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Abstract

The central question asked in whole genome association studies is howtedssaciated regions
in the genome and how to estimate the significance of these findings. This Iy ulsuee by

testing each SNP separately for association, and then applying a suitaieletion for multiple
hypothesis testing. However, SNPs are correlated by the unobsezmedlggy of the population,
and a more powerful statistical methodology would attempt to take this geneatogccount.
Leveraging the genealogy in association studies is challenging since trenicdeof the genealogy
from the genotypes is a computationally intensive task, in particular whemigoation is
modeled, as in ancestral recombination graphs. Furthermore, if largeansimigenealogies are
imputed from the genotypes, the power of the study might decrease if theateigenealogies
create an additional multiple hypothesis testing burden. Indeed, we shois pefter that several
existing methods that aim to address this problem suffer from either lowmpawiem a very high
false positive rate; their performance is generally not better than theasthagproach of separate
testing of SNPs. We suggest a new genealogy-based approach, G2ddRscent based
Association MaPping), which takes into account the trade-off betweetotinplexity of the
genealogy and the power lost due to the additional multiple hypothesesxfrriraents show that
CAMP yields a significant increase in power relative to previous methaukstheat it can more

accurately locate the associated region.



1 Introduction

Recent advances in genotyping technologies have considerably indpyavenderstanding of
common complex diseases through whole-genome association studies elsttigies a
population of cases and controls is collected, in which hundreds of thdssd single nucleotide
polymorphisms (SNPs) are genotyped. These studies search for SMRsalassociated with the
studied disease, by measuring the difference in the SNP-allele distribubmedn the cases and
the controls (e.g%?).

Since complex diseases are caused by multiple environmental and gentetis, fle differences
in allele frequencies between the cases and the controls for any giierc&@Noe expected to be
quite small. Therefore, analyses that achieve high statistical powersastied for these studies.
Additionally, although current technology (e.g., the Affymetrix SNP Arra, &nd the lllumina
humanlm-duo beadchip) allows measurement of nearly two million genetic tsaftareach
individual, this is still only a fraction of the set of genetic variants, and stagistiethods are
needed to cope with this partial assessment of genetic variation.

The statistical analysis of a typical association study involves the testingigidodl SNPs or
genomic regions for association, and the evaluation of the significance thtlings. The
simplest approach to significance testing is to test each marker separatbgdciatiod*.

Many attempts have been made to move beyond separate testing by leveraginglkerved
genealogy of the chromosomes (€2§), These proposals aim to increase statistical power by
taking into account the dependency among SNPs. Model-based apgsaagarticular try to
infer aspects of the unobserved genealogy. In practice, howeigeis tnnon-trivial task since the
genealogy has to be inferred from the genotypes. As we show in this, papdéoss of information
caused by erroneous inference of the genealogy can be detrimentalasdbciation, and thus

genealogy-based methods are not always desirable.



Previous methods that use genealogies in association studies face two aikngds. First, the
number of possible genealogies is very large, and even more so wlembigation events are
taken into account; thus, it is infeasible to examine all possible genealogiesn& an inferred
genealogy determines a large set of genealogy-based associatiothiestscin be expressed as
tests of SNP interactions); a major challenge is how to choose a subsesetdisés such that the
increased number of hypotheses tested will not decrease the potter.téfsts are not chosen
properly, the statistical power can be reduced considerably due to tderbaf multiple
hypotheses, even when the genealogical modeling is accurate.

In this paper, we suggest a new genealogy-based approach thairttkaccount the trade-off
between the complexity of the genealogy and the power lost because of mijtjaitheses. The
approach we present seeks to avoid excessive loss of power dudtiglertasting, while still
testing the observed mutations and selected putative unobserved mutatjgasted by plausible
genealogies. As with previous genealogy-based methods, we testd&@éiffanteractions. The
core of our method is to exploit properties of the coalescent to decide witedactions can be
ignored. In a nutshell, we construct a perfect phylogeny graph wiejgresents the genealogy of
the haplotypes, and restrict attention to observed mutations and to unedsentations that are
consistent with that graph.

Many genealogy-based association tests have been suggested inngakie®ne popular way of
using genealogy in association studies is through the use of Ancest@inRemtion Graphs
(ARGSs). These graphs aim to model the coalescence and the recombaagditua explicitly.
Several studies have proposed performing full-likelihood or Bayesianance under the ARG
model (e.g29). This is, however, a technically challenging problem, and the propasgatiens
are feasible computationally only on relatively small data sets. Zollner andh&rifcsuggested an

approximation to this inference problem in which testing for association is bgdikelihood



ratio test which is obtained by calculating the probability of the disease mutatien tfie
genotypes and the disease status. The inference is performed by e\Gir&in Monte Carlo
(MCMC) algorithm. This approach has the advantages of model-baseddunes, but it is too
expensive computationally to be used in a large-scale whole-genoméadissostudy.

A different approximate approach to association mapping was suggasiartant et all®. Their
main idea is to perform a cladistic analysis of SNPs. The cladogram captersaccessive
partitioning of SNP haplotypes into clusters. At each partition, clustersmbhges from the
previous partition are merged such that the mean pairwise haplotypeitivemrsinimized within
the new clade. The cladogram is built using a sliding window of SNPs. Inwauwow the best
partition of haplotypes is chosen. This procedure incorporates two lef/aisitiple testing, which
are adjusted by a Bonferroni correction.

Minichiello and Durbirf introduced another approximation scheme for the inference of ARGs.
There are two stages to their analysis: First, they attempt to infer all plausi®d&sAusing a
heuristic algorithm. Second, a genealogical tree at each locus is built, @ysb#le causative
mutation at each branch is tested. Since the true ARG is unknown, this anslgeésaged over a
set of inferred ARGs.

In general, the genealogy-based methods are meant to improve uporivihapyaroach to
association testing in which each SNP is tested separately usihteat and the tests are adjusted
for multiple hypothesis testing using a permutation test (we will refer to this agprasstandard
x?). To assess the extent to which this goal has been realized by existing sietleodompared
these methods to the naive approach. In our experiments, we foundehsitle approach has
more power and a lower false positive rate than any of the tested methddsufprising result
motivates our new genealogy-based method, which we refer@\&H> (Coalescent based

Association MaPping).



Like previous methods, CAMP tests for interactions of SNPs or haplotyfibgiigease. To
address the issues of computational complexity and multiple hypothesis testimgnphasis is on
reducing the number of tests. The core of our method is to exploit propeftiee coalescent to
decide which interactions can be ignored. Briefly, we construct aggrfeylogeny graph which
represents the genealogy of the haplotypes, and restrict attention twwedbseutations and to
unobserved mutations which are consistent with that graph, in the sehsadheof the
unobserved mutations is consistent with a larger graph that retains tleetgenfylogeny property.
The larger graph represents a genealogy of the haplotypes with theemeld mutation.

As opposed to ARGs, our method does not model the recombination evefitstigxin detail.
Indeed, we begin our presentation by making the simplifying assumption thatateeno
recombinations across the studied region, and that there are no recurrgtions (this is often
referred to as gerfect phylogeny model, or a coalescent model with the infinite site assumption). It
is well known that in order to satisfy the assertion that a region is consisitma perfect
phylogeny model, the region has to comply with the four gamete test; put diffgrevery pair of
SNPs has at most three out of the four possible haplotypes. We usedhisiehization to define a
simple version of our method for generating unobserved mutations. We #uosroff from the
simplifying assumption of no recombination and consider a model that allows deviggtion from
the four gamete condition. This yields the CAMP algorithm, which can be viewedoaocedure
for defining tests based on an approximate genealogy. A similar appraadielen taken By in
their work on haplotype phasing.

In order to evaluate the power achieved by CAMP, we have tested CAMIP ertensive number
of simulated data sets. Our experiments show that CAMP yields a significaeagecin power
relative to previous methods. In particular, unlike previous methods, CAbkReves an increase

of more than 10% over the standayé. This advantage was observed with different sampling



distances of SNPs and with different numbers of individuals. Thussimgwur method in
association studies, we expect that more associated SNPs will be dextoler to the increased

power.



2 Methods

2.1 The General Framework

We begin by sketching the main idea of our approach. As in previous apipes, our goal is to
exploit the unobserved genealogy of the population in order to map ahdgvahe significance of
associations. This is done by performing additional tests of interactionebat®N\Ps; these tests
correspond to unobserved mutations along the genealogical tree.

The basic idea of our approach is to restrict attention to interactions bepe@sof SNPs that
may represent a plausible mutation along a genealogy. Our approactstediegly on the theory
of perfect phylogeny of SNPs and haplotypes. There are several studies in the literatureatieat h
focused on this combinatorial object, yielding theoretical characterizati@aiprovide the basis of

our approach; for background see, eg!31114

2.2 Notation and Definitions

Let n be the number of individuals tested, amcthe number of markers. TH x m haplotype
matrix is denoted by7. Hence,H; ; = s if the i-th haplotype has typeat the;j-th marker, where

s can be 0 or 1. Let the vector of the disease status. (de entries ot/ are O (for a healthy
individual) or 1 (for an individual that has the disease).

For a pair of discrete vectors y, letQ2(x, y) denote their contingency table; i.€(z,y) is a

matrix in whichQ(z, y), ; = [{k|z(k) = i, y(k) = j}| (in our case, the matrix is of sizex 2,
since a SNP is two-valued and there are two disease stateggséaiation function A is a

function that assigns a positive score to a contingency table. Typicalp&a of association
functions are the Pearson score and the Armitage trend statistic. We feal/thesPearson statistic

in our work; however, it is important to point out that our algorithm doesuse any specific



properties of the association function, apart from the property thatcibre $s a function of the

contingency table, and the following symmetry property (which holds for gg$dn score):

A — A . (1)

An association score is a function of the haplotype matrix and an arbitrary disease vedr

binary vector of dimensioin), and is defined by (H, e) = max; A[QX(H. ;, e)]; i.e., the value of
the association function at the most associated locus.

The goal is to calculate the significance of a @dfr, e), which is defined as the probability of
obtaining an association score at least as largg&(a5 e) under a null model. Formally,  is a
random disease vector, thevalue isPr[S(H,e) > S(H, d)]. In addition, we want to accurately
find the location of the associated SNPs in the genome. In our case, the wigll ismdefined
according to the randomization model in whiek- 7(d) is a permutation of the disease vector and
all instancesr(d) are equiprobable.

In addition to testing all the SNPs &f, we also test selected SNP interactions. For a set of SNPs
J1, 72, ..., jk, SUppose that there a¥edifferent haplotypes induced by these SNPs, and let
h(ji,j2,---,jr) be the2n-dimensional haplotype vector induced by these SNPs (so that each
element ofh(j1, jo, - . ., jx) iS @n integer between zero add— 1). A combinatorial interaction of

the SNPg1, jo, . .., ji IS @ binary vector of dimensior2n which corresponds to a partition of the
¥ haplotypes into two set$; andS,. Formally, letSy, .S, be disjoint sets of integers such that

S USy ={0,1,2,...,% —1}. Thenw(i) = 0if h(j1,jo2,...,jx) € S1, andv(i) = 1 if

h‘(jl?j?a" . 7]k) € 52 .

The perfect phylogeny tree: Our method is based on the construction of a perfect phylogeny
tree, and a specific choice of interactions among the SNPs based on the peéect phylogeny

tree is a genealogical tree in which every node corresponds to a haplaiyg every edge
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corresponds to a mutation (Figure 1). In a perfect phylogeny treesaunae no recombination
events, and no recurrent mutations. Thus, such a genealogy is lequitcathe coalescent tree with
the infinite site assumption.

In a perfect phylogeny model, every pair of SNPs satisfies the four tgatest. Formally, for two
SNP vectordd. ;, H. ;, we consider the haplotype counts

Cap(i,j) = {Hz,i, Hy j|Hy i = a, Hy j = b}|. For example(y (3, j) is the number of
haplotypes in which both SNPand; equal 0. We say that the pair of SNEs;) satisfies the four

gamete test if there exists at least one pajib) for which C, (7, j) = 0.

2.3 The Algorithm

The intuition for our method is based on the case where the data is considtetitevperfect
phylogeny model. Our algorithm can be applied also to cases where tleede\aations from the

perfect phylogeny, as discussed in Section 2.4. The algorithm cantloeedwas follows:

1. Build a perfect phylogeny tree using a method such as the one dedddpieskin et altt,

2. Select all pairs of SNPs that correspond to adjacent edges in tHedges that share a

common vertex).

3. For each selected pair of SNPs, add a combinatorial interaction vedtar taplotype

matrix H as a column.

4. Perform an association test using the augmented haplotype matrix H.

The newly added columns represent putative unobserved SNPsdhabaasible given the
observed SNPs. In the algorithm described above, we added all paintésactions of SNPs but
no higher-order interactions of SNPs. It is straightforward to extendallgirithm to also test

higher orders of interactions, i.e., haplotypes with more than two SNPs. fectéhe discussion
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of this paper to pairwise interactions since we observed experimentallyigietrforder
interactions did not attain statistically significant improvement of the power (detshown). We
note that in the case of pairwise interactions, the association tests aregihadime on
haplotypes; the extension of this method to higher order interactions choweter be expressed
as a haplotype test.

The algorithm finds the value of the association function for each SNPatdieteraction, with
the corresponding association score. We use a permutation test to detdrenaignificance of this
score (corrected for multiple hypotheses). Since permutation tests carntbengfficient, we use
an importance sampling method for efficient calculation of the permutatioh fdste that the
algorithm we use is generic, and we could use any test for associatieadhbrof the interactions
(e.g., a two-by-twoy? test, or a three-by-two trend test).

Even though the above algorithm is quite simple, it is not immediate to see wheraithie gower
comes from. In the remainder of this section, we will describe the rationat@éaalgorithm. In
order to do so, we will begin with the case where the perfect phylogenyhi®wdonsistent with
the data. We will explain later how we deal with deviations from the perfegiogieny model. We
begin by describing in detail the process for adding combinatorial interagéotors and the

interpretation of this process as imputed unobserved SNPs.

2.3.1 Selecting the SNP Interactions

Each edge of a perfect phylogeny corresponds to a mutation in someCsNtPacting an edge in
the tree corresponds to the removal of the SNP associated with the edygth&alataset. Thus,
every unobserved SNP corresponds to a contracted edge. Maratignwe can view a perfect
phylogeny on a set of observed SNPs as the result of a series otedgactions on a larger

perfect phylogeny determined by both observed and unobserved. 3N&llows that the effect of
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adding an unobserved SNP to a perfect phylogeny must be to reveesiga contraction; i.e., to
split a node into two copies and insert an edge joining the two copies.

Every putative unobserved SNP that our algorithm constructs camesgo such an edge
insertion. Here, we limit ourselves to the simplest kind of edge insertionse ttessilting from the
interaction between a pair of observed SNPs corresponding to adgages of the perfect
phylogeny.

Any two observed SNPs correspond to edges in the tree, and the deletimse edges induces
three subtrees, corresponding to three different joint values of th&iRs. For instance, in
Figure 1(a), the deletion of SNRsand5 induces three subtrees, where the first contains the
haplotypesS; = {11000, 10000, 10100}, the second contains the haplotypes

Sy = {00000, 00010}, and the third contains the haplotyfe = {00011}. By our definition of an
interaction (a partition of the set of haplotypes), an interaction between th8N®Ps corresponds
to a partition of the haplotypes into a s®t versus the rest of the haplotypes. Thus, there are three
possible interactions defined by a pair of SNRg). However, two of the three interactions
corresponds to testing one of the SNRs j. For instance, in the case of the pair (1,5) described
above, testing the interactidis's, S; U S2) is equivalent to testing SN In general, under the
perfect phylogeny assumption, every pair of SNPs has at most onginiahinteraction that does
not correspond to testing one of the SNPs. This can be shown by calgsiamwf all possible
interaction of SNPs in such a scenario. When SN&sdj correspond to adjacent edges, the
non-trivial interaction corresponds to splitting a node and inserting ae bdtyveen the two
copies. Indeed, our algorithm imputes precisely the unobserved SNR®othespond to
non-trivial interactions between adjacent edges.

Consider for example the case presented in Figure 1. Assume thatiISNPs5 are genotyped,

and SNF is the causal SNP. In this case, testing the interaction between £&IRE in the
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original tree is equivalent to testing SNP Similarly, testing the interactions between SNRand
3 is equivalent to testing potential causal SNPs that mutated afterl 3B mutated, but before
SNPs2 and3 have mutated. The CAMP algorithm restricts the set of tested interactions to
interactions that correspond to such cases.

We note that there are other edge insertions that are not induced by tfaeiittie of two SNPs.
For instance, in the case of a starlike perfect phylogeny in which evafydadjacent to the root,
any subset of the SNPs may correspond to a mutation that occurred afteothbut before this
set of SNPs. In CAMP, we do not consider such higher-order cortdrinhinteractions, although
in theory they may potentially increase power.

The number of tests performed by our algorithm can be quadratic in the nuhB&IPs (e.qg., if
the perfect phylogeny tree is a star). However, in practice the greatityajbpairs of edges will
not be adjacent. In particular, if the tree is degree-bounded (i.e., the maximamber of edges
that touch one vertex is below some constant number), the number of imnpabdarved SNPs

will be linear in the number of observed SNPs.

2.4 Handling Recombination Events

The algorithm that we have described thus far is based on the perfdogehy model, a model
which assumes no recombination events. We now describe a modificationafotithm that
pulls back from this simplifying assumption and attempts to provide a partial atiogufor
recombination events. One may view this modification as an approximation of tieetpe
phylogeny model.

In the modified algorithm, in place of the perfect phylogeny tree, we insteastct gperfect
phylogeny graph. Each node in this graph represents a SNP. The edges in the grapreated]

and are defined below.
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There are two possible relationships between SNPs in the perfect phytaheThe haplotype 00
can have two descendant haplotypes: 01 and 10, which corresfmoabsotherhood relation
between the two SNPs. 2. The haplotype 00 can have a descendati€i have a descendant
11, which corresponds togarenthood relation between the two SNPs.

We say that two SNP5 j are in brotherhood relation &0 (i, 7)C1.1(i, ) < Co.1(i,7)C1.0(i, );
otherwise these SNPs are in parenthood relation. If SINPare in parenthood relation, theis
defined to be aancestor of j if C10(4,7) > Co1(i, ). Itis easy to see that, in the case of a
perfect phylogeny in which the root is the haplotype for which all allele®halue0, this
definition agrees precisely with the notion of ancestry in the phylogeny $iedlarly, if ¢ and;
are in brotherhood relation, then neither of them is an ancestor of the b¥earow define the
edges in the perfect phylogeny graph as follows: There is a directglfenin vertexy; to v; if v;
is an ancestor of; and there is no other vertex, such that; is an ancestor of,, andv,, is an
ancestor ob;. Such a graph can be built using a topological sorting of the vertices.

In this construction we assume that the root of the tree is the haplotype fonathalleles have
value0; we can justify this by rooting the tree in one of the existing haplotypes, arahmig the
alleles of each SNP so that the root will satisfy this assumption.

Similarly to the original algorithm described in Section 2.3, we test the interactitmooSNPs if
they have a common parent in the perfect phylogeny graph or if one wf iththe parent of the
other. In constructing the perfect phylogeny graph, we do not censatiations of pairs of SNPs of
physical distance in the genome higher some threshodlde call this threshold thignkage upper
bound.

Observe that if there are no recombination events, the modified algorithenitzs$in this section
is equivalent to the algorithm described in Section 2.3. In a perfect pagioat least one of the

four Co0(4,7),C1,1(4, ), Co.1(i,7), C10(i, j) equals zero (i.e., the four gamete test holds), while
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here we do not require this property to decide the relationship of the SNPs.

3 Results

3.1 Data Sets

In order to test our approach, we needed a large data set that camtsgsience of several
megabases for thousands of individuals. Currently, such a dataesnhdbexist, and therefore we
generated simulated population data as follows. We used the SNPs obtaimettiérHapMap data
set as a starting point. To amplify this data, we assumed a fixed populatiorf 42@®00, a
mutation rate ofl0—8 and a recombination rate ®0—2. In each generation, individuals are mated
randomly to produce the next generation. The number of children gexds two individuals is a
random variable with a predefined distribution. We used 30,000 genesdatigyenerate the final
population sample. This process was done for 15 megabase pairs abogromosome. Note
that we did not use an approximation-based approach to simulate the pap(gati as the
coalescent model with recombination events or the Li and Stephens tpdbeit rather an explicit
forward simulation of the population, which is initiated from a real data set.

We used a multiplicative model to generate samples of cases and controlsniéted
experiments with 1000 cases and 1000 controlpadel is defined to be one experiment. For each
panel, a SNP was randomly chosen to be the causal SNP, and was therddrom the panel.

We set the disease prevalence to 0.01, and the relative risk to 1.5. We $iask#tge upper bound
(¢) to 50 kb, which has been shown to be a good estimate in humang)ewe, used the perfect
phylogeny graph algorithm described in Section 2.4.

The running time of CAMP for 500 cases and 500 controls for 38,864 SiNRfiromosome 1

(corresponding to the Affymetrix SNP chip) on a Sun workstation (with adZudGHz AMD
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Opteron 850 Processor) is 4 minutes to calculate the scores for eacla@N#h additional 18

minutes for a standard permutation test.

3.2 Evaluation of Previous Methods

Many of the existing genealogy-based methods are computationally inefffiai@hthus a
large-scale evaluation of these methods is prohibitive. Our experimentseadvihousands of
panels, each containing thousands of haplotypes with thousands of &NRbkus we
concentrated on the evaluation of methods that are efficient enoughdteltata sets of this size.
In particular, coalescent based methods such as LATA® not computationally feasible for large
scale data sets. The Margafitalgorithm is also too computationally intensive: it took more than
two weeks to analyze a data set of 500 cases and controls with 10,000\8&lBsed the
recommended parameters by the developers: 30 ARGs and 100 permitations

We did, however, test the power of Margarita on a small number of SN&sdividuals. To our
surprise, the power of Margarita was not as good as the standaest under several of the
scenarios that we studied: Since Margarita assumes the coalescenwweddsted it on null data
produced using a coalescent model, upon which phenotypes havesthiemdmdomly assigned
(i.e., in which there is no causal SNP). We generated 100 differentgpahsize 25 kb using the
ms software (Hudson), which simulates data under the coalescent motlestnexperiments we
generated 50 individuals, which were randomly assigned to be casestools. We found that the
false positive rate (using@value cutoff of 0.05) was 1%. We used the following strong
association model — one of the SNPs was arbitrarily set as a strong &NiBalby declaring an
individual to be a case if the corresponding SNP is either heterozygdwsozygous 1, and
control otherwise. Using this model, we observed that the power of Mtads 17%, while the

power that is obtained by a standard permutation test was much higher: 69%.
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We repeated the same experiments described above, by simulating addiéinakl f SNPs using
the ms software with recombination events. We found that the false posité/erdnis case is
89%. The power for the strong association model was 69% compared WitroB&ined by the
standard permutation test.

These results show that there are serious problems with existing methodsagitheespect to
running time or power. Indeed, our results show that these methodsmiaated in the scenarios
that we studied by the standayd approach. We thus used the standgtcipproach as a baseline
in our experimental study of CAMP. We also compared to CLADF@s CLADHC is

computationally feasible in our scenarios.

3.3 Power

To study the power of the methods we applied them to case-control panaistius multiplicative
model for generating cases and controls described in Section 3.1. Aipgiemerated from the
whole sequence, and then the SNPs are sampled according to the speifity (i.e., density of
the sampled SNPs). Therefore, in many cases (but not always) thal &P does not exist in the
SNP sampled panel. Under a specific significance level (which controtgpbd error), the

relative power is defined as a ratio in which the numerator is the number of SNP sampled panels
defined to be significant and the denominator is the number of original paitklthe entire
sequence, including the causal SNP, defined to be significant.

We simulated panels with 1,000 cases and 1,000 controls. We fixed the spathitysampled
SNPs to each of the following value&:, 000, 2, 000, ..., 10,000). For each value of sampling
sparsity 5,000 different panels were generated. Results for theadiffSNP sampling densities are
presented in Figure 2, and for different numbers of cases and ¢®irtBigure 3. The difference

in the relative power between CAMP and standgfdesting reaches more than 10%. An even
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more prominent difference is observed between CAMP and CLADH@jimarup to 52.7%.

3.4 Localization of the Causal SNP

We also tested the accuracy in localizing the causal SNP. To obtain an estfriwaigtion from the
output of CAMP, note first that CAMP may output more than one SNP. T&aE&s presumably
represent mutations on the genealogical tree near the causal SNRy¢huse the average location
of these called SNPs to estimate the position of the causal SNP. A comparisenfaéist is
presented in Figure 4 for different numbers of individuals. The athgmof CAMP over the
standardy? is quite notable; e.g., for 3,000 controls and cases, the percentageeté famwhich
the distance between the found location and the true causal SNP is beltv W@8 86% for

CAMP and 79% for the standang’ .

3.5 Measuring the Advantage of the Coalescent Approach

Our algorithm tests a subset of all possible interactions. This subsetsadbael before, is
determined according to the approximated genealogical relations betweBNBge Does testing
all possible interactions within the linkage upper bound gives similar resuttsth3wer this
guestion we compared CAMP to a procedure that tests all pairwise intemtgsmthan the
linkage upper bound. For two SNPs, this corresponds to testing theatssobetween the
haplotypes generated by the SNPs and the phenotype, which is calcylatetidmdard,? test for
these two vectors.

The results are presented in Figure 5. As can be seen, CAMP yieldscagulifi greater power
than the procedure that tests all pairwise interactions. The differetoede these procedures is
much larger than the difference between CAMP and the standaathorithm, reaching more than

50%.
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3.6 Using the Phased Haplotypes

Since CAMP uses phased data to construct the coalescent graphtedetheseffect of phasing
errors on our algorithm, considering phasing error rates of 3%, 30%%af0. The value of 3%
corresponds roughly to the error rate reported in the literature forippasgorithms® and 50%
corresponds to randomly phasing each one of the heterozygous sites.

Results are presented in Figure 6. As can be observed in the graphybea the phasing error
rate is 50% (which is very unlikely) CAMP has a relative power that is 9%elatigan the standard
x? test (for a significance level of 5%). With phasing error rates of 3%eath 30%, no

significant reduction in the power is observed.
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4 Discussion

We have presented a method that leverages the coalescent model tot@ssieiation mapping in
whole-genome association studies. We exploit the unobserved gene&lbgychromosomes in
order to evaluate more accurately the significance and location of caNBal She genealogy
defines a set of haplotypes, and our method consists of a strategy &&l¢ntion of tests based on
these haplotypes and on the genealogy. As we have demonstrated, gd¢hetimtests carefully
gives a large advantage in the power and in the localization of the cauBaV#&\have also shown
that several existing methods that aimed to address this problem eitherfsufidow power or
suffer from a very high false positive rate when compared to a staraggmebach in which each of
the SNPs is tested separately witlyatest. We have also shown that considering all SNP
interactions reduces the power considerably.

Interestingly, we observed that introducing very high rates of phasioegse(30%) does not reduce
the power of our method. This can be explained by the fact that wherghriodividuals are

given, the genealogical relationship between SNPs can be determingdtabg even if the
heterozygous sites are ignored. The signal is strong enough in the igouszsites so that
phasing accuracy has a minor effect on the results.

Accurate localization of the causal SNP is as important as significance estimaohave shown
that CAMP estimates the location of the real causal SNP more accuratelytheameethods.

Note, moreover, that this was achieved by a relatively naive apprddeking the average of the
interacting SNPs. Most likely, the location can be determined even moreadelyuioy a more
sophisticated algorithm that uses properties of the coalescent.

There are several important issues that need further attention. Weshewa that CAMP is more
powerful than the standargf test, but we have not shown its optimality. The question of whether

there exists a more powerful algorithm or strategy for choosing a sobggeractions of SNPs
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should be explored. In particular, it is intriguing to study the following optimizapooblem: For

a fixed disease model (say, the multiplicative model with given penetramceskative risk) and
significance level, find the strategy that determines which SNP interactietiesied, such that the
power is maximized.

It is also important to study the generalizations of methods such as CAMP tagbenhere
multiple populations may be participating in the study. One of the challenges inndraausal
inferences from whole-genome case-control association studies isnfmuading effect of
population structur¥/:18:19.20.21,22,23.241hjs jssue has received much attention in recent years in
the literature (e.g%>?%24. Currently, CAMP assumes no stratification effect, i.e., the controls and
cases are presumed to be from one population. There is a clear negaicdi@erethods for taking
population stratification into account in CAMP.

Although not tested experimentally in this work, since CAMP performs tranmsiton on the SNP
data, it can be naturally extended to handle other types of phenotygeasaontinuous traits
(QTLS).

The cost of genotyping is continually decreasing and technology is egalewmards genome
resequencing (e.g., lllumina/Solexa 1G and Roche/454). However, it igestillexpensive to
conduct resequencing of the whole genome as a tool for associatioesstAd a consequence, it
is clear that genotype data of common genetic variants such as SNPs will leadivey approach
in association studies in the coming years. Algorithms such as CAMP that yididtatstical

power by exploiting aspects of genealogy will play an important role in thésisaf these data.
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Web Resources
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Figures Legends

Figure 1:
An example of a perfect phylogeny tree. Each node correspondsaplatype. The mutations
appear on the edges. (a) A perfect phylogeny with five SNPs. (b)dditianal sixth SNP that was

mutated and can be expressed as the interaction between SNPs 4 and 5.

Figure 2:
The relative power for different sampling distances of SNPs and forddferent significance

levels.

Figure 3:

Relative power for different number of individuals.

Figure 4:
A comparison of the cumulative distribution functions for the distance bettlezdiscovered
SNP and the true causal SNP. The three figures represent the rdégalted from different

numbers of controls and cases: A - 1,000, B - 2,000, C - 3,000.

Figure 5:
A comparison of CAMP to a naive pairwise interactions algorithm, in which afiyse

interactions of SNPs with distances smaller than the threshold used in CAMEsgad.

Figure 6:
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A comparison of the relative power of CAMP in the presence of differates of phasing errors.
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