of unimodal
functions and Jumpk.

Comparing the different schemes, our results indicate that
Scheme B is more efficient than A, from an asymptotic
perspective, as it quickly reduces the number of proces-
sors, if necessary. This adaptation automatically leads to
optimal or near-optimal parallel optimization times on all
considered examples. On one example Scheme B outper-

forms Scheme A. We also compare these results with tailored
schemes that are allowed to use knowledge on the objective
function.

Besides the main results this paper is also interesting be-
cause of the methods used. We introduce new techniques
from the amortized analysis of algorithms, which represent
natural and effective tools for analyzing adaptive mecha-
nisms. These techniques may find further applications in
the analysis of adaptive stochastic search algorithms.

The remainder of this work is structured as follows. In
Section 2 we review previous work. Section 3 presents the
algorithms and the considered population update schemes.
In Section 4 we provide technical statements that will be
used later on in our analyses and that may also help to un-
derstand the dynamics of the adaptive algorithms. Section 5
then presents general upper bounds for both schemes, while
Section 6 deals with lower bounds on expected sequential
times. Section 7 contains a brief discussion about tailored,
that is, non-oblivious population update schemes. Our gen-
eral theorems are applied to concrete example functions in
Section 8. We finish with a discussion of possible extensions
in Section 9 and conclusions in Section 10.

2. PREVIOUS WORK

2.1 Adaptive Population Models
Considering adaptive numbers of islands in the island

model of EAs, previous work is very limited. However, there
are numerous results for adaptive population sizes in EAs.
Eiben, Marchiori, and Valko [5] describe EAs with on-the-
fly population size adjustment. They compared the perfor-
mance of the different strategies in terms of success rate,
speed, and solution quality, measured on a variety of fitness
landscapes. The best EAs with adaptive population resiz-
ing outperformed traditional approaches when considering
the time to result, which is the parallel optimization time.
Typical approaches are eliminating population size as an
explicit parameter by introducing aging and maximum life-
time properties for individuals [12], the parameter-less GA
(PLGA) which evolves a number of populations of different
sizes simultaneously [7], random variation of the population
size [3], and competition schemes [14].

Schwefel [15] first suggested the adaptation of the offspring
population size during the optimization process. Herdy [8]
proposed a mutative adaptation of λ in a two-level ES, where
on the upper level, called population level, λ is treated as
a variable to be optimized while on the lower level, called
individual level, the object parameters are optimized.

In [6], a deterministic adaptation scheme for λ based
on theoretical considerations on the relation between serial
rates of progress for the actual number of offspring λ, for
λ− 1 and for the optimal number of offspring is introduced.
More specific, the local serial progress (i. e., progress per fit-
ness function evaluation) is optimized in a (1, λ) EA with
respect to the number of offspring λ. The authors prove
the following structural property: the serial progress-rate as
a function of λ is either a function with exact one (local
and global) maximum or a strictly monotonically increasing
function.

Jansen, De Jong, and Wegener [9] further elaborate on
the offspring population size, presenting a thorough runtime
analysis of the effects of the offspring population size. They
also suggest a simple way to dynamically adapt this parame-
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ter and present empirical results for this scheme, but no the-
oretical analysis of their scheme has been performed. The
presented scheme doubles the offspring population size if the
algorithm is unsuccessful to improve the currently best fit-
ness value. Otherwise, it divides the current offspring pop-
ulation size by s, where s is the number of offspring with
better fitness than the best fitness value so far. We will dis-
cuss in Section 9 how our schemes relate to their scheme and
in how far our results can be transferred.

2.2 Theoretical Work on Parallel EAs
In [10], a first rigorous runtime analysis for island models

has been performed by constructing a function where alter-
nating phases of independent evolution and communication
among the islands are essential. A simple island model with
migration finds a global optimum in polynomial time, while
panmictic populations as well as island models without mi-
gration need exponential time, with very high probability.

New methods for the running time analysis of parallel
evolutionary algorithms with spatially structured popula-
tions have been presented in [11]. The authors generalized
the well known fitness-level method, also called method of
f -based partitions [18], from panmictic populations to spa-
tially structured evolutionary algorithms with various mi-
gration topologies. These methods were applied to estimate
the speed-up gained by parallelization in pseudo-Boolean
optimization. It was shown that the possible speed-up for
the parallel optimization time increases with the density of
the topology. The expected sequential optimization time
is asymptotically not larger than an upper bound for a
corresponding non-parallel EA, derived via the fitness-level
method.

More precisely, the classical fitness level method says that
when si is a lower bound on the probability that one island
leaves the current fitness level towards a better one, the ex-
pected time until this happens is at most 1/si for a panmictic
population. In a parallel EA with a unidirectional ring, the
expected parallel time decreases to O(s1/2); in other words,
the waiting time can be replaced by its square root. For
a torus graph even the third root can be used and with a
proper choice of the number μ of islands, a speed-up of order
μ is possible in some settings.

Interestingly, the results from [11] can partially be inter-
preted in terms of adaptive population sizes. The analyses
are based on the number of individuals on the current best
fitness level. In our upper bounds, we pessimistically as-
sume that only islands on the current best fitness level have
a reasonable chance of finding better fitness levels. All worse
individuals are ignored when estimating the waiting time for
an improvement of the best fitness level. If a unidirectional
ring topology is used, migration happens in every genera-
tion, and better individuals are guaranteed to win in the
selection step, the number of individuals on the current best
fitness level increases by 1 in each generation as always a
new island is taken over. (We pessimistically ignore the fact
that islands on worse fitness levels can improve their best
fitness.) If any island finds an improvement, it is pessimisti-
cally assumed that then only one island has made it to a
new, better fitness level.

This setting corresponds exactly to a parallel EA that in
each unsuccessful generation acquires one new processor and
to an adaptive (1+λ) EA that increases λ by 1 in each un-
successful generation. Once an improvement is found, the

population size drops to 1 as in the case of our first scheme
presented here. The upper bounds from [11] therefore di-
rectly transfer to additive population size adjustments.

In the following we show that multiplicative adjustments
of the population size may admit better speed-ups than ad-
ditive approaches as suggested in [11].

3. ALGORITHMS
In Sections 5 and 7 we present general upper bounds via

the fitness-level method. These results are general in the
following sense. If all islands in a parallel EA run elitist al-
gorithms (i. e., algorithms where the best fitness in the pop-
ulation can never decrease) and if we have a lower bound on
the probability of finding a better fitness level then this can
be turned into an upper bound for the expected sequential
and parallel running times of the parallel EA.

We present a scheme for algorithms where this argument
applies. The goal is to maximize some fitness function f
in an arbitrary search space. An adaptation towards mini-
mization is trivial.

Algorithm 1 Elitist parallel EA with adaptive population

1: Let μ := 1 and initialize a single island P 1
1 uniformly at

random.
2: for t := 1 to ∞ do
3: for all 1 ≤ i ≤ μ in parallel do
4: Select parents and create offspring by variation.
5: Send a copy of a fittest offspring to all other islands.
6: Create P i

t+1 such that it contains a best individual
from the union of P i

t , the new offspring, and the
incoming migrants.

7: μt+1 := updatePopulationSize(P i
t , P

i
i+1)

8: if μt+1 > μt then create μt+1 − μt new islands by
copying existing islands.

9: if μt+1 < μt then delete μt − μt+1 islands.

The selection of islands to be copied or removed, respec-
tively, is left unspecified. Note that each island migrates
individuals to all other islands. This corresponds to a com-
plete migration topology. Due to this fact, all islands always
contain an offspring with the current best fitness. This ob-
servation is sufficient for the upcoming analyses. With other
topologies this selection would be based on the fitness values
of the current elitists on all islands.

Note that we have neither specified a search space nor vari-
ation operators. However, in Section 6 we will discuss lower
bounds that only hold in pseudo-Boolean optimization and
for EAs that only use standard mutation (i. e., flipping each
of n bits independently with probability 1/n) for creating
new offspring.

The (1+λ) EA can be regarded a special case where we
have λ islands and a single best individual takes over all λ
islands. Setting λ := 1 yields the well-known (1+1) EA.

Algorithm 2 (1+λ) EA with adaptive population

1: Initialize a current search point x1 uniformly at random.
2: for t := 1 to ∞ do
3: Create λ offspring by mutation.
4: Let x∗ be an offspring with maximal fitness.
5: if f(x∗) ≥ f(xt) then xt+1 := x∗ else xt+1 := xt.
6: λ := updatePopulationSize({xt}, {xt+1})
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In Section 8 we will consider concrete example functions
where the (1+λ) EA with adaptive populations or, equiva-
lently, an island model running (1+1) EAs, with an adaptive
number of islands are applied. The latter was called parallel
(1+1) EA in [10, 11].

We now define the population update schemes considered
in this work. The function updatePopulationSize takes the
old and the new population as inputs and it outputs a new
population size.

In order to help finding improvements that take a long
time to be found, we double the population size in each
unsuccessful generation. As we might not need that many
islands after a success, we reset the population size to 1.

Algorithm 3 updatePopulationSize(Pt, Pt+1) (Scheme A)

1: if max{f(x) | x ∈ Pt+1} ≤ max{f(x) | x ∈ Pt} then
2: return 2μt

3: else
4: return 1

On problems where finding improvements takes a similar
amount of time, it might not make sense to throw away all is-
lands at once. Especially if improvements have similar prob-
abilities over time, it makes sense to stay close to the current
number of islands. Therefore, in the following scheme we
halve the population size with every successful generation.
We will see that this does not worsen the asymptotic per-
formance compared to Scheme A. For some problems this
scheme will turn out to be superior.

Algorithm 4 updatePopulationSize(Pt, Pt+1) (Scheme B)

1: if max{f(x) | x ∈ Pt+1} ≤ max{f(x) | x ∈ Pt} then
2: return 2μt

3: else
4: return �μt/2�

The motivation for considering Scheme A is that we can
assess the effect of gradually decreasing the population size,
when comparing it to Scheme B. It also serves as a first step
towards analyzing Scheme B, where the analysis turns out
to be more involved.

Our schemes for parallel EAs are applicable in large clus-
ters where the cost of allocating new processors is low, com-
pared to the computational effort spent within the evolution-
ary algorithm. Many of our results can be easily adapted to-
wards algorithms that do not use migration and population
size updates in every generation, but only every τ genera-
tions, for a parameter τ ∈ N, called migration interval. This
can significantly reduce the costs for allocating and deallo-
cating new processors. Details can be found at the end of
Section 5.

An algorithm using Scheme B can be implemented in a
decentralized way as follows, where we assume that each is-
land runs on a separate processor. Assume all processors
are synchronized, i. e., they share a common timer. All pro-
cessors have knowledge on the current best fitness level and
they inform all other processors by sending messages in case
they find a better fitness level. This message contains indi-
viduals that can be taken over by other processors so that
all processors work on the current best fitness level.

In the adaptive scheme, if after one generation no mes-
sage has been received, i. e., no processor has found a better

fitness level, each processor activates a new processor as fol-
lows. Each processor maintains a unique ID. The first pro-
cessor has an ID that simply consists of an empty bit string.
Each time a processor activates a new processor, it copies its
current population and its current ID to the new processor.
Then it appends a 0-bit to its ID while the new processor
appends a 1-bit to its ID. At the end, all processors have
enlarged their IDs by a single bit. When an improvement
has been found, all processors first take over the genetic ma-
terial in the messages that are passed. Then all processors
whose ID ends with a 1-bit shut down. All other processors
remove the last bit from their IDs.

It is easy to see that with this mechanism all processors
will always have pairwise distinct IDs and no central control
is needed to acquire and shut down processors.

As mentioned in the introduction, we define the parallel
optimization time T par as the number of generations until
the first global optimum is evaluated. The sequential op-
timization time T seq is defined as the number of function
evaluations until the first global optimum is evaluated. The
number of function evaluations is a common performance
measure and it captures the total effort on all processors.
Note that this includes all function evaluations in the gen-
eration of the algorithm in which the improvement is found.
These definitions are consistent with the measures as sug-
gested in the literature [9]. In both measures we allow our-
selves to neglect the cost of the initialization as this only
adds a fixed term to the running times.

4. TAIL BOUNDS AND EXPECTATIONS
In preparation for upcoming running time analyses we

first prove tail bounds for the parallel optimization times
in a setting where we are waiting for a specific event to hap-
pen. This, along with bounds on the expected parallel and
sequential waiting times, will be useful to prove our main
theorems. The tail bounds also indicate that the population
will not grow too large.

In the remainder of this paper we abbreviate max{x, 0}
by (x)+.

Lemma 1. Assume starting with 2k islands for some k ∈
N0 and doubling the number of islands in each generation.
Let T par(k, p) denote the random parallel time until the first
island encounters an event that occurs independently on
each island and in each generation with probability p. Let
T seq(k, p) be the corresponding sequential time. Then for
every α ∈ N0

1. Pr
[
T par(k, p) > (�log(1/p)	 − k)++ α+ 1

]
≤ exp(−2α),

2. Pr [T par(k, p) ≤ log(1/p)− k − α] ≤ 2 · 2−α,

3. log(1/p)−k−3 < E (T par(k, p)) < (log(1/p)− k)++2,

4. max{1/p, 2k} ≤ E (T seq(k, p)) ≤ 2/p+ 2k − 1.

Each inequality remains valid if p is replaced by a pessimistic
estimation of p (i. e., either an upper bound or a lower
bound).

Proof. The condition T par(k, p) > (�log(1/p)	 − k)++α+1
requires that the event does not happen on any island in this
time period. The number of trials in the last generation is
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at least 2�log(1/p)�+α ≥ 1/p · 2α for all k ∈ N0. Hence

Pr
[
T par(k, p) > (�log(1/p)	 − k)+ + α+ 1

]
≤ (1− p)1/p·2

α

≤ exp(−2α) .

For the second statement we assume k ≤ log(1/p) − α
as otherwise the claim is trivial. A necessary condition for
T par(k, p) ≤ log(1/p) − k − α is that the event does hap-
pen at least once within in the first log(1/p) − k − α gen-

erations. This corresponds to at most
∑log(1/p)−α

i=1 2i−1 ≤

2log(1/p)−α = 1/p · 2−α trials. If p > 1/2 the claim is triv-
ial as either the probability bound on the right-hand side is
at least 1 or the time bound is negative, hence we assume
p ≤ 1/2. Observing that then 1/p · 2−α ≤ 2(1/p − 1) · 2−α,
the considered probability is bounded by

1− (1− p)2(1/p−1)·2−α

≤ 1− exp(−2 · 2−α)

≤ 1− (1− 2 · 2−α) = 2 · 2−α .

To bound the expectation we observe that the first state-
ment implies Pr

[
T par(k, p) ≥ (log(1/p)− k)+ + α+ 2

]
≤

exp(−2α). Since T par(k, p) is non-negative, we have

E (T par(k, p)) =

∞∑
t=1

Pr [T par(k, p) ≥ t]

≤ (log(1/p)− k)+ + 1

+

∞∑
α=0

Pr
[
T par(k, p) ≥ (log(1/p)− k)+ + α+ 2

]

≤ (log(1/p)− k)+ + 1 +

∞∑
α=0

exp(−2α)

< (log(1/p)− k)+ + 2

as the last sum is less than 1. For the lower
bound we use that the second statement implies
Pr [T ≥ log(1/p)− k − α] ≥ 1− 2 · 2−α. Hence

E (T par(k, p)) =

∞∑
t=1

Pr [T par(k, p) ≥ t]

≥

log(1/p)−k−1∑
α=2

Pr [T par(k, p) ≥ log(1/p)− k − α]

≥

log(1/p)−k−1∑
α=2

(1− 2 · 2−α)

= log(1/p) − k − 2−

log(1/p)−k−2∑
α=1

2−α

> log(1/p) − k − 3 .

For the fourth statement consider the islands one-by-one,
according to some arbitrary ordering. Let T (p) be the ran-
dom number of sequential trials until an event with prob-
ability p happens. It is well known that E (T (p)) = 1/p.
Obviously T seq(k, p) ≥ T (p) since the sequential time has to
account for all islands that are active in one generation. This
proves E (T seq(k, p)) ≥ E (T (p)) ≥ 1/p. The second lower
bound 2k is obvious as at least one generation is needed for
a success.

For the upper bound observe that T seq(k, p) = 2k in case

T (p) ≤ 2k and T seq(k, p) =
∑�

i=k 2
i in case

∑�−1
i=k 2

i <

T (p) ≤
∑�

i=k 2
i. Together, we get that T seq(k, p) ≤

max{2T (p), 2k} ≤ 2T (p) + 2k − 1, hence E (T seq(k, p)) ≤
2/p + 2k − 1.

The presented tail bounds indicate that the population
typically does not grow too large. The probability that the
number of generations exceeds its expectation by an additive
value of α+1 is even an inverse doubly exponential function.
The following provides a more handy statement in terms of
the population size. It follows immediately from Lemma 1.

Corollary 1. Consider the setting described in
Lemma 1. For every β ≥ 1, β a power of 2, the probability
that while waiting for the event to happen the population
size exceeds max{2k+1, 4/p} · β is at most exp(−β).

One conclusion from these findings is that our schemes can
be applied in practice without risking an overly large blowup
of the population size. We now turn to performance guar-
antees in terms of expected parallel and sequential running
times.

5. UPPER BOUNDS VIA FITNESS LEVELS
The following results are based on the fitness-level

method, also known as method of f -based partitions (see,
e. g., Wegener [18]). This method is well known for prov-
ing upper bounds for algorithms that do not accept wors-
enings of the population. Consider a partition of the search
space into sets A1, . . . , Am where for all 1 ≤ i ≤ m − 1 all
search points in Ai are strictly worse than all search points in
Ai+1 and Am contains all global optima. If each set Ai con-
tains only a single fitness value then the partition is called
a canonic partition.

If si is a lower bound on the probability of creating a
search point in Ai+1 ∪ · · · ∪ Am, provided the current best
search point is in Ai, then the expected optimization time
is bounded from above by

m−1∑
i=1

Pr [Ai] ·

m−1∑
j=i

1

sj
,

where Pr [Ai] abbreviates the probability that the best
search point after initialization is in Ai. The reason for
this bound is that the expected time until Ai is left towards
a higher fitness level is at most 1/si and each fitness level,
starting from the initial one, has to be left at most once.
Note that we can always simplify the above bound by pes-
simistically assuming that the population is initialized in
A1. This removes the term “

∑m−1
i=1 Pr [Ai] ·” and only leaves∑m−1

j=1 1/sj . This way of simplifying upper bounds can be
used for all results presented hereinafter.

The fitness-level method yields good upper bounds in
many cases. This includes situations where an evolutionary
algorithm typically moves through increasing fitness levels,
without skipping too many levels [16]. It only gives crude
upper bounds in case values si are dominated by search
points from which the probability of leaving Ai is much lower
than for other search points in Ai or if there are levels with
difficult local optima (i. e., large values 1/si) that are only
reached with a small probability.

Using the expectation bounds from Section 4 we now show
in Theorem 1: For both schemes, A and B, in the upper
bound for the expected parallel time the expected sequential
waiting time can be replaced by its logarithm. In addition,
the expected sequential time is asymptotically not larger
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than the upper bound for the serial algorithm, derived by
f -based partitions.

In the remainder of the paper we denote with T par
x and

T seq
x , x ∈ {A,B} the parallel time and the sequential time

for the schemes A and B, respectively.

Theorem 1. Given an f-based partition A1, . . . , Am,

E (T seq
A ) ≤ 2

m−1∑
i=1

Pr [Ai] ·

m−1∑
j=i

1

sj
.

If the partition is canonic then also

E (T par
A ) ≤ 2

m−1∑
i=1

Pr [Ai] ·

m−1∑
j=i

log

(
2

sj

)
.

The reason for the constant 2 in the log(2/sj) term is to
ensure that the term does not become smaller than 1; with
a constant 1 the value sj = 1 would even lead to a summand
log(1/sj) = 0.

Proof. We only need to prove asymptotic bounds on the con-
ditional expectations when starting in Ai, with a common
constant hidden in all O-terms. The law of total expectation
then implies the claim.

For Scheme A we apply Lemma 1 with k = 0. This yields
that the expected sequential time for leaving the current
fitness level Aj towards Aj+1 ∪ · · · ∪ Am is at most 2/sj
and the expected parallel time is at most log(1/sj) + 2 ≤
2 log(2/sj). The expected sequential time is hence bounded
by 2

∑m−1
j=i 1/sj and the expected parallel time is at most

2
∑m−1

j=i log(2/sj).

We prove a similar upper bound for Scheme B using argu-
ments from the amortized analysis of algorithms [2, Chap-
ter 17]. Amortized analysis is used to derive statements on
the average running time of an operation or to estimate the
total costs of a sequence of operations. It is especially useful
if some operations may be far more costly than others and
if expensive operations imply that many other operations
will be cheap. The basic idea of the so-called accounting
method is to let all operations pay for the costs of their ex-
ecution. Operations are allowed to pay excess amounts of
money to fictional accounts. Other operations can then tap
this pool of money to pay for their costs. As long as no ac-
count becomes overdrawn, the total costs of all operations is
bounded by the total amount of money that has been paid
or deposited.

Theorem 2. Given an f-based partition A1, . . . , Am,

E (T seq
B ) ≤ 3

m−1∑
i=1

Pr [Ai] ·
m−1∑
j=i

1

sj
.

If the partition is canonic then also

E (T par
B ) ≤ 4

m−1∑
i=1

Pr [Ai] ·
m−1∑
j=i

log

(
2

sj

)
.

Proof. We use the accounting method to bound the expected
sequential optimization time of B as follows. Assume the al-
gorithm being on level j with a population size of 2k. If the
current generation passes without leaving the current fitness
level, we pay 2k to cover the costs for the sequential time

in this generation. In addition, we pay another 2k to a fic-
tional bank account. In case the generation is successful in
leaving Aj and the previous generation was unsuccessful, we
just pay 2k and do not make a deposit. In case the current
generation is successful and the last unsuccessful generation
was on fitness level j, we withdraw 2k from the bank account
to pay for the current generation. In other words, the cur-
rent generation is for free. This way, if there is a sequence
of successful generations after an unsuccessful one on level j
all but the first successful generations are for free.

Let us verify that the bank account cannot be overdrawn.
The basic argument is that, whenever the population size is
decreased from, say, 2k+1 to 2k then there must be a previous
generation where the population size was increased from 2k

to 2k+1. It is easy to see that associating a decrease with the
latest increase gives an injective mapping. In simpler terms,
the latest generation that has increased the population size
from 2k to 2k+1 has already paid for the current decrease
to 2k.

When in the upper bound for A fitness level i takes se-
quential time 1 + 2 + · · · + 2k = 2k+1 − 1 then for B the
total costs paid are 2(1+2+ · · ·+2k−1)+2k as a successful
generation does not make a deposit to the bank account.
The total costs equal 2k+1 − 2 + 2k ≤ 3/2 · (2k+1 − 1). In
consequence, the total costs for Scheme B are at most 3/2
the costs for A in A’s upper bound. This proves the claimed
upper bound for B.

By the very same argument an upper bound for the ex-
pected parallel time for B follows. Instead of paying 2k and
maybe making a deposit of 2k, we always pay 1 and always
make a deposit of 1. When withdrawing money, we always
withdraw 1. This proves that also E (T par

B ) is at most twice
the corresponding upper bound for Scheme A.

The argument in the above proof can also be used for
proving a general upper bound for the expected parallel op-
timization time for B. When paying costs 2 for each fitness
level, this pays for the successful generation with a popula-
tion size of, say, 2k and for one future generation where the
population size might have to be doubled to reach 2k again.

Imagine the sequence of population sizes over time and
then delete all elements where the population size has de-
creased, including the associated generation where the pop-
ulation size was increased beforehand. In the remaining se-
quence the population size continually increases until, as-
suming a global optimum has not been found yet, after
n log n generations a population size of at least nn is reached.
In this case the probability of creating a global optimum by
mutation is at least (1−n−n)n

n

≈ 1/e as the probability of
hitting any specific target point in one mutation is at least
n−n. The expected number of generations until this happens
is clearly O(1). We have thus shown the following.

Corollary 2. For every function with m function values
we have E (T par

B ) ≤ 2m+ n log n+O(1).

This bound is asymptotically tight, for instance, for long
path problems [4, 13]. So, the m-term, in general, cannot
be avoided.

When comparing A and B with respect to the expected
parallel time, we expect B to perform better if the fitness
levels have a similar degree of difficulty. This implies that
there is a certain target level for the population size. Note,
however, that such a target level does not exist in case the
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si-values are dissimilar. In the case of similar si-values A
might be forced to spend time doubling the population size
for each fitness level until the target level has been reached.
This waiting time is reflected by the log(2/sj)-terms in The-
orem 1. The following upper bound on B shows that these
log-terms can be avoided to some extent. In the special yet
rather common situation that improvements become harder
with each fitness level, only the biggest such log-term is
needed.

Theorem 3. Given a canonical f-based partition
A1, . . . , Am, E (T par

B ) is bounded by

m−1∑
i=1

Pr [Ai] ·

(
3(m− i− 1) + log

(
1

si

)

+

m−1∑
j=i+1

(
log

(
1

sj

)
− log

(
1

sj−1

))+
)

.

If additionally s1 ≥ s2 ≥ · · · ≥ sm−1 then the bound simpli-
fies to

m−1∑
i=1

Pr [Ai] ·

(
3(m− i− 1) + log

(
1

sm−1

))
.

Proof. The second claim immediately follows from the first
one as the log-terms form a telescoping sum.

For the first bound we again use arguments from amor-
tized analysis. By Lemma 1 if the current popula-
tion size is 2k then the expected number of generations
until an improvement from level i happens is at most
(log(1/si)− k)+ + 2. This is a bound of 2 for k ≥ log(1/si).
We perform a so-called aggregate analysis to estimate the
total cost on all fitness levels. These costs are attributed to
different sources. Summing up the costs for all sources will
yield a bound on the total costs and hence on T par

B .
In the first generation the fitness level i∗ the algorithm

starts on pays log(1/si∗ ) to the global bank account. After-
wards costs are assigned as follows. Consider a generation
on fitness level i with a population size of 2k.

• If the current generation is successful, we charge
cost 2 to the fitness level; cost 1 pays for the ef-
fort in the generation and cost 1 is deposited on the
bank account. In addition, each fitness level j that
is skipped or reached during this improvement pays
(log(1/sj)− log(1/sj−1))

+ as a deposit on the bank
account. Note that this amount is non-negative and it
may be non-integer.

• If k ≥ log(1/si) and the current generation is unsuc-
cessful we charge cost 1 to the fitness level.

• If k < log(1/si) and the current generation is unsuc-
cessful we withdraw cost 1 from our bank account.

By Lemma 1 the expected cost charged to fitness level i
in unsuccessful generations (i. e., not counting the last suc-
cessful generation) is at most 1. Assuming for the mo-
ment that the bank account is never overdrawn, the over-
all expected cost for fitness level i is at most 1 + 2 +
(log(1/sj)− log(1/sj−1))

+. Adding the costs for the initial
fitness level yields the claimed bound.

We use the so-called potential method [2, Chapter 17] to
show that the bank account is never overdrawn. Our claim

is that at any point of time there is enough money on the
bank account to cover the costs of increasing the current
population size to at least 2log(1/sj ) where j is the current
fitness level. We construct a potential function indicating
the excess money on the bank account and show that the
potential is always non-negative.

Let μt denote the population size in generation t and �t be
the (random) fitness level in generation t. By bt we denote
the account balance on the bank account. We prove by
induction that

bt ≥ (log(1/s�t)− log(μt))
+ .

As this bound is always positive, this implies that the ac-
count is never overdrawn. After the initial fitness level has
made its deposit we have b1 = log(1/s�1) − 0. Assume by
induction that the bound holds for bt.

If generation t is unsuccessful and log(μt) ≥ log(1/s�t)
then the population size is doubled at no cost for the bank
account. As by induction bt ≥ 0 we have bt+1 = bt ≥ 0 =
(log(1/(s�t))− log(μt+1))

+.
If generation t is unsuccessful and log(μt) < log(1/s�t)

then the algorithm doubles its population size and with-
draws 1 from the bank account. As bt is positive and
log(μt+1) = log(μt) + 1, we have

bt+1 = bt−1 = log(1/s�t)−log(μt)−1 = log(1/s�t)−log(μt+1).

If generation t is successful and the current fitness level in-
creases from i to some j > i, the account balance is increased
by

1 +

j∑
a=i+1

(log(1/sa)− log(1/sa−1))
+

≥ 1 + (log(1/sj)− log(1/si))
+ .

This implies

bt+1 ≥ bt + 1 + (log(1/sj)− log(1/si))
+

≥ (log(1/si)− log(μt))
+ + 1− log(1/si)− log(μt+1)

≥ (log(1/sj)− log(μt))
+ + 1

≥ (log(1/sj)− log(μt+1))
+ . �

The upper bounds in this section can be easily adapted
towards parallel EAs that do not perform migration and
population size adaptation in every generation, but only ev-
ery τ generations, for a migration interval τ ∈ N. Instead of
considering the probability of leaving a fitness level in one
generation, we simply consider the probability of leaving a
fitness level in τ generations. This is done by considering
s′i := 1− (1− si)

τ instead of si. The resulting time bounds,
based on s′1, . . . , s

′
m−1, are then with respect to the number

of periods of τ generations. To get bounds on our original
measures of time, we just multiply all bounds by a factor
of τ .

6. LOWER BOUNDS FOR THE SEQUEN-

TIAL TIME
In order to prove lower bounds for the expected sequential

time we make use of recent results by Sudholt [16]. He pre-
sented a new lower-bound method based on fitness-level ar-
guments. If it is unlikely that many fitness levels are skipped
when leaving the current fitness-level set then good lower
bounds can be shown.
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The lower bound applies to every algorithm A in pseudo-
Boolean optimization that only uses standard mutations
(i. e., flipping each bit independently with probability 1/n)
to create new offspring. Such an EA is called a mutation-
based EA. More precisely, every mutation-based EAA works
as follows. First, A creates μ search points x1, . . . , xμ uni-
formly at random. Then it repeats the following loop. A
counter t counts the number of function evaluations; after
initialization we have t = μ. In one iteration of the loop the
algorithm first selects one out of all search points x1, . . . , xt

that have been created so far. This decision is based on the
fitness values f(x1), . . . , f(xt) and, possibly, also the time in-
dex t. It performs a standard mutation of this search point,
creating an offspring xt+1.

To make this work self-contained, we cite (a slightly sim-
plified version of) the result here. The performance measure
considered is the number of function evaluations. This can
be assumed to coincide with the number of offspring cre-
ations as every offspring needs to evaluated exactly once.

Theorem 4 ([16]). Consider a partition of the search
space into non-empty sets A1, . . . , Am such that only Am

contains global optima. For a mutation-based EA A we
say that A is in Ai or on level i if the best individual
created so far is in Ai. Let the probability of traversing
from level i to level j in one mutation be at most ui · γi,j
and

∑m
j=i+1 γi,j = 1. Assume that for all j > i and some

0 < χ ≤ 1 it holds γi,j ≥ χ
∑m

k=j γi,k. Then the expected
number of function evaluations of A on f is at least

χ
m−1∑
i=1

Pr [Ai] ·
m−1∑
j=i

1

uj
.

All population update schemes are compatible with this
framework; every parallel mutation-based EA using an ar-
bitrary population update scheme is still a mutation-based
EA. Offspring creations are performed in parallel in our al-
gorithms, but one can imagine these operations to be per-
formed sequentially. We can cast a parallel EA with parallel
offspring creations as a sequential mutation-based EA that
simulates the population management of an island model
in the background. Recall that the selection in the notion
of a mutation-based EA can be based on the time index t.
Hence, a sequential mutation-based EA can keep track of the
times when individuals on a specific island have been cre-
ated or when individuals have immigrated from a different
island. The algorithm can then simulate offspring creations
for an island by allowing only individuals on the island to
become parents. There is one caveat: the parent selection
mechanism in [16] does not account for possibly random-
ized decisions made during migration. However, the proof
of Theorem 4 goes through in case additional knowledge is
used.

We introduce the notion of tight fitness levels, where
the success probabilities si from the classical fitness-level
method are exact up to a constant factor.

Definition 1. Call an f-based partition A1, . . . , Am

(asymptotically) tight for an algorithm A if there exist con-
stants c ≥ 1 > χ > 0 and values γi,j for 1 ≤ i, j ≤ m such
that for each population in Ai the following holds.

1. The probability of generating a population in Ai+1 ∪
· · · ∪Am in one mutation is at least si.

2. The probability of generating a population in Aj in one
mutation, j > i, is at most c · si · γi,j .

3. For the γi,j-values it holds that
∑m

j=i+1 γi,j = 1 and

γi,j ≥ χ
∑m

k=j γi,k for all i < j.

Tight f -based partitions imply that the standard upper
bound by f -based partitions [18] is asymptotically tight.
This holds for all elitist mutation-based algorithms, that is,
mutation-based algorithms where the best fitness value in
the population can never decrease.

Theorem 5. Consider an algorithm A with an arbitrary
population update strategy that only uses standard mutations
for creating new offspring. Given a tight f-based partition
A1, . . . , Am for a function f , we have

E (T seq) = Ω

(
m−1∑
i=1

Pr [Ai] ·
m−1∑
j=i

1

sj

)
.

Proof. The lower bound on E (T seq) follows by a direct ap-
plication of Theorem 4. We already discussed that this theo-
rem applies to all algorithms considered in this work. Setting
uj := csj for all 1 ≤ j ≤ m, c and χ being as in Definition 1,
Theorem 4 implies

E (T seq) ≥
χ

c

m−1∑
i=1

Pr [Ai] ·

m−1∑
j=i

1

sj
.

As both, χ and c, are constants, this implies the claim.

This lower bound shows that for tight f -based partitions
both our population update schemes produce asymptotically
optimal results in terms of the expected sequential optimiza-
tion time, assuming no cost of communications.

7. NON-OBLIVIOUS UPDATE SCHEMES
We also briefly discuss update schemes that are tailored

towards particular functions, in order to judge the perfor-
mance of our oblivious update schemes.

Non-oblivious population update schemes may allow for
smaller upper bounds for the expected parallel time than
the ones seen so far. When the population update scheme
has complete knowledge on the function f and the f -based
partition, an upper bound can be shown where each fitness
level contributes only a constant to the expected parallel
time. By T seq

no and T par
no we denote the sequential and parallel

times of the considered non-oblivious scheme.

Theorem 6. Given an arbitrary f-based partition
A1, . . . , Am, there is a tailored population update scheme
for which

E (T seq
no ) = O

(
m−1∑
i=1

(
Pr [Ai] ·

m−1∑
j=i

1

sj

))

and

E (T par
no ) = O

(
m−1∑
i=1

Pr [Ai] · (m− i− 1)

)
.

In particular, E (T par
no ) = O(m).
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Proof. The update scheme chooses to use �1/si	 islands if
the algorithm is in Ai. Then the probability of finding an
improvement in one generation is at least 1− (1− si)

1/si ≥
1 − 1/e. The expected parallel time until this happens is
at most e/(e− 1) and so the expected sequential time is at
most e/(e−1) · �1/si	 ≤ 2e/(e−1) ·1/si . Summing up these
expectations for all fitness levels from i to m− 1 proves the
two bounds.

In some situations it is possible to design schemes that
perform even better than the above bound suggests. For
instance, for trap functions the best strategy would be to
use a very large population in the first generation so that
the optimum is found with high probability, and before the
algorithm is tricked to increasing the distance to the global
optimum.

8. BOUNDS FOR EXAMPLE FUNCTIONS
The previous bounds are applicable in a very general con-

text, with arbitrary fitness functions. We also give results for
selected example functions to estimate possible speed-ups in
more concrete settings.

We consider the same example functions and function
classes that have been investigated in [11]. The goal is the
maximization of a pseudo-Boolean function f : {0, 1}n → R.
For a search point x ∈ {0, 1}n write x = x1 . . . xn, then
OneMax(x) :=

∑n
i=1 xi counts the number of ones in x and

LO(x) :=
∑n

i=1

∏i
j=1 xi counts the number of leading ones

in x. A function is called unimodal if every non-optimal
search point has a Hamming neighbor (i. e., a point with
Hamming distance 1 to it) with strictly larger fitness. For
1 ≤ k ≤ n we also consider

Jumpk :=

{
k +

∑n
i=1 xi, if

∑n
i=1 xi ≤ n− k or x = 1n ,∑n

i=1(1− xi) otherwise .

This function has been introduced by Droste, Jansen, and
Wegener [4] as a function with tunable difficulty. Evolution-
ary algorithms typically have to perform a jump to overcome
a gap by flipping k specific bits.

For these functions we obtain bounds for T seq and T par as
summarized in Table 1. The lower bounds for E (T seq) on
OneMax and LO follow directly from [16] for all schemes.

Scheme E (T seq) E (Tpar)
OneMax A Θ(n logn) O(n logn)

B Θ(n logn) O(n)
non-oblivious Θ(n logn) O(n)

LO A Θ(n2) Θ(n logn)
B Θ(n2) O(n)
non-oblivious Θ(n2) O(n)

unimodal f A O(dn) O(d logn)
with d f -values B O(dn) O(d+ logn)

non-oblivious O(dn) O(d)

Jumpk A O(nk) O(n logn)
with k ≥ 2 B O(nk) O(n+ k logn)

non-oblivious O(nk) O(n)

Table 1: Asymptotic bounds for expected parallel
running times E (T par) and expected sequential run-
ning times E (T seq) for the parallel (1+1) EA and
the (1+λ) EA with adaptive population models.

Theorem 7. For the parallel (1+1) EA and the
(1+λ) EA with adaptive population models the upper
bounds for E(T seq) and E(T par) hold as given in Table 1.

Proof. The upper bounds for Scheme A follow from Theo-
rem 1, for Scheme B from Theorems 2 and 3 and for the
non-oblivious scheme from Theorem 6. Starting pessimisti-
cally from the first fitness level, the following bounds hold:

• For OneMax we use the canonical f -based partition
Ai := {x | OneMax(x) = i} and the corresponding
success probabilities si ≥ (n − i)/n · (1 − 1/n)n−1 ≥
(n − i)/(en). Hence, E(T par

A ) ≤ 2
∑n−1

i=1 log( 2en
n−i

) ≤

2n log(2en) = O(n log n),

E(T seq
A ) ≤ 2

n−1∑
i=0

1

si
≤ 2

n−1∑
i=0

en

n− i

= 2en
n∑

i=1

1

i
= 2en · [(lnn) + 1] ,

E(T par
B ) ≤ (3(n−2)+log(2en)) = O(n) and E(T seq

B ) ≤
3en · [(lnn) + 1], E(T par

no ) = O(n) and E(T seq
no ) =

O(n log n).

• For LO we use the canonical f -based partition Ai :=
{x | LO(x) = i} and the corresponding success
probabilities si ≥ 1/n · (1 − 1/n)n−1 ≥ 1/(en).
Hence, E(T par

A ) ≤ 2
∑n−1

i=0 log(2en) = 2n log(2en) =
O(n log n),

E(T seq
A ) ≤ 2

n−1∑
i=0

1

si
≤ 2

n−1∑
i=0

en = 2en2 ,

E(T par
B ) ≤ (3(n − 2) + log(en)) = O(n), E(T seq

B ) ≤
3en2, E(T par

no ) = O(n) and E(T seq
no ) = O(n2).

• For unimodal functions with d function values we
use corresponding success probabilities si ≥ 1/(en).

Hence, E(T par
A ) ≤ 2

∑d−1
i=1 log(2en) ≤ 2d log(2en) =

O(dn),

E(T seq
A ) ≤ 2

d−1∑
i=1

1

si
≤ 2

d−1∑
i=1

en = 2edn ,

E(T par
B ) ≤ 3(d−2)+log(en) = O(d+log n), E(T seq

B ) =
3edn, E(T par

no ) = O(d) and E(T seq
no ) = O(dn).

• For Jumpk functions with k ≥ 2 and all individuals
having neither n − k nor n 1-bits, an improvement is
found by either increasing or decreasing the number
of 1-bits. This corresponds to optimizing OneMax. In
order to improve a solution with n−k 1-bits, a specific
bit string with Hamming distance k has to be created,
which has probability sn−k at least(
1

n

)k

·

(
1−

1

n

)n−k

≥

(
1

n

)k

·

(
1−

1

n

)n−1

≥
1

enk
.

Hence, E(T par
A ) ≤ O(n log n) + 2 log(enk) ≤

O(n log n) + 2k log(en) = O(n log n), E(T seq
A ) ≤

O(nk), E(T par
B ) ≤ O(n) + k log(en) = O(n + k log n),

E(T seq
B ) ≤ O(nk), E(T par

no ) = O(n) and E(T seq
no ) =

O(nk).
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It can be seen from Table 1 that both our schemes lead
to significant speed-ups in terms of the parallel time. The
speed-ups increase with the difficulty of the function. This
becomes obvious when comparing the results on OneMax
and LO and it is even more visible for Jumpk.

The upper bounds for E (T par
B ) are always asymptoti-

cally lower than those for E (T par
A ), except for Jumpk with

k = Θ(n). However, without corresponding lower bounds
we cannot say whether this is due to differences in the real
running times or whether we simply proved tighter guaran-
tees for B. We therefore consider the function LO in more
detail and prove a lower bound for A. This demonstrates
that Scheme B can be asymptotically better than Scheme A
on a concrete problem.

Theorem 8. For the parallel (1+1) EA and the
(1+λ) EA with adaptive population models on LO we have
E (T par

A ) = Ω(n log n).

Proof. We consider a pessimistic setting (pessimistic for
proving a lower bound) where an improvement has probabil-
ity exactly 1/n. This ignores that all leading ones have to be
conserved in order to increase the best LO-value. We show
that with probability Ω(1) at least n/30 improvements are
needed in this setting. As by Lemma 1 the expected waiting
time for an improvement is at least max{0, (log n)− 3}, the
conditional expected parallel time is Ω(n log n). By the law
of total expectation, also the unconditional expected parallel
time is then Ω(n log n).

Let us bound the expected increase in the number of lead-
ing ones on one fitness level. Let T par

i denote the random
number of generations until the best fitness increases when
the algorithm is on fitness level i. By the law of total ex-
pectation the expected increase in the best fitness in this
generation equals

∞∑
t=1

Pr [T par
i = t] · E (LO-increase | T par

i = t) . (1)

The expected increase in the number of leading ones can
be estimated as follows. With T par

i = t the number of mu-
tations in the successful generation is 2t−1. Let I denote
the number of mutations that increase the current best LO-
value. A well-known property of LO is that when the cur-
rent best fitness is i then the bits at positions i + 2, . . . , n
are uniform. Bits that form part of the leading ones after
an improvement are called free riders. The probability of
having k free riders is thus 2−k (unless the end of the bit
string is reached) and the expected number of free riders is
at most

∑∞
k=0 2

−k = 1.
The uniformity of “random” bits at positions i+ 2, . . . , n

holds after any specific number of mutations and in partic-
ular after the mutations in generation T par

i have been per-
formed. However, when looking at multiple improvements,
the free-rider events are not necessarily independent as the
“random”bits are very likely to be correlated. The following
reasoning avoids these possible dependencies. We consider
the improvements in generation T par

i one-by-one. If F1 de-
notes the random number of free riders gained in the first
improvement, when considering the second improvement the
bits at positions i+ 3+ F1, . . . , n are still uniform. In some
sense, we give away the free riders from a fitness improve-
ments for free for all following improvements. This leads to
an estimation of 1+F1 for the gain in the number of leading
ones.

Iterating this argument, the expected total number of
leading ones gained is thus bounded by 2I , the expectation
being taken for the randomness of free riders. Also consider-
ing the expectation for the random number of improvements
yields the bound 2E (I | I ≥ 1) as I has been defined with
respect to the last (i. e. successful) generation. We also ob-
serve E (I | I ≥ 1) ≤ 1+E(I) ≤ 1+2t/n. Plugging this into
Equation (1) yields

∞∑
t=1

Pr [T par
i = t] · (2 + 2t+1/n)

= 2 + 2

∞∑
t=0

Pr [T par
i = t+ 1] · 2t+1/n

≤ 2 + 2

∞∑
t=0

Pr [T par
i > t] · 2t+1/n

≤ 2 + 2

�log n�∑
t=0

2t+1/n+ 2
∞∑

t=�logn�+1

Pr [T par
i > t] · 2t+1/n .

The first sum is at most 16. Using Lemma 1 to estimate
the second sum, we arrive at the lower bound

18 + 2
∞∑

α=0

Pr [T par
i > �log n	+ α+ 1] · 2�log n�+α+2/n

≤ 18 + 2
∞∑

α=0

exp(2−α) · 2�log n�+α+2/n

≤ 18 + 16 ·
∞∑

α=0

exp(2−α) · 2α

< 29.8 .

With probability 1/2 the algorithm starts with no leading
ones, independently from all following events. The expected
number of leading ones after n/30 improvements is at most
29.8/30·n. By Markov’s inequality the probability of having
created n leading ones is thus at most 29.8/30 and so with
probability 1/2 · 0.2/30 = Ω(1) having n/30 improvements
is not enough to find a global optimum.

9. GENERALIZATIONS & EXTENSIONS
We finally discuss generalizations and extensions of our

results.
One interesting question is in how far our results change

if the population is not doubled or halved, but instead mul-
tiplied or divided by some other value b > 1. Then the
results would change as follows. With some potential ad-
justments to constant factors, the log-terms in the parallel
optimization times in Theorems 1, 2 and 3 would have to
be replaced by logb. For the sequential optimization times
stated in these theorems one would need to multiply these
bounds by b/2. This means that a larger b would further
decrease the parallel optimization times at the expense of a
larger sequential optimization time.

Our analyses can also be transferred towards the adaptive
scheme presented by Jansen, De Jong, and Wegener [9]. Re-
call that in their scheme the population size is divided by
the number of successes. In case of one success the popula-
tion size remains unchanged. This only affects the constant
factors in our upper bounds. When the number of successes
is large, the population size might decrease quickly. In most
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cases, however, the number of successes will be rather small;
for instance, the lower bound for LO, Theorem 8, has shown
that the expected number of successes in a successful gener-
ation is constant. However, it might be possible that after
a difficult fitness level an easier fitness level is reached and
then the number of successes might be much higher. In an
extreme case their scheme can decrease the population size
like Scheme A. In some sense, their scheme is somewhat “in
between” A and B. With a slight adaptation of the con-
stants, the upper bound for Scheme A from Theorem 1 can
be transferred to their scheme.

Another extension of the results above is towards maxi-
mum population sizes. Although we have argued in Section 4
that the population size does not blow up too much, in prac-
tice the maximum number of processors might be limited.
The following theorem about E(T par

A ) for maximum popu-
lation sizes can be proven by applying arguments from [11].

Theorem 9. The expected parallel optimization time of
Scheme A for a maximum population size μ := μmax > 1 is
bounded by

E(T par
A ) ≤ m · [log μmax + 2] +

2

μmax

m−1∑
i=1

1

si
.

Proof. We pessimistically estimate the expected parallel
time by the time until the population consists of μmax is-
lands plus the expected optimization time if μmax islands
are available. The time until μmax islands are involved is
log μmax on one fitness level. Hence, summing up all levels
pessimistically gives m log μmax. For μmax islands the suc-
cess probability on fitness level i with success probability
si for one island is given by 1 − (1 − si)

μmax . Hence, the
expected time for leaving fitness level i if μmax islands are
available is at most 1/[1 − (1 − si)

μmax ]. Now we consider
two cases.

If si · μmax ≤ 1 we have 1 − (1 − si)
μmax ≥ 1 − (1 −

siμmax/2) = siμmax/2 because for all 0 ≤ xy ≤ 1 it holds
(1−x)y ≤ 1−xy/2 [11, Lemma 1]. Otherwise, if si ·μmax > 1
we have 1− (1− si)

μmax ≥ 1− e−siμmax ≥ 1− 1
e
. Thus,

m−1∑
i=1

1

1− (1− si)μmax

≤
m−1∑
i=1

max

{
1

1− 1/e
,

2

μmax · si

}

≤ m ·
e

e− 1
+

2

μmax

m−1∑
i=1

1

si
.

Adding the expected waiting times until μmax islands are
involved yields the claimed bound.

In terms of our test functions OneMax, LO, unimodal
functions, and Jumpk, this leads to the following result that
can be proven like Theorem 7.

Corollary 3. For the parallel (1+1) EA and the
(1+λ) EA with Scheme A the following holds for a maxi-
mum population size μ := μmax > 1:

• E(T par
A ) = O(n log μmax+n log(n)/μmax) for OneMax,

which gives O(n log log n) for μmax = log n,

• E(T par
A ) = O(n log μmax + n2/μmax) for LO, which

gives O(n log n) for μmax = n,

• E(T par
A ) = O(d log μmax+dn/μmax) for unimodal func-

tions with d function values, which gives O(d log n) for
μmax = n,

• E(T par
A ) = O(n log μmax +nk/μmax) for Jumpk, which

gives O(nk log n) for μmax = nk−1.

Note that Corollary 3 has led to an improvement of E (T par
A )

from O(n log n) to O(n log log n) for μmax = log n. This
obviously also holds in the setting of unrestricted population
sizes.

10. CONCLUSIONS
We have presented two schemes for adapting the offspring

population size in evolutionary algorithms and, more gen-
erally, the number of islands in parallel evolutionary algo-
rithms. Both schemes double the population size in each
generation that does not yield an improvement. Despite
the exponential growth, the expected sequential optimiza-
tion time is asymptotically optimal for tight f -based parti-
tions. In general, we obtain bounds that are asymptotically
equal to upper bounds via the fitness-level method.

In terms of the parallel computation time expected wait-
ing times on a fitness level can be replaced by their log-
arithms for both schemes, compared to a serial EA. This
yields a tremendous speed-up, in particular for functions
where finding improvements is difficult. Scheme B, doubling
or halving the population size in each generation, turned
out to be more effective than resets to a single island as in
Scheme A. This is because B can quickly decrease the popu-
lation size if necessary. The effort spent while this happens
does not affect the asymptotic bounds for expected parallel
and sequential times.

Apart from our main results, we have introduced the no-
tion of tight f -based partitions and new arguments from
amortized analysis of algorithms to the theory of evolution-
ary algorithms.

An open question is how our schemes perform in situa-
tions where the fitness-level method does not provide good
upper bounds. In this case our bounds may be off from
the real expected running times. In particular, there may
be examples where increasing the offspring population size
by too much might be detrimental. One constructed func-
tion where large offspring populations perform badly was
presented in [9]. Future work could characterize function
classes for which our schemes are efficient in comparison to
the real expected running times. The notion of tight f -based
partitions is a first step in this direction.
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