Analysis of Diversity-Preserving Mechanisms
for Global Exploration®

Tobias Friedrich tobias.friedrich@mpi-inf. mpg.de
Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany

Pietro S. Oliveto PS.Oliveto@cs.bham.ac.uk
University of Birmingham, Birmingham B15 2TT, United Kingdom

Dirk Sudholt dirk.sudholt@cs.tu-dortmund.de
Technische Universitiat Dortmund, 44221 Dortmund, Germany and
International Computer Science Institute, Berkeley, CA 94704, USA

Carsten Witt carsten.witt@cs.tu-dortmund.de
Technische Universitdt Dortmund, 44221 Dortmund, Germany and
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Abstract

Maintaining diversity is important for the performance of evolutionary algorithms.
Diversity-preserving mechanisms can enhance global exploration of the search space
and enable crossover to find dissimilar individuals for recombination. We focus on
the global exploration capabilities of mutation-based algorithms. Using a simple bi-
modal test function and rigorous runtime analyses, we compare well-known diversity-
preserving mechanisms like deterministic crowding, fitness sharing, and others with a
plain algorithm without diversification. We show that diversification is necessary for
global exploration, but not all mechanisms succeed in finding both optima efficiently.
Our theoretical results are accompanied by additional experiments for different popu-
lation sizes.

Keywords
Diversity, runtime analysis, fitness sharing, deterministic crowding, exploration.

1 Introduction

In evolutionary computation the term diversity indicates dissimilarities of individuals
and is considered an important property. In a population-based evolutionary algo-
rithm without a diversity-preserving mechanism there is a risk of the best individual
taking over the whole population before the fitness landscape is explored properly.
When the population becomes completely redundant, the algorithm basically reduces
to a trajectory-based algorithm while still suffering from high computational effort and
space requirements for the whole population.

Diversity-preserving mechanisms can help the optimization in two ways. On one
hand, a diverse population is able to deal with multimodal functions and can explore

* A preliminary version of this article appeared in [4].
Tobias Friedrich and Dirk Sudholt were partially supported by postdoctoral fellowships from the German
Academic Exchange Service. Pietro S. Oliveto was supported by an EPSRC grant (EP/C520696/1). Dirk
Sudholt and Carsten Witt were partially supported by the Deutsche Forschungsgemeinschaft (DFG) as a
part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

(©200X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

several hills in the fitness landscape simultaneously. Diversity-preserving mechanisms
can therefore support global exploration and help to locate several local and global
optima. This behavior is welcome in dynamic environments as the algorithm is more
robust with respect to changes of the fitness landscape. Moreover, the algorithm can
offer several good solutions to the user, a feature desirable in multiobjective optimiza-
tion. On the other hand, a diverse population gives higher chances to find dissimilar
individuals and to create good offspring by recombining different “building blocks”.
Diversity-preserving mechanisms can thus enhance the performance of crossover.

Up to now, the use of diversity-preserving mechanisms has been assessed mostly
by means of empirical investigations [e.g., 1, 20]. Theoretical runtime analyses
have mostly used diversity-preserving mechanisms to enhance the performance of
crossover. Jansen and Wegener [10] presented the first proof that crossover can make
a difference between polynomial and exponential expected optimization times. They
used a very simple diversity-preserving mechanism that only shows up as a tie-
breaking rule: when there are several individuals with worst fitness among parents
and offspring, the algorithm removes those individuals with a maximal number of
genotype duplicates. Nevertheless, this mechanism makes the individuals spread on
a certain fitness level (i.e., makes them produce different individuals of the same fit-
ness) such that crossover is able to find suitable parents for recombination. Storch and
Wegener [17] presented a similar result for populations of constant size. They used a
stronger mechanism that prevents duplicates from entering the population, regardless
of their fitness value.

Niching methods encourage the exploration of “niches”, that is, they aim at the
survival of individuals far apart from the other individuals. The first theoretical run-
time analysis considering niching methods was presented by Fischer and Wegener [2]
for a fitness function derived from a generalized Ising model on ring graphs. The au-
thors compare the well-known (1+1) EA with a (2+2) GA with fitness sharing. Fitness
sharing [11] derates the real fitness of an individual by a measure related to the sim-
ilarity of = to all individuals in the population, hence encouraging the algorithm to
decrease similarity in the population. Fischer and Wegener prove that their genetic al-
gorithm outperforms the (1+1) EA by a polynomial factor. Sudholt [18] extended this
study for the Ising model on binary trees, where the performance gap between GAs
and EAs is even larger. While a broad class of (+A) EAs has exponential expected
optimization time, a (2+2) GA with fitness sharing finds a global optimum in expected
polynomial time.

In all these studies diversity is used to assist crossover. Contrarily, Friedrich, Heb-
binghaus, and Neumann [3] focused on diversity-preserving mechanisms as a means
to enhance the global exploration of EAs without crossover. Using rigorous runtime
analyses, the authors compare a mechanism avoiding genotype duplicates with a strat-
egy avoiding duplicate fitness values to spread individuals on different fitness levels.
It is shown for artificial functions that both mechanisms can outperform one another
drastically.

Friedrich et al. [3] were the first to focus on the use of diversity-preserving mech-
anisms for global exploration with respect to rigorous runtime analyses. However,
their test functions are clearly tailored towards one particular diversity-preserving
mechanism. We want to obtain a broader perspective including a broader range
of diversity-preserving mechanisms. Therefore, we compare several well-known
diversity-preserving mechanisms on the simplest bimodal function that may also ap-
pear as part of a real-world problem. On the considered function, simple hill climbers

2 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

find the global optimum with constant probability, hence a restart strategy is sufficient
for optimization. We focus on well-known diversity-preserving mechanisms that do
not restart the algorithm. Firstly, we rigorously prove that diversity-preserving mech-
anisms are necessary for our function since populations of almost linear size without
diversification fail to find both peaks, with high probability. Then we analyze common
diversity-preserving mechanisms and show that not all of them are effective for avoid-
ing premature convergence even for such a simple landscape. As a result, we hope to
get a more objective and more general impression of the capabilities and limitations of
common diversity-preserving mechanisms.

This paper extends its conference version [4] in several ways. On one hand, some
theoretical results have been improved. In particular, the negative result for fitness
duplicates (Theorem 3) now holds for larger population sizes 1 and the lower bound on
the runtime has been improved by using stronger drift results. On the other hand, we
supplement our theoretical work with experimental results. This enables us to compare
our asymptotic theoretical predictions against empirical data for a concrete problem
dimension and several values for the population size ;1. Moreover, we consider the
effect of very large i to see whether for the diversity-preserving mechanisms very large
populations can be successful where small populations fail.

In the remainder of this paper, we first present our bimodal test function in Sec-
tion 2. Negative results for a plain (u+1) EA in Section 3 show that diversification
is needed. In Sections 4 and 5 we investigate the strategies previously analyzed
by Friedrich et al. [3] to avoid genotype duplicates and fitness duplicates, respectively.
Section 6 deals with the well-known deterministic crowding strategy [11] where off-
spring directly compete with their associated parents. Fitness sharing, which turns out
to be the strongest mechanism, is analyzed in Section 7. Section 8 contains experimen-
tal results showing how well our theoretical results match with empirical results and
revealing additional insight on the dynamic behavior of the algorithms. We present our
conclusions in Section 9.

2 A Simple Bimodal Function

We consider a simple bimodal function called TWOMAX that has already been investi-
gated in the context of genetic algorithms by Pelikan and Goldberg [16] and Goldberg,
Van Hoyweghen, and Naudts [5]. The function TWOMAX is essentially the maximum
of ONEMAX and ZEROMAX. Local optima are solutions 0" and 1" where the number of
zeros or the number of ones, respectively, is maximized. Hence, TWOMAX can be seen
as a bimodal equivalent of ONEMAX. The fitness landscape consists of two hills with
symmetric slopes. In contrast to Pelikan and Goldberg [16] and Goldberg et al. [5] we
modify the function slightly such that only one hill contains the global optimum, while
the other one leads to a local optimum. This is done by simply adding an additional fit-
ness value for 17, turning it into a unique global optimum. Hence, an unbiased random
search heuristic cannot tell in advance which hill is more promising.

For z = z1xy... 1y, let |z|, := Y1 | z; denote the number of 1-bits and |z|, :=
> (1 — z;) denote the number of 0-bits in z. Then

n
TWOMAX(z) = max{|z|,, |z|,} + [] =
=1

Figure 1 shows a sketch of TWOMAX. Among all search points with more than n /2
1-bits, the fitness increases with the number of ones. Among all search points with less

Evolutionary Computation Volume x, Number x 3

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

TWOMAX(z)

n/2 |z,
0 n/2 n

Figure 1: Sketch of TWOMAX. The dot indicates the global optimum.

than n/2 1-bits, the fitness increases with the number of zeros. We refer to these sets as
branches and the algorithms as climbing these two branches of TWOMAX.

The TWOMAX function does appear in well-known combinatorial optimization
problems. For example, the VERTEXCOVER bipartite graph analyzed in Oliveto, He,
and Yao [15] consists of two branches, one leading to a local optimum and the other to
the minimum cover. In fact similar proof techniques as those used in this paper have
also been applied in the VERTEXCOVER analysis of the (1+1) EA for the bipartite graph.
Another function with a similar structure is the MINCUT instance from Sudholt [19].

Considering ;1 independent parallel runs of the (1+1) EA (or p starts of the al-
gorithm with a suitable restart scheme) yields that the probability of not finding the
global optimum efficiently is 27#. When using populations of size 1, we expect the
search to be more focused than with i independent runs. Hence without diversifica-
tion the probability of finding the optimum should be significantly worse. However,
from a good diversity-preserving mechanism we expect that the probability of not find-
ing the optimum decreases significantly with growing ;. We will see in the following
that diversity-preserving mechanisms avoiding duplicates do not fulfil this property
and that the probability of finding the global optimum efficiently is at most 1/2 + o(1)
(see Motwani and Raghavan [12] for the asymptotic notation), hence comparable to the
simple (1+1) EA. We can conclude for these mechanisms that populations are nearly
useless on TWOMAX. On the other hand, deterministic crowding shows a behavior
very similar to p independent runs and fitness sharing even finds the optimum effi-
ciently with probability 1.

Note that optimizing TWOMAX is not always inefficient. All algorithms consid-
ered hereinafter are able to find either 0™ or 1" efficiently, hence there is still a good
chance that the global optimum is found in short time. For the plain (;1+1) EA the ex-
pected time to find 0™ or 1™ is bounded by the expected optimization time on ONEMAX,
hence at most O(un + nlogn) [22]. For all variants of the (u+1) EA the weaker bound
pen(Inn+1) = O(unlogn) holds. This bound relies on the fact that 1-bit mutations can
effectively decrease the distance to the closest point from {0”, 1"} if an elitist is chosen
as parent. Due to symmetry, the global optimum 1" is found first with probability 1/2.
This implies that appropriate restart strategies yield an expected optimization time of
O(unlogn). In the following, we will, however, consider algorithms without restarts
and prove for some diversity-preserving mechanisms that the global optimum is not
found in exponential time with probability close to 1/2.

4 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

3 No Diversity-Preserving Mechanism

In order to obtain a fair comparison of different diversity-preserving mechanisms, we
keep one algorithm fixed as much as possible. The basic algorithm, the following
(1+1) EA, has already been investigated by Witt [22].

Algorithm 1 (u+1) EA

Let ¢ := 0 and initialize P with p individuals chosen uniformly at random.
repeat
Choose = € P, uniformly at random.
Create y by flipping each bit in « independently with probability 1/n.
Choose z € P, with worst fitness uniformly at random.
if f(y) > f(z) then Py = P\ {2z} U {y} else P;y1 = P;.
Lett=1t¢+1.

The (1+1) EA uses random parent selection and elitist selection for survival. As
parents are chosen randomly, the selection pressure is quite low. Nevertheless, the
(1+1) EA is not able to maintain individuals on both branches for a long time. We
now show that if ; is not too large, the individuals on one branch typically get extinct
before the top of the branch is reached. Thus, the global optimum is found only with
probability close to 1/2 and the expected optimization time is very large.

Theorem 1. The probability that the (u+1) EA with no diversity-preserving mechanism and
u = o(n/logn) optimizes TWOMAX in time n™ 1 is at most 1/2 + o(1). Its expected opti-
mization time is Q(n™).

Proof. The probability that during initialization either 0" or 1™ is created is bounded by
w271 hence exponentially small. In the following, we assume that such an atypical
initialization does not happen as this assumption only introduces an error probability
of o(1).

Consider the algorithm at the first point of time 7" where either 0" or 1" is created.
Due to symmetry, the local optimum 0™ is created with probability 1/2. We assume in
the following that 0™ is created and keep in mind an error probability of 1/2. We now
show that then with high probability 0" takes over the population before the global
optimum 1" is created. Let i be the number of copies of 0" in the population. From
the perspective of extinction, a good event G is to increase this number from i to ¢ + 1.
For n > 2 we have P(G;) > ﬁ (11— %)n > ﬁ since it suffices to select one out of i
copies and to create another copy of 0”. On the other hand, the bad event B; is to create
1™ in one generation. This probability is maximized if all ;1 — i remaining individuals
contain n — 1 ones: P(B;) < % - 1 < L1 Together, the probability that the good event

G; happens before the bad event B; is

P(Gi) if(p) . 1/n _ A
P(Gi | GiUB;) > P(G;) + P(B;) 2 i/(4p) +1/n ! i/(4p) +1/n 21 in’

The probability that 0" takes over the population before the global optimum is reached
is therefore bounded by

ﬁP(Gi|GiUBi) > ﬁ(l—f_z)

i=1 i=1

Evolutionary Computation Volume x, Number x 5

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

Using 4u/n < 1/2and 1 — z > e~2% for z < 1/2, we obtain

H w
8\ 8u 1
Eexp< n) _exp< ! ;)

exp(=O((plogp)/n)) = 1= O((plogp)/n) = 1—o(1).

If the population only contains copies of 0", mutation has to flip all » bits to reach
the global optimum. This event has probability n~" and, by the union bound, the
probability of this happening in a phase consisting of n"~! generations is at most 1/n.
The sum of all error probabilities is 1/2 + o(1), which proves the first claim.
For the second claim, observe that the conditional expected optimization time is
n' once the population has collapsed to copies of 0. As this situation occurs with
probability at least 1/2 — o(1), the unconditional expected optimization time is (n™).
O

—=
7N
—
|
S|
N——
Y

Y

4 No Genotype Duplicates

It has become clear that diversity-preserving mechanisms are very useful to optimize
even a simple function such as TWOMAX. The simplest way to enforce diversity within
the population is not to allow genotype duplicates. The following algorithm has been
defined and analyzed by Storch and Wegener [17]. It prevents identical copies from
entering the population as a natural way of ensuring diversity. We will, however, show
that this mechanism is not powerful enough to explore both branches of TWOMAX.

Algorithm 2 (p+1) EA with genotype diversity

Let ¢ := 0 and initialize P with x individuals chosen uniformly at random.
repeat
Choose = € P, uniformly at random.
Create y by flipping each bit in « independently with probability 1/n.
if y ¢ P, then
Choose z € P, with worst fitness uniformly at random.
if f(y) > f(Z) then Pt+1 = Pt \ {Z} U {y} else Pt+1 = Pt.
Lett =1+ 1.

We prove that if the population is not too large, the algorithm can be easily trapped
in a local optimum.

Theorem 2. The probability that the (u+1) EA with genotype diversity and p = o(n'/?)
optimizes TWOMAX in time n™~2 is at most 1/2 + o(1). Its expected optimization time is
Q(n"1h).

Proof. We use a similar way of reasoning as in the proof of Theorem 1. With probability
1/2 — o(1), 0™ is the first local or global optimum created at time 7*. Call = good (from
the perspective of extinction) if |z, < 1 and bad if |z|, > n — 1. At time T* the number
of good individuals is at least 1. In the worst case (again from the perspective of ex-
tinction) the population at time 7™ consists of 0" and . — 1 bad individuals with n — 1
ones. Provided that the (¢+1) EA does not flip n — 2 bits at once, we now argue that the
number of good individuals is monotone unless the unique 0-bit in a bad individual is
flipped.

Due to the assumptions on the population only offspring with fitness at least n — 1
are accepted, i.e., only good or bad offspring. In order to create a bad offspring, the

6 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

unique 0-bit has to be flipped since otherwise a clone or an individual with worse fit-
ness is obtained. Hence the number of good individuals can only decrease if a bad
individual is chosen as parent and its unique 0-bit is flipped. If there are i good indi-
viduals, we denote this event by B; and have P(B;) < ";l L

On the other hand, the number of good individuals is increased from i to 7 + 1 if
a good offspring is created and a bad individual is removed from the population. We
denote this event by G;. A good offspring is created with probability at least 1/(3) for
the following reasons. The point 0" is selected with probability at least 1/4 and then
there are n — (i — 1) = n — o(n'/?) > (e/3) - n 1-bit mutations (provided n is large
enough) creating good offspring that are not yet contained in the population. Along
with the fact that a specific 1-bit mutation has probability 1/n - (1 —1/n)"~! > 1/(en),
the bound 1/(3x) follows. After creating such a good offspring, the algorithm removes
an individual with fitness n—1 uniformly at random. As there are i —1 good individuals
with this fitness and p —i bad individuals, the probability of removing a bad individual
equals (1 —4)/(pn — 1) > (p — 9)/p. Together, P(G;) > i . “;i = g;; The probability
that G; happens before B; is at least

—gf’; 1 3u/n 3u
P(G1|G1UBZ)Z _‘# — = =1-— > 1-—.
b + L 1+3u/n 1+ 3u/n n

The probability that the number of good individuals increases to i before the global
optimum is reached is

p " 2
HP(GzleUBz) > (1_3_/1,) > 1—3L = 1—0(1).

. n - n
=1

The probability of creating a global optimum, provided the population contains only
search points with at most one 1-bit, is at most n~("~1). The probability of this happen-
ing in a phase of n"~? generations is still at most 1/n. Adding up all error probabilities,
the first claim follows.

The claim on the expected optimization time follows as the last situation is reached
with probability at least 1/2 — o(1) and the conditional expected optimization time is at
least n" ! then. a

5 No Fitness Duplicates

Avoiding genotype duplicates does not help much to optimize TWOMAX as individuals
from one branch are still allowed to spread on a certain fitness level and take over the
population. A more restrictive mechanism is to avoid fitness duplicates, i. e., multiple
individuals with the same fitness. Such a mechanism has been defined and analyzed
by Friedrich et al. [3] for plateaus of constant fitness. In addition, this resembles the
idea of fitness diversity proposed by Hutter and Legg [8].

The following (u+1) EA with fitness diversity avoids that multiple individuals
with the same fitness are stored in the population. If at some time ¢ a new individual 2
is created with the same fitness value as a pre-existing one y € P, then x replaces y.

From the analysis of Friedrich et al. [3] it can be derived that if the population
size 1 is a constant then the runtime on a simple plateau is exponential in the problem
size n. Only if i is very close to n the expected runtime is polynomial. In particular,
if 1 = n then the same upper bound as that of the (1+1) EA for plateaus of constant
fitness [9] can be obtained (i.e., O(n?)). In the following, by analyzing the mechanism

Evolutionary Computation Volume x, Number x 7

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

Algorithm 3 (;+1) EA with fitness diversity

Let ¢ := 0 and initialize Py with x individuals chosen uniformly at random.
repeat

Choose = € P; uniformly at random.

Create y by flipping each bit in = independently with probability 1/n.

if there exists z € P, such that f(y) = f(2)

then Pt+1 = Pt \ {Z} U {y},

else Choose z € P, with worst fitness uniformly at random.

if f(y) > f(z) then Py = P\ {2z} U {y} else P;y1 = P;.
Lett=1t¢+1.

on TWOMAX, we show how also on a simple bimodal landscape, fitness diversity does
not help the (u+1) EA to avoid getting trapped on a local optimum.

The following theorem proves that if the population is not too large, then with
high probability the individuals climbing one of the two branches will be extinguished
before any of them reaches the top. Since the two branches of the TWOMAX function are
symmetric, this also implies that the global optimum will not be found in polynomial
time with probability 1/2 — o(1).

Theorem 3. The probability that the (u+1) EA with fitness diversity and jn = poly(n) opti-
mizes TWOMAX in time 2°", ¢ > 0 being an appropriate constant, is at most 1/2 + o(1). Its
expected optimization time is 294",

The upcoming proof of Theorem 3 investigates a potential function of the current
population. The potential performs a random walk on a finite set of integers. In order to
analyze first hitting times of this random walk, we need two technical results concerned
with the so-called drift, i.e., the expected movement of the random walk in one step
(see Oliveto, He, and Yao [14] for a general description of drift analysis applied to
evolutionary algorithms).

If a random walk has a drift towards a target value, the expected first hitting time
of the target value can be bounded from above using a bound on the drift. The first
inequality of the following lemma has been proved by He and Yao [7], the second in-
equality follows from the first one using the law of total expectation. A similar result
has been proved independently by Wegener and Witt [21].

Lemma 1 (Upper Bound, Drift towards Target). Consider a Markov process { X }+>¢ with
state space No. Let T := inf{t > 0: X, = 0}. If there exists 6 > 0 such that for any time t > 0
and any state X, > 0 the condition E(X, — X41 | Xy) > 0 holds, then

E(T| X,) < % and E(T) < E(‘;(O)

On the other hand, a random walk may have a drift leading away from the target
value on an interval of the state space. If, additionally, large jumps are unlikely, the
expected time to cross the interval is then bounded below by a value exponential in the
length of the interval. Such a technical result has first been presented by Hajek [6] for
the analysis of randomized search heuristics. The following major simplification has
been obtained recently by Oliveto and Witt [13].

Lemma 2 (Lower Bound, Drift away from Target). Consider a Markov process {X;}i>0
with state space S = {0,1,...,N} for some N € N. Let 0 < a < b < N and define the

8 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

stopping time T'=min{t > 0: X;, <a | Xo > b}. Fori € Sandt > 0let A (i) := (X471 —
X¢ | X¢ = 1i). Suppose there are constants 6, e, > 0 such that for all t > 0

o E(Ai (1)) >efora<i<band
o P(Ay(i)=—j) <1/(1+6) " fori>aandj>1,

then there is a constant ¢ > 0 such that P(T < 2¢(b=@)) = 2=%(b—a),

Now we are prepared to prove Theorem 3.

Proof of Theorem 3. Obviously the second claim follows from the first one. W.l.o.g.
n/6 € N. By Chernoff bounds, the probability that initialization creates a search point
with at most n/3 1-bits or at most /3 0-bits is at most y - 2~ = o(1). We assume in
the following that only search points = with n/3 < |z|, < 2n/3 are created and keep in
mind an error probability of o(1).

Let individuals with i < n/2 0-bits be called z; and individuals with i < n/2
1-bits be called y;. Initially there is neither z; nor y; in the population for 0 < i < n/3.
Because of the fitness diversity mechanism, there may be only one such x; or one y; in
the population at the same time for 1 < i < n/3 as z; and y; have the same fitness. For
the current population P, at time ¢ define a potential ¢ = ¢(P;) as follows:

¢ = ¢(P;) := min {min{i: Yit1 & Pi}, %}

The potential is capped at /6 for technical reasons that will become obvious later on.
As n/6 < n/3, we can conclude from potential i that zo,...,x; ¢ P,. Intuitively, the
potential is then a lower bound for the Hamming distance from the closest point in the
population to the global optimum. We first consider the case @ < n/3 as then we do not
have to deal with the fact that the 1 best fitness levels may contain multiple individuals.
Later on, we then argue how to deal with larger population sizes.

We now partition the run into phases and call such a phase good (for the lower
bound) if the global optimum is not found during the phase. Phase 1 ends when a
search point in {0”,1"} is found for the first time. After the initialization only one
new individual is created in each generation. Due to the symmetry of the TWOMAX
function, the probability that 0" is found first equals the probability that 1™ is found
first. Hence Phase 1 is good with probability 1/2 — o(1).

At the end of Phase 1 we have a current potential of ¢ > 1. Let m; :=
min{y — 1, /n} and my := min{p — 1,n/6} be the maximum potential. Define Phase 2
to start after a good Phase 1 and to end when either the global optimum is found or the
potential increases to ¢ > m;.

We inspect changes of the potential. It may happen that the next step creates y, 1.
Then . is removed from the population and ¢ increases by 1. Such a step is called
a good step. On the other hand, if x; for i < ¢ is created then y; is removed and ¢
decreases to ¢ — 1. This is referred to as a bad step. All other steps do not change the
potential. For proving a lower bound, given a current potential ¢, we consider the
following population as a worst case:

P, = {yo,- 1 Yp, Totlse oy Tp—1}-

In P, we have yo,...,y, € P; by definition of the potential ¢ and the z-individuals
are stacked one after another. The latter maximizes the probability of reaching the
global optimum in a single step. More general, for every ¢ < ¢ the probability of

Evolutionary Computation Volume x, Number x 9

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

creating z; is maximized—this event is equivalent to a bad step decreasing the potential
to ¢. Furthermore, the probability of a good step is minimized as all z-individuals have
the largest possible Hamming distance to search points y, 1. Recall that every fitness
level contains at most one search point, hence there cannot be a worse constellation for
the z-individuals.

We now simplify the analysis by making pessimistic assumptions that reduce the
algorithm towards a simple Markov chain. After a step has been made, we compute the
new potential and then pessimistically replace the resulting population by the worst-
case population corresponding to the new potential. Even in this pessimistic setting
¢ increases to m; with high probability before a bad step happens. If z,; is chosen
as parent, a necessary condition for a bad step is that j out of ¢ + j 0-bits flip. Using
(1) < (ne/k)*, the probability of a bad step is at most

5 () <))
po= J n) T op i J n

j i=
<! " (e(j +my — 1)>7
= jn
1 i1 3
S_Z(@) A LU S A LY
peg\n Ion—em noon
asmy = o(n). If ¢ < my, the probability of a good step is at least ; - “22 > . 220 >

ﬁ since it suffices to select y,, and to flip exactly one out of n — ¢ bits. So, the proba-
bility of a good step happening before a bad step is at least

1/(2ep) +3/p-mi/n ~ 1+6emi/n 1+ 6emi/n — n

1/(2eu) 1 Gemy/n > 1 Gem;

The probability of increasing ¢ from 1 to m; by subsequent good steps before a bad
step happens is bounded by

6 m1—1 6 2
(1— eml) > 1- 2 _ 1 o)

n

since m? = o(n).

The next Phase 3 starts after a good Phase 2 and ends when either the global opti-
mum is found or the potential increases to ¢ > my. In case m; = p the goals of Phase 2
and Phase 3 coincide and Phase 3 is empty. We consider the expected increase of the
potential in one generation. Let A, = A (t) := ¢(Pi41) — ¢(P;). If the current poten-
tial is not maximal, the probability of increasing the potential by 1 can be estimated by
the probability of selecting y, and making one out of n — ¢ 1-bit mutations increasing
the number of 1-bits. Define AL := A, -1(A, >0) and A := A, -TI(A, < 0) where
I(A) = 1if condition A is true and 0 otherwise. Then for ¢ < my

B(at) > £.0=¢

Looen

If x,; is selected, in order to decrease the potential it is necessary that j out of ¢ + j
0-bits flip. The probability for this event is clearly bounded by 1/(;j!). Under the condi-
tion that at least j O-bits flip, the expected number of flipping 0-bits among ¢+ 0-bits is

10 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

bounded by j + ¢ /n, the term ¢ /n representing the expected number of flipping 0-bits
among ¢ 0-bits. The conditional expected decrease of the potential is then at most ¢ /n,
leading to an unconditional expectation of

using e = 2 1/(j!). Putting E(A}) and E(A) together, along with ¢ < my < n/6,

_ _ — (2 —
EA,) > l(n e (e 1)<p> 1 n—(e—et+1yp > &
u en u

o en n

for some € > 0. One conclusion is that by Lemma 1, applied to random variables
X, := mg —¢(P,), the expected time until the potential has reached its maximum value
mg or the optimum is found beforehand is bounded by O(nu). In other words, Phase 3
ends in expected time O(npy).

In order to estimate the error probability in this phase, we apply Lemma 2 to the
potential in the interval between a := 0 and b := ¢/n. Note that b cannot be chosen
larger as the lemma requires the starting point to be at least b. Another obstacle is that
the drift ¢/u decreases with p. So we consider the potential only in relevant steps,
defined as steps where A, # 0. The arguments from our estimation of E(A}), along

with ¢ < n/6, yield the lower bound P(A, # 0) > % = %. We also need
an upper bound on this probability. If y,_j is selected for 0 < k < ¢, at least k bits
have to flip in order to have a relevant step. The same holds if z, 414 is selected for
0 <k < p—p—2. Asall these solutions are selected with probability 1/, the probability
of a relevant step is bounded from above by P(A, #0) < 2377 7 = 2. This
yields for i < n/6
E(A,) €
(<P| %37&0) P(AW#O)_QG
and the first condition for Lemma 2 is fulfilled. For the second condition, it is necessary
for A, = —j, j € N, to select some x4, and to flip k + j bits simultaneously. Using

(k+j)! > k! jl for k,j € Ny yields

1 — 1 I 11 e 1
P(A, = —j) < —- BT
(B¢) [,;(kﬂ)! 1 J!,;)k! T
For the conditional probabilities in relevant steps this means
PA = —9 2 .
P(Ay,=—j| Ay, #0) = (B])§6i<2ﬂ+5

P(A, #0) il —

and the second condition holds for § := 1 and r := 5. Lemma 2 shows that the prob-
ability of reaching the global optimum within 2¢V" steps is 2%V = o(1) for an
appropriate constant ¢ > 0. By Markov’s inequality the probability that Phase 3 is
not finished after this number of steps is also o(1). Concluding, Phase 3 is good with
probability 1 — o(1).

The fourth and last phase starts after a good Phase 3 and ends when the global
optimum has been found. Phase 4 therefore starts with a maximum potential of ms.
If 1 < n/6 + 1 then at least 2n/3 bits have to flip simultaneously in order to create an

Evolutionary Computation Volume x, Number x 11

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

accepted z-individual. The probability of this event is n~*(") and the claim follows. If
> n/6+1 then we apply Lemma 2 to the larger interval from a := 0 to b := n/6. In the
analysis of Phase 3 we have already shown the preconditions for this larger interval,
hence the algorithm needs at least 2(") steps with probability o(1). Summing up all
error probabilities proves the claim for p < n/3.

Finally, we argue how to deal with larger population sizes, i@ > n/3. We relax our
condition on worst-case populations P; to

Py 2 {0, s Yps Tot1s--Tny3l,

where the remaining individuals all have a number of ones in between n/3 and 2n/3.
These individuals therefore have Hamming distance at least n/6 to all search points
that determine the current potential. The probability that such a search point interferes
with our previous arguments is therefore at most 1/(n/6)! = n~("). Reinspecting the
analysis for Phases 2—-4, we see that compared to the setting for < n/3 the probabilities
for bad and relevant steps only increase by additive terms of n~*(). Similarly, E(A,,)
is only decreased by n~(") for 0 < ¢ < n/6. In particular, Phase 2 remains good with
probability 1 — o(1) and the application of Lemma 2 in Phases 3 and 4 remains possible
for appropriate constants ¢, J, . O

6 Deterministic Crowding

In the deterministic crowding mechanism offspring compete directly with their respec-
tive parents. According to Mahfoud [11], in a genetic algorithm with crossover deter-
ministic crowding works as follows. In every generation the population is partitioned
into 11/2 pairs of individuals, assuming p to be even. These pairs are then recombined
and mutated. Every offspring then competes with one of its parents and may replace it
if the offspring is not worse.

As we do not consider crossover, we adapt the main idea of offspring competing
with their parents for a steady-state mutation-based algorithm. More precisely, in the
following algorithm an offspring replaces its parent if its fitness is at least as good.

Algorithm 4 (;+1) EA with deterministic crowding

Let ¢ := 0 and initialize Py with x individuals chosen uniformly at random.
repeat
Choose = € P, uniformly at random.
Create y by flipping each bit in = independently with probability 1/n.
if f(y) > f(z) then Pryq = P\ {2} U {y} else Pry1 = P
Lett =14 1.

The algorithm closely resembles a parallel (1+1) EA since y individuals explore the
landscape independently. However, in contrast to parallel runs, interactions between
the individuals may be obtained by using other operators together with mutation. Re-
cently, the mechanism together with crossover has proved to be useful in vertex cover
problems by making the difference between polynomial and exponential runtimes for
some instances [15]. Here we concentrate on the capabilities of guaranteeing diver-
sity of the mechanism by analyzing the (u+1) EA with deterministic crowding on the
TwoOMAX function. For sufficiently large populations the algorithm can easily reach
both local optima.

12 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

Theorem 4. The (p+1) EA with deterministic crowding and ;1 = poly(n) reaches on
TWOMAX a population consisting of only local or global optima in expected time O(pnlogn).
In that case the population contains at least one global optimum with probability at least 1 —27+,

Proof. The main observation for the second statement is that the individuals of the
population are independent due to the crowding mechanism. Due to the symmetry of
TwOMAX, the i-th individual in the population reaches the global optimum with prob-
ability 1/2. The probability that at least one individual finds the global optimum is
1—(1/2)~.

Let T be the random time until all the individuals have reached local or global op-
tima on TWOMAX. It is easier to find a local optimum on TWOMAX than to find a global
optimum on ONEMAX, hence we estimate FE(T") by the expected global optimization
time on ONEMAX.

Consider the following game of balls and bins (cf. the coupon collector’s theorem
in [12]), where bins represent bits and balls represent 1-values. Imagine a bin for every
bit in the initial population, i. e., a set of jin bins labelled with their respective bits. Place
a ball in each bin if the associated bit is set to 1 in the initial population. In the following
generations balls may be put into empty bins according to certain rules. The game ends
when all bins contain a ball—this corresponds to a population where all bits have been
set to 1 and every individual represents the optimum 1.

Consider a generation where some individual « is selected as parent. The proba-
bility that mutation only flips a specific 0-bit z; into a 1-bitis 1/ - 1/n- (1 —1/n)"1 >
1/(enp). As a consequence of this mutation, the offspring replaces its parent . Com-
pared to the previous population, the bit x; is being switched to value 1 and we imagine
that in this case a new ball is put into the empty bin for z;. If mutation creates an off-
spring y with ONEMAX(y) = ONEMAX(z), y again replaces x and we imagine the bins
for x being rearranged so that their occupancy matches the 1-bits in y. Note that re-
arranging bins of an individual, i.e., rearranging bits within an individual, does not
make a difference for the algorithm as all bits are treated equally. In the case where
ONEMAX(y) > ONEMAX(z), we imagine that ONEMAX(y) — ONEMAX(z) balls are
added to arbitrary empty bins of x and afterwards the bins are again rearranged to
match the offspring y.

Fix an arbitrary empty bin. The probability that it receives a ball in one generation
is at least 1/(enu). The probability that the bin does not receive a ball within ¢ :=

1 enp-In(2npu)

enpi

G = S By the union

bound, the probability that there is still an empty bin left in the game after t steps is
at most 1/2. In case the game has not ended after ¢ steps, we consider another period
of ¢ steps and continue waiting for the game to end. The expected number of periods
until the game ends is at most 2. Hence the expected time of the game is bounded by
E(T) <2t = O(punlogn) since In(2nu) = O(log n) follows from p = poly(n). O

enp - In(2nu) steps is bounded by (1 -

7 Fitness Sharing

Fitness sharing [see, e.g., 11] derates the real fitness of an individual 2 by an amount
that represents the similarity of = to other individuals in the population. The similarity
between z and y is measured by a so-called sharing function sh(z,y) € [0,1] where a
large value corresponds to large similarities and value 0 implies no similarity. The
idea is that if there are several copies of the same individual in the population, these
individuals have to share their fitness. As a consequence, selection is likely to remove
such clusters and to keep the individuals apart. We define the shared fitness of x in the

Evolutionary Computation Volume x, Number x 13

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

population P and the fitness f(P) of the population, respectively, as

/()
ZyEP Sh(xv y)

It is common practice to use a so-called sharing distance o such that individuals only
share fitness if they have distance less than ¢. Given some distance function d, a com-
mon formulation for the sharing function is

sh(z,y) = max{0,1 — (d(z,y)/0)*}

where « is a positive constant that regulates the shape of the sharing function. We use
the standard setting & = 1 and, following Mahfoud [11], we set the sharing distance to
o = n/2 as this is the smallest value allowing discrimination between the two branches.
As TWOMAX is a function of unitation, we allow the distance function d to depend on
the number of ones: d(z,y) := ||z|; — |y|, |- Such a strategy is known as phenotypic
sharing [11]. Our precise sharing function is then

€T —
sh(z,y) = max{07 1_2M}'
n

We now incorporate fitness sharing into the (u+1) EA. Our goal is to evolve a good
population, hence selection works by comparing candidates for next generation’s pop-
ulation with respect to their f(P)-values. This selection strategy has already been ana-
lyzed by Sudholt [18].

f(z,P) = and f(P) = Y f(x,P).

reP

Algorithm 5 (1+1) EA with fitness sharing

Let ¢ := 0 and initialize P with p individuals chosen uniformly at random.
repeat
Choose = € P; uniformly at random.
Create y by flipping each bit in « independently with probability 1/n.
Let Py := P, U {y}.
Choose z € P/ such that f(P;\ {z}) is maximized.
Let Pyy = P\ {z}and t =t + 1.

Note that when evaluating f(P; \ {z}) the shared fitness values have to be re-
computed for all these populations. However, with the use of dictionaries it suffices to
compute f(y) and the sharing values sh(x,y) for z € P, only once. In addition, fitness
evaluations are often the most expensive operations in evolutionary computation, so
the additional effort is negligible.

We now show that the (u+1) EA with fitness sharing can find both optima on

TwOMAX. Imagining all parents and the new offspring on a scale of |z|;, the indi-
viduals with the smallest and the largest number of ones have the largest distance to
all individuals in the population. Therefore, fitness sharing makes these outer individ-
uals very attractive in terms of shared fitness, hence these individuals are taken over to
the next generation. This even holds if an outer individual has the worst fitness in the
population.
Lemma 3. Consider the (u+1) EA with fitness sharing and ;v > 2 on TWOMAX. Let P} be the
enlarged parent population at some point of time t and w. 1. 0. g. let P = {x1,...,x,41} with
1]y < lwaly <o Szl Il <ol then z € P Also, if |21y <[],
then x1 € Pt+1.

14 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

Proof. We only prove x,11 € Piy1 for |z,|, < |z,41];. The second claim for the case
|z1], < |22, follows by symmetry. Let P~ := P} \ {z,41} be a “bad” new population
without z,,41, contradicting our claim that z,,;; remains in the population. Let P* :=
P} \ {z,} be one “good” new population where z,, is removed instead and let P" :=
PT NP~ contain all other individuals. We will prove f(P~) < f(P™"). This implies that
the bad population P~ does not have maximal population fitness among all possible
next populations P \ {z} examined in the selection step, hence P* or another “good”
population is chosen and x4 remains in the population.

We first deal with the case f(z,) < f(z,41). Intuitively, z,1 is better than z, both
in terms of real fitness and in terms of sharing distance to the other individuals in P".
More precise, we have sh(z,,,) > sh(z,41,z) for z € P" due to the ordering of the z;
and the definition of the sharing function. Hence, }° . p- sh(z,y) > >, p+ sh(z,y) for
ze Pland Y- cposh(z,,y) > 3, cpr sh(z,i1,y). Together, we obtain

-y = f(z) f(xu)
f(P) N zezpﬁ ZyGP* Sh(l‘,y) * ZyGP* Sh(xu,y)
f(x) f(@ps1)

+ — F(P).
2 T by TS sty T

<

It remains to show f(P~) < f(P™") for the case f(x,) > f(x,+1). This means that z,, is
better than z,1; in terms of real fitness, but worse with respect to the shared distance
to all individuals in P"'. We want to examine the impact of the distance between the
two individuals on the fitness and the sharing function. Therefore, we define

, n
d = mln{|xu+1|1 , 5} — |zl

Note that d > 0 as |z,[;, < n/2 follows from f(z,) > f(z,41). The minimum in the
definition of d implies the following inequality.

2d
Vo e P": sh(z,z,41) < sh(z,z,)— —, (1)
n
which is immediate from the definition of sh(-,-) if z,41 is within sharing distance
from x. Otherwise, it follows from
2(% — |zuly) 2d
~ 22) g - =
" sh(z, Ty) "
Inequality (1) can now be used to relate the shared fitness f(x, P~) to the shared fitness
f(x, PT) for z € P". This reflects the gain in total shared fitness for the individuals in
P if PT is selected instead of P~. Using inequality (1) and the fact that the sharing
function is at most 1, for all z € P"™:
f(l', P_) Zyep+ Sh(l’, y) < Zyepﬁ Sh(l’, y) + Sh(iC, :EM) - 2d/7’L

f(z, Pt) a ZyGP* sh(z,y) — z:yePm sh(z,y) + sh(z,)
<2y 2 @
K N

As f(zu41) < f(z,), the total real fitness of the individuals is worse for P* than for P~.
We also relate the shared fitness f(z,, P~) to f(z,+1, P") in order to estimate the loss of

Evolutionary Computation Volume x, Number x 15

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

shared fitness. By definition of d and TWOMAX it is easy to see that f(z,)—d < f(xu+1).
Along with f(z) > n/2 for every = € {0,1}", we have

f(zus1) > flzy) —d > n/2—d _ 1_2_d'

flzn) = flzw) - n/2 n

Also, using inequality (1), we obtain

Zyep+ sh(z,41,y) - 1+ Zyepm sh(zy41,y)

ZyeP* Sh(‘ruv y) B 1 + z:yePm Sh(xuv y)
L+ 2 yepn(shzyy) —2d/n) 1+ (p—1)(1 — 2d/n)
B 1+ XzyePﬁ sh(z,.,y) B 2 '

Taking the last two estimations together,

f@p PT) 2yeprsh@uin,y) - f(a,)
f(x,qula P+) ZyEP* Sh(I“, y) .f(x#Jrl)

1 —1)(1-2d 1— 244 2d 2d
< + (k= 1)(/n) _ o1y 22 (3)

- w(l —2d/n) B 1 -2 ni

n

So, when comparing P~ with P*, we have a gain of shared fitness for all z € P"
and a loss of shared fitness for the remaining individual when exchanging x,, for z,, 1.
Putting inequalities (2) and (3) together yields

FP7) = > f(@ PT)+ flwn, P)

zePN

< Y fz, P (1_2_2) + e, P - (1+2_d)

zepPn ny
4y _ 2 + +
<FPH == D7 f@ PY) ~ flau, P)
" xePn
Now f(P~) < f(PT) follows if the term in parentheses is non-negative, i.e.,
Z f(:zc,P+) > f(xu+1vp+)' (4)
zeP"

Recall |z,[, < n/2and consider the left-hand side of inequality (4). This term is mini-
mized if all z € P" equal z,,—; since then for all individuals in P" fitness is minimized
and sharing is maximized. Along with f(z,—1) > f(z,41)and p—1>1,

s (=))
mezpm flx, PT) = w—1+sh(z,—1,2.41)
f(z41) . f(@pt1)

= f(zps1, PT). O
L+sh(zu-1,2p41) — 2 ep+ Sh(@pt1,y) ACS])

Now it is easy to prove an upper bound on TWOMAX. To the best of our knowl-
edge, the following theorem provides the first runtime analysis of an EA with fitness
sharing for population sizes greater than 2.

16 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

Theorem 5. The (u+1) EA with fitness sharing and 1 > 2 reaches on TWOMAX a population
containing both optima in expected optimization time O(unlogn).

Proof. For a population P, we consider the following characteristic values as potential
functions: mg(P) denotes the maximum number of zeros and m;(P) the maximum
number of ones for the individuals in P. We are interested in the expected time until
both potentials become n.

According to Lemma 3, both potentials cannot decrease. If mo(P) = k then
we wait for an individual with %k zeros to be chosen and for the number of zeros
to be increased. The expected time for this to happen is bounded from above by
O(u - n/(n — k)). Hence, the expected time until the my-potential reaches its maximum
value n is O(unlogn). A symmetrical statement holds for the m;-potential, hence the
expected time until both optima are found is bounded by O(unlogn). O

8 Experiments

Our negative results for the (u+1) EA without diversification and the genotype diver-
sity mechanism only hold for relatively small population sizes. We believe that the
same results also hold for larger values of i, but a theoretical analysis is challenging.
Initial experiments have shown that also with larger i extinction is still likely, but the
questions concerning which branch gets extinct and when extinction happens are de-
termined by long-term dynamics that are very difficult to handle analytically.

A typical behavior is that one branch starts lagging behind a little. Then chances to
create offspring on higher fitness levels are lower for this branch, while the other branch
has an advantage in this respect. When climbing up the next fitness levels, this effect
may intensify until the branch that is behind gets extinct. However, it may also happen
that by chance the branch that is behind creates an offspring on a good fitness level ¢
and then the branch is safe from extinction until level £ becomes the worst fitness level
in the population. This gives the branch some time to recover, which makes it hard to
predict when a branch will get extinct. It is even hard to tell which branch is “behind”.
One branch may consist of few good individuals and the other one of many inferior
solutions. Which one is more likely to survive in the long run? We feel that completely
new methods have to be developed in order to understand these long-term dynamics
of the processes.

We rely on experiments to find out how large a population has to be to avoid
extinction. This also allows a more detailed comparison of diversity-preserving mech-
anisms. We consider exponentially increasing population sizes u = 2,4,8,...,1024 for
n = 30 and perform 100 runs in each setting. An obvious performance measure is
the number of runs where the global optimum is found. However, for hill climbers
like the (1+1) EA this measure fluctuates around 50 runs. In order to obtain a more
clear picture without this random fluctuation, we instead consider the number of runs
where both 0" and 1™ were present in the population at the same time. Such a run is
called successful hereinafter. In all non-successful runs we have a conditional probabil-
ity of exactly 1/2 that the global optimum was found due to the symmetry of TWOMAX,
provided i > 2. Moreover, we record the maximum progress on the branch that gets
extinct, computed as min {mo(P;), m1(F;)}, where mo(P;) (m1(P,)) denotes the maxi-
mum number of zeros (ones) in the population P; at time ¢. In case both 0" and 1™ are
contained in the population, the maximum progress equals n. For fitness sharing we
present our theoretical results as the outcome of experiments is predetermined. The
number of successful runs is clearly 100 and the maximum progress is n = 30.

Evolutionary Computation Volume x, Number x 17

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

100 s

80 + 1

60 I no diversification
genotype diversity - /
fitness diversity -~

40 det. crowding ’ |
fitness sharing -

20 1

0

2 4 8 16 32 64 128 256 512 1024
u (logscale)
Figure 2: The number of successful runs among 100 runs for n = 30 and p =

2,4,8,...,1024. A run is called successful if 0™ and 1™ were present in the population
at the same time.

The choice of the stopping criterion is non-trivial. A natural design choice is to
stop the algorithm after convergence to local or global optima. For fitness sharing, de-
terministic crowding, and the (+1) EA without diversification, we stop the run when
either the run is successful or when the whole population only consists of copies of 0"
or 1™. For genotype diversity and, especially, fitness diversity there is no such conver-
gence as copies of 0" and 1™ are not allowed. The genotype diversity mechanism gets
stuck when all individuals are as close to 0" or 1" as possible. The same happens for
fitness diversity when ;1 < n/2 and all individuals are stacked one after another on
one branch. However, the fitness diversity mechanism for ;> n/2 does not converge
at all because the population performs a random walk with a drift pointing away from
the optimum when it gets close enough. Therefore, we stop a run for these two mech-
anisms after 3600y generations. The time bound 3600x was chosen for the following
reason. For n = 30 we have 360x > p-en(lnn+1). This term is the upper bound for the
expected time to reach either 0" or 1" mentioned in Section 2. This bound holds for all
algorithms presented in this work. Moreover, the random time is concentrated around
the expectation as can be seen from the proof of Theorem 4. Our bound 3600 is more
than ten times larger than the expectation. This is enough time for the two algorithms
to converge or to reach a meaningful equilibrium state.

Figure 2 shows the number of successful runs. While fitness sharing is always suc-
cessful, fitness diversity was never found to be successful. Using deterministic crowd-
ing, the success probability increases very steeply compared to the scenarios of no di-
versification and genotype diversity. Although genotype diversity is a rather weak
mechanism, it turns out to be more successful than no diversification.

Figure 3 shows the average maximum progress in 100 runs. It is obvious that fit-
ness sharing and deterministic crowding perform well due to their high success prob-
abilities. But here also fitness diversity has an effect as its progress indicator increases
with increasing p, although more slowly than the indicator of all the other algorithms.
Concerning the (u+1) EA without diversification and with genotype diversity, we can
see from Figure 3 that for small population sizes extinction occurs very early and for
low fitness values. Contrarily, our theoretical arguments were based on the very last fit-

18 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

30

28 I ,,/,‘//,/) A

26 T |

24]

22]
no diversification

207 genotype diversity - 1
fitness diversity -

18 2 det. crowding 1

16 '-,,/,:*"'v fitness sharing ------- |

14

2 4 8 16 32 64 128 256 512 1024
u (logscale)

Figure 3: The average maximum progress on the branch that is behind, measured
among 100 runs, forn = 30 and p = 2,4,8,...,1024.

ness levels where our estimates of the extinction probabilities were best. This strength-
ens our impression that extinction is due to much more complex long-term effects than
used in our proofs.

9 Conclusions

We have examined the behavior of different diversity-preserving mechanisms on a fit-
ness landscape consisting of two hills with symmetric slopes. We rigorously proved
that without any diversification the whole population of the (+1) EA runs into the
local optimum with probability almost 1/2 (Theorem 1). This still holds if we avoid
genotype duplicates or fitness duplicates. An implication is that for these algorithms
the population is nearly useless as we experience the same performance as for simple
hill climbers like local search or the (1+1) EA.

On the other hand, stronger diversity-preserving mechanisms like fitness sharing
and deterministic crowding allow the (u+1) EA to find both optima of our test func-
tion TWOMAX with high probability. Deterministic crowding performs as well as inde-
pendent runs and the probability of not finding both optima decreases exponentially
with p. Fitness sharing using a phenotypic distance function always finds both optima
efficiently for arbitrary populations of size y > 2.

Our theoretical results and the experiments from Section 8 have also revealed im-
portant open problems. Theorems 1 and 2 apply only to sublinear population sizes.
Our experimental results indicate a similar behavior also for larger populations, but
a theoretical analysis is difficult. It seems that a more thorough understanding of the
long-term dynamics of genetic drift is required to strengthen the theorems.

References

[1] N.Chaiyaratana, T. Piroonratana, and N. Sangkawelert. Effects of diversity control
in single-objective and multi-objective genetic algorithms. Journal of Heuristics, 13
(1):1-34, 2007.

[2] S. Fischer and I. Wegener. The one-dimensional Ising model: Mutation versus
recombination. Theoretical Computer Science, 344(2-3):208-225,2005.

Evolutionary Computation Volume x, Number x 19

T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt

[3] T. Friedrich, N. Hebbinghaus, and F. Neumann. Rigorous analyses of simple di-
versity mechanisms. In Proc. of the annual Conference on Genetic and Evolutionary
Computation (GECCO '07), pages 1219-1225. ACM Press, 2007.

[4] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt. Theoretical analysis of diversity
mechanisms for global exploration. In Proc. of the annual Conference on Genetic and
Evolutionary Computation (GECCO "08), pages 945-952. ACM Press, 2008.

[5] D. E. Goldberg, C. Van Hoyweghen, and B. Naudts. From twomax to the Ising
model: Easy and hard symmetrical problems. In Proc. of the annual Conference on
Genetic and Evolutionary Computation (GECCO '02), pages 626-633. Morgan Kauf-
mann, 2002.

[6] B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied Probability, 14:502-525,1982.

[7] J. He and X. Yao. A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21-35, 2004.

[8] M. Hutter and S. Legg. Fitness uniform optimization. IEEE Transactions on Evolu-
tionary Computation, 10:568-589, 2006.

[9] T. Jansen and I. Wegener. Evolutionary algorithms: How to cope with plateaus of
constant fitness and when to reject strings of the same fitness. IEEE Transactions on
Evolutionary Computation, 5(6):589-599, 2001.

[10] T.Jansen and I. Wegener. Real royal road functions: where crossover provably is
essential. Discrete Applied Mathematics, 149(1-3):111-125, 2005.

[11] S. W. Mahfoud. Niching methods. In T. Back, D. B. Fogel, and Z. Michalewicz,
editors, Handbook of Evolutionary Computation, pages C6.1:1-4. Institute of Physics
Publishing and Oxford University Press, Bristol, New York, 1997.

[12] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[13] P. S. Oliveto and C. Witt. Simplified drift analysis for proving lower bounds in
evolutionary computation. In Proc. of the International Conference on Parallel Problem
Solving From Nature (PPSN X), volume 5199 of LNCS, pages 82-91. Springer, 2008.

[14] P. S. Oliveto, J. He, and X. Yao. Computational complexity analysis of evolution-
ary algorithms for combinatorial optimization: A decade of results. International
Journal of Automation and Computing, 4(3):281-293, 2007.

[15] P.S. Oliveto,]. He, and X. Yao. Population-based evolutionary algorithms for the
vertex cover problem. In Proc. of the IEEE Congress on Evolutionary Computation
(CEC '08), pages 1563-1570, 2008.

[16] M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking
of symmetry. In Proc. of the International Conference on Parallel Problem Solving From
Nature (PPSN V1), pages 385-394. Springer, 2000.

[17] T. Storch and I. Wegener. Real royal road functions for constant population size.
Theoretical Computer Science, 320:123-134,2004.

[18] D. Sudholt. Crossover is provably essential for the Ising model on trees. In Proc. of
the annual Conference on Genetic and Evolutionary Computation (GECCO '05), pages

20 Evolutionary Computation Volume x, Number x

Analysis of Diversity-Preserving Mechanisms for Global Exploration

1161-1167. ACM Press, 2005.

[19] D. Sudholt. Memetic algorithms with variable-depth search to overcome local
optima. In Proc. of the annual Conference on Genetic and Evolutionary Computation
(GECCO '08), pages 787-794. ACM Press, 2008.

[20] R. K. Ursem. Diversity-guided evolutionary algorithms. In Proc. of the Interna-
tional Conference on Parallel Problem Solving From Nature (PPSN VII), pages 462-471.
Springer, 2002.

[21] I. Wegener and C. Witt. On the optimization of monotone polynomials by simple
randomized search heuristics. Combinatorics, Probability and Computing, 14:225-
247,2005.

[22] C. Witt. Runtime analysis of the (u+1) EA on simple pseudo-Boolean functions.
Evolutionary Computation, 14(1):65-86,2006.

Evolutionary Computation Volume x, Number x 21

