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Abstract

The central question asked in whole genome association studies is how to locate associated regions

in the genome and how to estimate the significance of these findings. This is usually done by

testing each SNP separately for association, and then applying a suitable correction for multiple

hypothesis testing. However, SNPs are correlated by the unobserved genealogy of the population,

and a more powerful statistical methodology would attempt to take this genealogyinto account.

Leveraging the genealogy in association studies is challenging since the inference of the genealogy

from the genotypes is a computationally intensive task, in particular when recombination is

modeled, as in ancestral recombination graphs. Furthermore, if large numbers of genealogies are

imputed from the genotypes, the power of the study might decrease if these imputed genealogies

create an additional multiple hypothesis testing burden. Indeed, we show in this paper that several

existing methods that aim to address this problem suffer from either low power or from a very high

false positive rate; their performance is generally not better than the standard approach of separate

testing of SNPs. We suggest a new genealogy-based approach, CAMP(Coalescent based

Association MaPping), which takes into account the trade-off between thecomplexity of the

genealogy and the power lost due to the additional multiple hypotheses. Our experiments show that

CAMP yields a significant increase in power relative to previous methods, and that it can more

accurately locate the associated region.
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1 Introduction

Recent advances in genotyping technologies have considerably improved our understanding of

common complex diseases through whole-genome association studies. In these studies a

population of cases and controls is collected, in which hundreds of thousands of single nucleotide

polymorphisms (SNPs) are genotyped. These studies search for SNPs that are associated with the

studied disease, by measuring the difference in the SNP-allele distributions between the cases and

the controls (e.g.,1,2).

Since complex diseases are caused by multiple environmental and genetic factors, the differences

in allele frequencies between the cases and the controls for any given SNP can be expected to be

quite small. Therefore, analyses that achieve high statistical power are essential for these studies.

Additionally, although current technology (e.g., the Affymetrix SNP Array 6.0, and the Illumina

human1m-duo beadchip) allows measurement of nearly two million genetic variants for each

individual, this is still only a fraction of the set of genetic variants, and statistical methods are

needed to cope with this partial assessment of genetic variation.

The statistical analysis of a typical association study involves the testing of individual SNPs or

genomic regions for association, and the evaluation of the significance of the findings. The

simplest approach to significance testing is to test each marker separately for association3,4.

Many attempts have been made to move beyond separate testing by leveraging the unobserved

genealogy of the chromosomes (e.g.,5,6). These proposals aim to increase statistical power by

taking into account the dependency among SNPs. Model-based approaches in particular try to

infer aspects of the unobserved genealogy. In practice, however, this is a non-trivial task since the

genealogy has to be inferred from the genotypes. As we show in this paper, the loss of information

caused by erroneous inference of the genealogy can be detrimental to the association, and thus

genealogy-based methods are not always desirable.
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Previous methods that use genealogies in association studies face two main challenges. First, the

number of possible genealogies is very large, and even more so when recombination events are

taken into account; thus, it is infeasible to examine all possible genealogies. Second, an inferred

genealogy determines a large set of genealogy-based association tests (these can be expressed as

tests of SNP interactions); a major challenge is how to choose a subset of these tests such that the

increased number of hypotheses tested will not decrease the power. Ifthe tests are not chosen

properly, the statistical power can be reduced considerably due to the burden of multiple

hypotheses, even when the genealogical modeling is accurate.

In this paper, we suggest a new genealogy-based approach that takes into account the trade-off

between the complexity of the genealogy and the power lost because of multiplehypotheses. The

approach we present seeks to avoid excessive loss of power due to multiple testing, while still

testing the observed mutations and selected putative unobserved mutations suggested by plausible

genealogies. As with previous genealogy-based methods, we test selected SNP interactions. The

core of our method is to exploit properties of the coalescent to decide whichinteractions can be

ignored. In a nutshell, we construct a perfect phylogeny graph whichrepresents the genealogy of

the haplotypes, and restrict attention to observed mutations and to unobserved mutations that are

consistent with that graph.

Many genealogy-based association tests have been suggested in earlierwork. One popular way of

using genealogy in association studies is through the use of Ancestral Recombination Graphs7

(ARGs). These graphs aim to model the coalescence and the recombinationevents explicitly.

Several studies have proposed performing full-likelihood or Bayesian inference under the ARG

model (e.g.,8,9). This is, however, a technically challenging problem, and the proposed solutions

are feasible computationally only on relatively small data sets. Zollner and Pritchard5 suggested an

approximation to this inference problem in which testing for association is doneby a likelihood
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ratio test which is obtained by calculating the probability of the disease mutation given the

genotypes and the disease status. The inference is performed by a Markov Chain Monte Carlo

(MCMC) algorithm. This approach has the advantages of model-based procedures, but it is too

expensive computationally to be used in a large-scale whole-genome association study.

A different approximate approach to association mapping was suggested by Durrant et al.10. Their

main idea is to perform a cladistic analysis of SNPs. The cladogram capturesthe successive

partitioning of SNP haplotypes into clusters. At each partition, clusters of haplotypes from the

previous partition are merged such that the mean pairwise haplotype diversity is minimized within

the new clade. The cladogram is built using a sliding window of SNPs. In each window the best

partition of haplotypes is chosen. This procedure incorporates two levelsof multiple testing, which

are adjusted by a Bonferroni correction.

Minichiello and Durbin6 introduced another approximation scheme for the inference of ARGs.

There are two stages to their analysis: First, they attempt to infer all plausible ARGs, using a

heuristic algorithm. Second, a genealogical tree at each locus is built, and apossible causative

mutation at each branch is tested. Since the true ARG is unknown, this analysisis averaged over a

set of inferred ARGs.

In general, the genealogy-based methods are meant to improve upon the naive approach to

association testing in which each SNP is tested separately using aχ2 test and the tests are adjusted

for multiple hypothesis testing using a permutation test (we will refer to this approach asstandard

χ2). To assess the extent to which this goal has been realized by existing methods, we compared

these methods to the naive approach. In our experiments, we found that the naive approach has

more power and a lower false positive rate than any of the tested methods. This surprising result

motivates our new genealogy-based method, which we refer to asCAMP (Coalescent based

Association MaPping).
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Like previous methods, CAMP tests for interactions of SNPs or haplotypes with disease. To

address the issues of computational complexity and multiple hypothesis testing, our emphasis is on

reducing the number of tests. The core of our method is to exploit propertiesof the coalescent to

decide which interactions can be ignored. Briefly, we construct a perfect phylogeny graph which

represents the genealogy of the haplotypes, and restrict attention to observed mutations and to

unobserved mutations which are consistent with that graph, in the sense that each of the

unobserved mutations is consistent with a larger graph that retains the perfect phylogeny property.

The larger graph represents a genealogy of the haplotypes with the unobserved mutation.

As opposed to ARGs, our method does not model the recombination events explicitly in detail.

Indeed, we begin our presentation by making the simplifying assumption that there are no

recombinations across the studied region, and that there are no recurrent mutations (this is often

referred to as aperfect phylogeny model, or a coalescent model with the infinite site assumption). It

is well known that in order to satisfy the assertion that a region is consistentwith a perfect

phylogeny model, the region has to comply with the four gamete test; put differently, every pair of

SNPs has at most three out of the four possible haplotypes. We use this characterization to define a

simple version of our method for generating unobserved mutations. We then back off from the

simplifying assumption of no recombination and consider a model that allows somedeviation from

the four gamete condition. This yields the CAMP algorithm, which can be viewed as a procedure

for defining tests based on an approximate genealogy. A similar approach has been taken by11 in

their work on haplotype phasing.

In order to evaluate the power achieved by CAMP, we have tested CAMP onan extensive number

of simulated data sets. Our experiments show that CAMP yields a significant increase in power

relative to previous methods. In particular, unlike previous methods, CAMPachieves an increase

of more than 10% over the standardχ2. This advantage was observed with different sampling
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distances of SNPs and with different numbers of individuals. Thus, by using our method in

association studies, we expect that more associated SNPs will be discovered due to the increased

power.
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2 Methods

2.1 The General Framework

We begin by sketching the main idea of our approach. As in previous approaches, our goal is to

exploit the unobserved genealogy of the population in order to map and evaluate the significance of

associations. This is done by performing additional tests of interactions between SNPs; these tests

correspond to unobserved mutations along the genealogical tree.

The basic idea of our approach is to restrict attention to interactions betweenpairs of SNPs that

may represent a plausible mutation along a genealogy. Our approach reliesstrongly on the theory

of perfect phylogeny of SNPs and haplotypes. There are several studies in the literature that have

focused on this combinatorial object, yielding theoretical characterizationsthat provide the basis of

our approach; for background see, e.g.,12,13,11,14.

2.2 Notation and Definitions

Let n be the number of individuals tested, andm the number of markers. The2n × m haplotype

matrix is denoted byH. Hence,Hi,j = s if the i-th haplotype has types at thej-th marker, where

s can be 0 or 1. Let the vector of the disease status bed. The entries ofd are 0 (for a healthy

individual) or 1 (for an individual that has the disease).

For a pair of discrete vectorsx, y, let Ω(x, y) denote their contingency table; i.e.,Ω(x, y) is a

matrix in whichΩ(x, y)i,j = |{k|x(k) = i, y(k) = j}| (in our case, the matrix is of size2 × 2,

since a SNP is two-valued and there are two disease states). Anassociation function A is a

function that assigns a positive score to a contingency table. Typical examples of association

functions are the Pearson score and the Armitage trend statistic. We have used the Pearson statistic

in our work; however, it is important to point out that our algorithm does not use any specific
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properties of the association function, apart from the property that the score is a function of the

contingency table, and the following symmetry property (which holds for the Pearson score):
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An association score is a function of the haplotype matrix and an arbitrary disease vectore (a

binary vector of dimension2n), and is defined byS(H, e) = maxj A[Ω(H
·,j , e)]; i.e., the value of

the association function at the most associated locus.

The goal is to calculate the significance of a pair(H, e), which is defined as the probability of

obtaining an association score at least as large asS(H, e) under a null model. Formally, ife is a

random disease vector, thep-value isPr[S(H, e) ≥ S(H, d)]. In addition, we want to accurately

find the location of the associated SNPs in the genome. In our case, the null model is defined

according to the randomization model in whiche = π(d) is a permutation of the disease vector and

all instancesπ(d) are equiprobable.

In addition to testing all the SNPs ofH, we also test selected SNP interactions. For a set of SNPs

j1, j2, . . . , jk, suppose that there areΨ different haplotypes induced by these SNPs, and let

h(j1, j2, . . . , jk) be the2n-dimensional haplotype vector induced by these SNPs (so that each

element ofh(j1, j2, . . . , jk) is an integer between zero andΨ − 1). A combinatorial interaction of

the SNPsj1, j2, . . . , jk is a binary vectorv of dimension2n which corresponds to a partition of the

Ψ haplotypes into two setsS1 andS2. Formally, letS1, S2 be disjoint sets of integers such that

S1 ∪ S2 = {0, 1, 2, . . . ,Ψ − 1}. Then,v(i) = 0 if h(j1, j2, . . . , jk) ∈ S1, andv(i) = 1 if

h(j1, j2, . . . , jk) ∈ S2 .

The perfect phylogeny tree: Our method is based on the construction of a perfect phylogeny

tree, and a specific choice of interactions among the SNPs based on the tree. A perfect phylogeny

tree is a genealogical tree in which every node corresponds to a haplotype, and every edge
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corresponds to a mutation (Figure 1). In a perfect phylogeny tree, we assume no recombination

events, and no recurrent mutations. Thus, such a genealogy is equivalent to the coalescent tree with

the infinite site assumption.

In a perfect phylogeny model, every pair of SNPs satisfies the four gamete test. Formally, for two

SNP vectorsH
·,i, H·,j , we consider the haplotype counts

Ca,b(i, j) = |{Hx,i, Hx,j |Hx,i = a, Hx,j = b}|. For example,C0,0(i, j) is the number of

haplotypes in which both SNPi andj equal 0. We say that the pair of SNPs(i, j) satisfies the four

gamete test if there exists at least one pair(a, b) for whichCa,b(i, j) = 0.

2.3 The Algorithm

The intuition for our method is based on the case where the data is consistent with the perfect

phylogeny model. Our algorithm can be applied also to cases where there are deviations from the

perfect phylogeny, as discussed in Section 2.4. The algorithm can be outlined as follows:

1. Build a perfect phylogeny tree using a method such as the one developed by Eskin et al.11.

2. Select all pairs of SNPs that correspond to adjacent edges in the tree(edges that share a

common vertex).

3. For each selected pair of SNPs, add a combinatorial interaction vector tothe haplotype

matrixH as a column.

4. Perform an association test using the augmented haplotype matrix H.

The newly added columns represent putative unobserved SNPs that are plausible given the

observed SNPs. In the algorithm described above, we added all pairwise interactions of SNPs but

no higher-order interactions of SNPs. It is straightforward to extend thisalgorithm to also test

higher orders of interactions, i.e., haplotypes with more than two SNPs. We restrict the discussion
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of this paper to pairwise interactions since we observed experimentally that higher-order

interactions did not attain statistically significant improvement of the power (datanot shown). We

note that in the case of pairwise interactions, the association tests are practically done on

haplotypes; the extension of this method to higher order interactions cannothowever be expressed

as a haplotype test.

The algorithm finds the value of the association function for each SNP and each interaction, with

the corresponding association score. We use a permutation test to determinethe significance of this

score (corrected for multiple hypotheses). Since permutation tests can be quite inefficient, we use

an importance sampling method for efficient calculation of the permutation test4. Note that the

algorithm we use is generic, and we could use any test for association foreach of the interactions

(e.g., a two-by-twoχ2 test, or a three-by-two trend test).

Even though the above algorithm is quite simple, it is not immediate to see where the gain in power

comes from. In the remainder of this section, we will describe the rationale forthe algorithm. In

order to do so, we will begin with the case where the perfect phylogeny model is consistent with

the data. We will explain later how we deal with deviations from the perfect phylogeny model. We

begin by describing in detail the process for adding combinatorial interaction vectors and the

interpretation of this process as imputed unobserved SNPs.

2.3.1 Selecting the SNP Interactions

Each edge of a perfect phylogeny corresponds to a mutation in some SNP.Contracting an edge in

the tree corresponds to the removal of the SNP associated with the edge from the dataset. Thus,

every unobserved SNP corresponds to a contracted edge. More generally, we can view a perfect

phylogeny on a set of observed SNPs as the result of a series of edgecontractions on a larger

perfect phylogeny determined by both observed and unobserved SNPs. It follows that the effect of
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adding an unobserved SNP to a perfect phylogeny must be to reverse an edge contraction; i.e., to

split a node into two copies and insert an edge joining the two copies.

Every putative unobserved SNP that our algorithm constructs corresponds to such an edge

insertion. Here, we limit ourselves to the simplest kind of edge insertions: those resulting from the

interaction between a pair of observed SNPs corresponding to adjacentedges of the perfect

phylogeny.

Any two observed SNPs correspond to edges in the tree, and the deletion of those edges induces

three subtrees, corresponding to three different joint values of the twoSNPs. For instance, in

Figure 1(a), the deletion of SNPs1 and5 induces three subtrees, where the first contains the

haplotypesS1 = {11000, 10000, 10100}, the second contains the haplotypes

S2 = {00000, 00010}, and the third contains the haplotypeS3 = {00011}. By our definition of an

interaction (a partition of the set of haplotypes), an interaction between the two SNPs corresponds

to a partition of the haplotypes into a setSk versus the rest of the haplotypes. Thus, there are three

possible interactions defined by a pair of SNPs(i, j). However, two of the three interactions

corresponds to testing one of the SNPsi or j. For instance, in the case of the pair (1,5) described

above, testing the interaction(S3, S1 ∪ S2) is equivalent to testing SNP5. In general, under the

perfect phylogeny assumption, every pair of SNPs has at most one non-trivial interaction that does

not correspond to testing one of the SNPs. This can be shown by case analysis of all possible

interaction of SNPs in such a scenario. When SNPsi andj correspond to adjacent edges, the

non-trivial interaction corresponds to splitting a node and inserting an edge between the two

copies. Indeed, our algorithm imputes precisely the unobserved SNPs that correspond to

non-trivial interactions between adjacent edges.

Consider for example the case presented in Figure 1. Assume that SNPs1, . . . , 5 are genotyped,

and SNP6 is the causal SNP. In this case, testing the interaction between SNPs4 and5 in the
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original tree is equivalent to testing SNP6. Similarly, testing the interactions between SNPs2 and

3 is equivalent to testing potential causal SNPs that mutated after SNP1 has mutated, but before

SNPs2 and3 have mutated. The CAMP algorithm restricts the set of tested interactions to

interactions that correspond to such cases.

We note that there are other edge insertions that are not induced by the interaction of two SNPs.

For instance, in the case of a starlike perfect phylogeny in which every leaf is adjacent to the root,

any subset of the SNPs may correspond to a mutation that occurred after the root, but before this

set of SNPs. In CAMP, we do not consider such higher-order combinatorial interactions, although

in theory they may potentially increase power.

The number of tests performed by our algorithm can be quadratic in the numberof SNPs (e.g., if

the perfect phylogeny tree is a star). However, in practice the great majority of pairs of edges will

not be adjacent. In particular, if the tree is degree-bounded (i.e., the maximum number of edges

that touch one vertex is below some constant number), the number of imputed unobserved SNPs

will be linear in the number of observed SNPs.

2.4 Handling Recombination Events

The algorithm that we have described thus far is based on the perfect phylogeny model, a model

which assumes no recombination events. We now describe a modification of our algorithm that

pulls back from this simplifying assumption and attempts to provide a partial accounting for

recombination events. One may view this modification as an approximation of the perfect

phylogeny model.

In the modified algorithm, in place of the perfect phylogeny tree, we instead construct aperfect

phylogeny graph. Each node in this graph represents a SNP. The edges in the graph are directed

and are defined below.
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There are two possible relationships between SNPs in the perfect phylogeny: 1. The haplotype 00

can have two descendant haplotypes: 01 and 10, which correspondsto abrotherhood relation

between the two SNPs. 2. The haplotype 00 can have a descendant 01, which have a descendant

11, which corresponds to aparenthood relation between the two SNPs.

We say that two SNPsi, j are in brotherhood relation ifC0,0(i, j)C1,1(i, j) < C0,1(i, j)C1,0(i, j);

otherwise these SNPs are in parenthood relation. If SNPsi, j are in parenthood relation, theni is

defined to be anancestor of j if C1,0(i, j) > C0,1(i, j). It is easy to see that, in the case of a

perfect phylogeny in which the root is the haplotype for which all alleles have value0, this

definition agrees precisely with the notion of ancestry in the phylogeny tree.Similarly, if i andj

are in brotherhood relation, then neither of them is an ancestor of the other. We now define the

edges in the perfect phylogeny graph as follows: There is a directed edge from vertexvi to vj if vi

is an ancestor ofvj and there is no other vertexvx such thatvi is an ancestor ofvx andvx is an

ancestor ofvj . Such a graph can be built using a topological sorting of the vertices.

In this construction we assume that the root of the tree is the haplotype for which all alleles have

value0; we can justify this by rooting the tree in one of the existing haplotypes, and renaming the

alleles of each SNP so that the root will satisfy this assumption.

Similarly to the original algorithm described in Section 2.3, we test the interaction of two SNPs if

they have a common parent in the perfect phylogeny graph or if one of them is the parent of the

other. In constructing the perfect phylogeny graph, we do not consider relations of pairs of SNPs of

physical distance in the genome higher some thresholdc. We call this threshold thelinkage upper

bound.

Observe that if there are no recombination events, the modified algorithm described in this section

is equivalent to the algorithm described in Section 2.3. In a perfect phylogeny, at least one of the

four C0,0(i, j), C1,1(i, j), C0,1(i, j), C1,0(i, j) equals zero (i.e., the four gamete test holds), while
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here we do not require this property to decide the relationship of the SNPs.

3 Results

3.1 Data Sets

In order to test our approach, we needed a large data set that containsa sequence of several

megabases for thousands of individuals. Currently, such a data set does not exist, and therefore we

generated simulated population data as follows. We used the SNPs obtained from the HapMap data

set as a starting point. To amplify this data, we assumed a fixed population size of 10,000, a

mutation rate of10−8 and a recombination rate of10−8. In each generation, individuals are mated

randomly to produce the next generation. The number of children generated by two individuals is a

random variable with a predefined distribution. We used 30,000 generations to generate the final

population sample. This process was done for 15 megabase pairs along one chromosome. Note

that we did not use an approximation-based approach to simulate the population (such as the

coalescent model with recombination events or the Li and Stephens model15), but rather an explicit

forward simulation of the population, which is initiated from a real data set.

We used a multiplicative model to generate samples of cases and controls. We simulated

experiments with 1000 cases and 1000 controls. Apanel is defined to be one experiment. For each

panel, a SNP was randomly chosen to be the causal SNP, and was then removed from the panel.

We set the disease prevalence to 0.01, and the relative risk to 1.5. We set the linkage upper bound

(c) to 50 kb, which has been shown to be a good estimate in humans (e.g.,4). We used the perfect

phylogeny graph algorithm described in Section 2.4.

The running time of CAMP for 500 cases and 500 controls for 38,864 SNPson chromosome 1

(corresponding to the Affymetrix SNP chip) on a Sun workstation (with a Quad 2.4GHz AMD
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Opteron 850 Processor) is 4 minutes to calculate the scores for each SNP,and an additional 18

minutes for a standard permutation test.

3.2 Evaluation of Previous Methods

Many of the existing genealogy-based methods are computationally inefficient, and thus a

large-scale evaluation of these methods is prohibitive. Our experiments involved thousands of

panels, each containing thousands of haplotypes with thousands of SNPs, and thus we

concentrated on the evaluation of methods that are efficient enough to handle data sets of this size.

In particular, coalescent based methods such as LATAG5 are not computationally feasible for large

scale data sets. The Margarita6 algorithm is also too computationally intensive: it took more than

two weeks to analyze a data set of 500 cases and controls with 10,000 SNPs(we used the

recommended parameters by the developers: 30 ARGs and 100 permutations).

We did, however, test the power of Margarita on a small number of SNPs and individuals. To our

surprise, the power of Margarita was not as good as the standardχ2 test under several of the

scenarios that we studied: Since Margarita assumes the coalescent modelwe tested it on null data

produced using a coalescent model, upon which phenotypes have then been randomly assigned

(i.e., in which there is no causal SNP). We generated 100 different panels of size 25 kb using the

ms software (Hudson), which simulates data under the coalescent model. Inthese experiments we

generated 50 individuals, which were randomly assigned to be cases or controls. We found that the

false positive rate (using ap-value cutoff of 0.05) was 1%. We used the following strong

association model – one of the SNPs was arbitrarily set as a strong causalSNP, by declaring an

individual to be a case if the corresponding SNP is either heterozygous or homozygous 1, and

control otherwise. Using this model, we observed that the power of Margarita is 17%, while the

power that is obtained by a standard permutation test was much higher: 69%.
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We repeated the same experiments described above, by simulating additional panels of SNPs using

the ms software with recombination events. We found that the false positive rate in this case is

89%. The power for the strong association model was 69% compared with 75% obtained by the

standard permutation test.

These results show that there are serious problems with existing methods either with respect to

running time or power. Indeed, our results show that these methods are dominated in the scenarios

that we studied by the standardχ2 approach. We thus used the standardχ2 approach as a baseline

in our experimental study of CAMP. We also compared to CLADHC10, as CLADHC is

computationally feasible in our scenarios.

3.3 Power

To study the power of the methods we applied them to case-control panels using the multiplicative

model for generating cases and controls described in Section 3.1. A panel is generated from the

whole sequence, and then the SNPs are sampled according to the specifiedsparsity (i.e., density of

the sampled SNPs). Therefore, in many cases (but not always) the causal SNP does not exist in the

SNP sampled panel. Under a specific significance level (which controls thetype I error), the

relative power is defined as a ratio in which the numerator is the number of SNP sampled panels

defined to be significant and the denominator is the number of original panelswith the entire

sequence, including the causal SNP, defined to be significant.

We simulated panels with 1,000 cases and 1,000 controls. We fixed the sparsityof the sampled

SNPs to each of the following values:(1, 000, 2, 000, . . . , 10, 000). For each value of sampling

sparsity 5,000 different panels were generated. Results for the different SNP sampling densities are

presented in Figure 2, and for different numbers of cases and controls in Figure 3. The difference

in the relative power between CAMP and standardχ2 testing reaches more than 10%. An even
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more prominent difference is observed between CAMP and CLADHC, ranging up to 52.7%.

3.4 Localization of the Causal SNP

We also tested the accuracy in localizing the causal SNP. To obtain an estimate of location from the

output of CAMP, note first that CAMP may output more than one SNP. TheseSNPs presumably

represent mutations on the genealogical tree near the causal SNP; thus,we use the average location

of these called SNPs to estimate the position of the causal SNP. A comparison to theχ2 test is

presented in Figure 4 for different numbers of individuals. The advantage of CAMP over the

standardχ2 is quite notable; e.g., for 3,000 controls and cases, the percentage of panels for which

the distance between the found location and the true causal SNP is below 100Kb was 86% for

CAMP and 79% for the standardχ2.

3.5 Measuring the Advantage of the Coalescent Approach

Our algorithm tests a subset of all possible interactions. This subset, as described before, is

determined according to the approximated genealogical relations between theSNPs. Does testing

all possible interactions within the linkage upper bound gives similar results? To answer this

question we compared CAMP to a procedure that tests all pairwise interactions less than the

linkage upper bound. For two SNPs, this corresponds to testing the association between the

haplotypes generated by the SNPs and the phenotype, which is calculated by a standardχ2 test for

these two vectors.

The results are presented in Figure 5. As can be seen, CAMP yields significantly greater power

than the procedure that tests all pairwise interactions. The difference between these procedures is

much larger than the difference between CAMP and the standardχ2 algorithm, reaching more than

50%.
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3.6 Using the Phased Haplotypes

Since CAMP uses phased data to construct the coalescent graph, we tested the effect of phasing

errors on our algorithm, considering phasing error rates of 3%, 30% and 50%. The value of 3%

corresponds roughly to the error rate reported in the literature for phasing algorithms16 and 50%

corresponds to randomly phasing each one of the heterozygous sites.

Results are presented in Figure 6. As can be observed in the graph, even when the phasing error

rate is 50% (which is very unlikely) CAMP has a relative power that is 9% larger than the standard

χ2 test (for a significance level of 5%). With phasing error rates of 3% andeven 30%, no

significant reduction in the power is observed.
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4 Discussion

We have presented a method that leverages the coalescent model to conduct association mapping in

whole-genome association studies. We exploit the unobserved genealogyof the chromosomes in

order to evaluate more accurately the significance and location of causal SNPs. The genealogy

defines a set of haplotypes, and our method consists of a strategy for theselection of tests based on

these haplotypes and on the genealogy. As we have demonstrated, selecting these tests carefully

gives a large advantage in the power and in the localization of the causal SNP. We have also shown

that several existing methods that aimed to address this problem either suffer from low power or

suffer from a very high false positive rate when compared to a standardapproach in which each of

the SNPs is tested separately with aχ2 test. We have also shown that considering all SNP

interactions reduces the power considerably.

Interestingly, we observed that introducing very high rates of phasing errors (30%) does not reduce

the power of our method. This can be explained by the fact that when enough individuals are

given, the genealogical relationship between SNPs can be determined accurately, even if the

heterozygous sites are ignored. The signal is strong enough in the homozygous sites so that

phasing accuracy has a minor effect on the results.

Accurate localization of the causal SNP is as important as significance estimation. We have shown

that CAMP estimates the location of the real causal SNP more accurately than other methods.

Note, moreover, that this was achieved by a relatively naive approach of taking the average of the

interacting SNPs. Most likely, the location can be determined even more accurately by a more

sophisticated algorithm that uses properties of the coalescent.

There are several important issues that need further attention. We haveshown that CAMP is more

powerful than the standardχ2 test, but we have not shown its optimality. The question of whether

there exists a more powerful algorithm or strategy for choosing a subsetof interactions of SNPs
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should be explored. In particular, it is intriguing to study the following optimization problem: For

a fixed disease model (say, the multiplicative model with given penetrance and relative risk) and

significance level, find the strategy that determines which SNP interactions are tested, such that the

power is maximized.

It is also important to study the generalizations of methods such as CAMP to the case where

multiple populations may be participating in the study. One of the challenges in drawing causal

inferences from whole-genome case-control association studies is the confounding effect of

population structure17,18,19,20,21,22,23,24. This issue has received much attention in recent years in

the literature (e.g.,25,26,24). Currently, CAMP assumes no stratification effect, i.e., the controls and

cases are presumed to be from one population. There is a clear need to explore methods for taking

population stratification into account in CAMP.

Although not tested experimentally in this work, since CAMP performs transformation on the SNP

data, it can be naturally extended to handle other types of phenotypes such as continuous traits

(QTLs).

The cost of genotyping is continually decreasing and technology is evolving towards genome

resequencing (e.g., Illumina/Solexa 1G and Roche/454). However, it is stillvery expensive to

conduct resequencing of the whole genome as a tool for association studies. As a consequence, it

is clear that genotype data of common genetic variants such as SNPs will be theleading approach

in association studies in the coming years. Algorithms such as CAMP that yield high statistical

power by exploiting aspects of genealogy will play an important role in the analysis of these data.
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Figures Legends

Figure 1:

An example of a perfect phylogeny tree. Each node corresponds to a haplotype. The mutations

appear on the edges. (a) A perfect phylogeny with five SNPs. (b) An additional sixth SNP that was

mutated and can be expressed as the interaction between SNPs 4 and 5.

Figure 2:

The relative power for different sampling distances of SNPs and for four different significance

levels.

Figure 3:

Relative power for different number of individuals.

Figure 4:

A comparison of the cumulative distribution functions for the distance betweenthe discovered

SNP and the true causal SNP. The three figures represent the results obtained from different

numbers of controls and cases: A - 1,000, B - 2,000, C - 3,000.

Figure 5:

A comparison of CAMP to a naive pairwise interactions algorithm, in which all pairwise

interactions of SNPs with distances smaller than the threshold used in CAMP aretested.

Figure 6:
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A comparison of the relative power of CAMP in the presence of differentrates of phasing errors.
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