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ABSTRACT
We present CLIFF, an algorithm for clustering biological
samples using gene expression microarray data. This clus-
tering problem is difficult for several reasons, in particular
the sparsity of the data, the high dimensionality of the fea-
ture (gene) space, and the fact that many features are ir-
relevant or redundant. Our algorithm iterates between two
computational processes, feature filtering and clustering.
Given a reference partition that approximates the correct
clustering of the samples, our feature filtering procedure
ranks the features according to their intrinsic discriminabil-
ity, relevance to the reference partition, and irredundancy
to other relevant features, and uses this ranking to select
the features to be used in the following round of cluster-
ing. Our clustering algorithm, which is based on the con-
cept of a normalized cut, clusters the samples into a new
reference partition on the basis of the selected features.
On a well-studied problem involving 72 leukemia samples
and 7130 genes, we demonstrate that CLIFF outperforms
standard clustering approaches that do not consider the
feature selection issue, and produces a result that is very
close to the original expert labeling of the sample set.
Contact: epxing@cs.berkeley.edu

INTRODUCTION
Cluster analysis of gene expression microarray data is a
key step in understanding how the activity of genes varies
during biological processes and is affected by disease
states and cellular environments. Clustering can be used
to group genes according to their expression in a set of
samples (Eisen et al., 1998; Wen et al., 1998). Ideally, each
of the resulting groups should have a coherent expression
pattern, possibly suggesting a modular structure in the
gene regulation system. Another type of clustering, which
is in a sense more difficult because of the curse of
dimensionality (due to small sample volume and high
feature dimensionality), but is very valuable in clinical
as well as mechanistic study, is to cluster samples into
homogeneous groups that may correspond to particular

macroscopic phenotypes, such as clinical syndromes or
cancer types (Golub et al., 1999). In a typical biological
system, it is often not clearly known how many genes are
sufficient to fully characterize a macroscopic phenotype.
But practically, a working mechanistic hypothesis that is
testable and largely captures the biological truth seldom
involves more than a few dozens of genes, and knowing
the identity of these relevant genes is just as important
as finding the grouping of samples they induce. Thus, it
is essential to formulate the problem of biological pattern
recognition of microarray data in a way that involves an
interplay between clustering to produce a sample partition
and feature selection to identify genes that significantly
contribute to the partition of interest.

There is a rich literature on cluster analysis and various
techniques have been developed. Several recent reports
have shown the application of some of these techniques to
the cluster analysis of gene expression data (see (Szallasi
and Somogyi, 2001) for an overview). However, few
of these works address the issue of feature selection
explicitly, perhaps because it does not appear as a serious
problem as long as the number of features is relatively
small, and few of the features are irrelevant or redundant.
This is often the case when the objects to be clustered are
genes and the features used to cluster them correspond
to a well selected set of samples. The situation is quite
different when the objects to be clustered are samples and
the features correspond to genes. The failure to recognize
the fundamental asymmetry between these two situations
may account for the lack of attention to feature selection.
In many typical microarray data sets the sample space and
the gene space are of very different dimensionality (101 ∼
102 samples versus 103 ∼ 104 genes). Furthermore, the
design of sample space and gene space (for different
clustering purposes) are subject to different levels of
quality control. For example, one usually has a clear
knowledge of the biological scenario (e.g. a cell cycle)
in which one wishes to analyze gene expression, and can
construct the sample space accordingly (e.g., by taking
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time-course data over a cell cycle); on the other hand,
when analyzing a sample set (e.g., a patient group), one
usually has little knowledge about how to construct an
informative gene space because what genes are relevant
is unclear. A frequent alternative is to use a complete list
of all known genes. The sparsity of the data, the high
dimensionality of the feature space, and the fact that many
features are irrelevant or redundant cause the following
difficulties:

1. There may be many different well-founded, sta-
tistically significant ways to cluster samples. A
clustering algorithm is not guaranteed to capture
a ‘meaningful’ partition corresponding to some
phenotype(s) of actual empirical interest, such as
having or not having a particular type of tumor,
because the same set of samples may also display
gender, age, or other disease variability, which may
also serve as partitioning criteria.

2. Microarrays are not typically task-specific and most
of the features are not necessarily related to the phe-
notype of interest. Thus, even when the phenotype
of interest, such as tumor type, induces a strong dis-
criminating pattern in the feature space, the distance
calculation between samples is still subject to inter-
ference from the large number of irrelevant features.

3. The goal of clustering is often not merely to find out
the underlying grouping of samples, but also to form
some generalizable cluster representations and sam-
ple recognition rules so that future novel samples
can be correctly labeled. Vapnik and Chervonenkis
(1971) showed that the generalization risk bound of
such representations and rules increases with its VC
dimension, which is exponentially related to the di-
mensionality of the feature space. Thus, large fea-
ture sets inevitably increase the possibility of pre-
dictive error based on clustering results.

Several approaches have been taken to selecting features
for microarray sample clustering. One approach is to have
domain experts select the features. This is obviously not
easily generalizable. Another approach is to use a cluster-
ing algorithm to group the features into coherent sets and
then project the samples onto a lower-dimensional space
spanned by the average expression patterns of the coherent
feature sets (Hastie et al., 2000). This approach only deals
with the feature redundancy problem, but fails to detect
non-discriminating or irrelevant features. Principal com-
ponent analysis (PCA) may remove non-discriminating
and irrelevant features by restricting attention to so-called
eigenfeatures corresponding to the large eigenvalues, but
each basis element of the new feature subspace is a linear
combination of all the original features, making it difficult

to identify the important features (Hastie et al., 2000;
Alter et al., 2000).

The main difficulty of direct feature selection in clus-
ter analysis is the lack of reference information for feature
evaluation. In the machine learning literature, feature se-
lection is primarily applied under the supervised learning
paradigm (Kohavi and John, 1997; Langley, 1994). The
quality of a feature is usually measured with respect to
a reference partition. The more relevant a feature is to
the reference partition, the better it is. In the clustering
paradigm, such reference information is not given, making
it hard to tell whether a feature is qualified to be included
in the analysis.

In this paper, we propose a novel algorithm, CLIFF
(Clustering via Iterative Feature Filtering), which com-
bines a clustering process and a feature selection process
in a bootstrap-like iterative way, where each process uses
the output of the other as an approximate input, and the
outputs of the two processes improve hand-in-hand over
the course of the iterations.

CLIFF requires both an efficient clustering algorithm
and filters for feature selection. We apply a graph partition
algorithm, known as Approximate Normalized Cut (Shi
and Malik, 2000), to generate a dichotomy of the sam-
ples during each iteration. Approximate Normalized Cut
avoids the pitfalls of the more usual Minimum Cut ap-
proach, which tends to produce highly unbalanced parti-
tions. Moreover, there is an efficient algorithm for Approx-
imate Normalized Cut, which makes it an ideal module
in a iterative algorithm. For the feature selection part, we
use a mixture of feature evaluation experts based on inde-
pendent feature modeling, information gain ranking, and
Markov blanket filtering (Koller and Sahami, 1996) to re-
move non-discriminative, irrelevant and redundant genes,
respectively, from the original gene set.

As an example we demonstrate the performance of our
algorithm on a two-way clustering problem (a generaliza-
tion to multi-way clustering is straightforward) that parti-
tions leukemia samples (consisting of two subtypes) into
two groups based on their gene expression profiles.

The remainder of this paper is structured as follows:
Section 2 describes the approximate normalized cut al-
gorithm we used for object partitioning. Section 3 then
describes the three types of feature selection techniques
we used for our feature filtering system. In Section 4 we
present the full CLIFF algorithm. Section 5 goes on to de-
scribe our experimental results and in Section 6 we con-
clude with brief summary and discussion of our algorithm.

THE CLUSTERING ALGORITHM
Preliminaries
Consider clustering based on a similarity measure between
objects. We represent the set of objects to be partitioned
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as the vertex set V of a complete graph G(V, E).
Associated with each object i is an expression vector
xi = (xi1, xi2, . . . , xim) in a m-dimensional feature space.
Each edge ei, j ∈ E has a weight wi j corresponding to the
degree of similarity between objects i and j .

Intuitively, a good two-way partition of the graph should
have the property that the sum of the weights of the edges
joining the two subgraphs is small. Accordingly, several
microarray clustering approaches, such as the recently
reported CLICK (Shamir and Sharan, 2000) algorithm,
partition the graph using a minimum-cut algorithm, which
minimizes the sum of the weights of the edges joining
the two parts. However, the weakness of this approach
is that there is little guarantee that the algorithm will
not go astray and generate partitions that are highly
unbalanced, and thus sophisticated pruning techniques
need to be developed to explicitly enforce cut balance. The
Approximate Normalized Cut (NCut) algorithm, which
was recently applied to image segmentation by (Shi and
Malik, 2000), avoids the unbalanced cut difficulty in a
natural and efficient way.

Normalized Cut
For any two (not necessarily disjoint) subsets A and B of
the vertex set V, define w(A, B) = ∑

u∈A
∑

v∈B w(u, v).
A minimum cut is a partition of the vertex set into two
subsets, A and Ā, which minimizes w(A, Ā). By contrast,
in the Normalized Cut framework, we normalize w(A, Ā)

by scaling it relative to w(A, V ) and to w( Ā, V ), where,
for example, w(A, V ) is the sum, over all vertices v ∈ A,
of the total weight of the edges incident with v. This
scaling eliminates the bias toward highly unbalanced cuts.
Specifically, we define the normalized weight of the cut
A, Ā as follows:

Ncut (A, Ā) = w(A, Ā)

w(A, V )
+ w(A, Ā)

w( Ā, V )
. (1)

An optimal normalized cut is a cut of minimum normal-
ized weight.

Unfortunately, computing an optimal normalized cut is
NP hard even if all edge weights are non-negative. In
an effort to efficiently compute a cut of approximately
minimum normalized weight, (Shi and Malik, 2000)
reformulated this problem using a linear algebra notation
and showed that the problem of computing an optimal
normalized cut can be formulated as follows:

min
y

yT (D − W )y
yT Dy

(2)

subject to: y ∈ {1, −b}n, (3)

and yT D1 = 0. (4)

where W is the weight matrix, D is a diagonal matrix with
d(i, i) = ∑

j w(i, j ), and b is a positive constant.
There is a one-to-one correspondence between cuts and

feasible solutions y for (2), such that the value of the
objective function at y is equal to the normalized weight
of the corresponding cut. Note that the objective function
of (2) is the Rayleigh Quotient. If we relax constraint (3)
and allow elements in y to take on any real values, by the
Rayleigh Quotient Theorem. we can minimize Ncut by
solving the generalized eigenvalue system:

(D − W)z = λDz (5)

It can be shown that the eigenvector (denoted as z∗)
associated with the second-smallest eigenvalue of the
generalized eigenvalue system is the optimal solution to
this relaxed problem.

The graph partition corresponding to the approximate
solution to (2) can be recovered by choosing the best
of n possible partitions, each of which corresponds to
separating the large components of z∗ from the small
components. For each threshold k, 1 ≤ k ≤ n, let:

Ak = {i | z∗
i among k largest elements of z∗}

Bk = {i | z∗
i among n − k smallest elements of z∗}

The Approximate Normalized Cut algorithm selects
{Ak∗, Bk∗}, where k∗ is the best of the n thresholds
according to the normalized cut criterion:

k∗ = arg max
k

Ncut (Ak, Bk).

It is easy to generalize the Approximate Normalized
Cut algorithm from 2-way partitioning to multi-way
clustering. One way is to perform recursive 2-way cuts
until each resulting subset of the vertices is a singleton.
Essentially, this produces a binary hierarchy in a top-
down direction, and the cut weight associated with each
branching point in the hierarchy reflects the degree
of dissociation of the two subtrees directly below the
branching point. Given this hierarchy, one can choose a
clustering according to the desired degree of granularity,
with each cluster corresponding to a subtree. Another way
is to use several eigenvectors of the generalized eigenvalue
system to come up with a simultaneous K-way cut (see
(Shi and Malik, 2000) for details).

Weight definition and difficulties with
similarity-based clustering approach
The quality of clustering using Normalized Cut or any
other algorithm based on pairwise similarities fundamen-
tally depends on the weights - the wi j ’s - that are provided
as input. There are many ways to define a similarity mea-
sure for biological objects (Szallasi and Somogyi, 2001).
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In this paper, we use Pearson correlation coefficient (un-
der an exponential kernel) between the expression vector
xi and x j (denoted as ρ(xi , x j)) to capture the similarity
between objects i and j :

wi j = exp{− (1 − ρ(xi , x j))

σ
}, (6)

where σ is a scaling factor controlling the sensitivity of
clustering to the ’strength’ of the pairwise similarity. We
call the resulting W matrix the affinity matrix.

A common problem with this pairwise similarity based
approach is that the resolution of the similarity measure
does not scale well with the dimensionality of the fea-
ture space, especially when the measurements are noisy,
or the majority of the features are irrelevant to the target
partition, or multiple meaningful partitions are possible.
As we will show later, by doing feature selection, we can
effectively reduce the clustering problem to a lower di-
mensional space, where the pairwise similarities between
mates (objects from the same group) and non-mates (ob-
jects from different groups) resolve into two distinguish-
able distributions. With this enhancement, we can signifi-
cantly improve the graph-theoretic clustering and are bet-
ter able to perform probabilistic modeling in the resulting
feature subspace.

THE MIXTURE OF FEATURE SELECTION
EXPERTS
Preliminary
Among the many thousands of genes simultaneously
measured in a microarray experiment, it is unlikely that
all of their expressions are related to a particular partition
of the samples. In the analysis of a biological system,
the following ‘rules of thumb’ regarding gene functions
are often assumed. 1) A gene can be in either the ‘on’
or ‘off’ state (or maybe more subtly, ‘up’, ‘neutral’ or
‘down’); 2) not all genes simultaneously respond to a
single physiological event; 3) gene functions are highly
redundant.

If we have complete knowledge of the gene reg-
ulatory network a priori, we can just neglect the
non-discriminative, irrelevant and redundant genes ex-
plicitly, and work in a lower dimensional feature space.
Otherwise, one needs to probe the relevance of different
subsets of the genes to the target biological event (which
often induces a partition) in order to choose the best
feature subspace. Exhaustive search of the power set
of the feature set is intractable when the number of
features is large, as in the case of microarray data. Various
heuristic feature selection methods have been developed.
Based on the aforementioned assumptions about gene
activity, we use the following three approaches to probe
the relevance of each feature in a sequential fashion:

1) independent feature modeling (unsupervised); 2)
information gain ranking (supervised); 3) Markov blanket
filtering (supervised).

Independent feature modeling
An important empirical assumption about the activity of
genes, and hence their expression, is that they generally
assume a few distinct biological states (e.g. either ’on’
or ’off’). The combination of such discrete patterns from
multiple genes determines the sample phenotype. Given
this assumption, we expect that the marginal probability of
measurements over each individual gene can be modeled
as a univariate mixture with (say) two components (which
includes the degenerate case of a single component). If
a gene has all its measurement points in a single state,
or in two states for which the probability distributions
overlap heavily, we may conclude that the gene probably
contributes little to discriminating the samples.

Formally, for each feature Fi , we have a vector fi =
{x1i , . . . , xNi} of measurements over the N samples.
Assuming that Fi can be in either the ’on’ or ’off’ state
in each sample n, and that the measurements in a given
state come form a Gaussian distribution, we can model the
likelihood of fi as a univariate mixture of two Gaussians
(easily generalizable to k components):

pc(fi |θi ) =
N∏

n=1

1∏
k=0

(
πi,k

[
1√

2πσi,k
exp

{
− (xni − µi,k)

2

2(σi,k)2

}])zk
n

(7)

Here θi = (θi,0, θi,1), where θi,k = (πi,k, µi,k, σi,k), and
zk

n is 1 if sample n has state k, and 0 otherwise.
Learning this mixture model is easy using EM. From the

model we can derive a classification hypothesis h(x) as to
the state from which feature value x is drawn: h(x) = 1 if
πi,1 P(x |θi,1) ≥ πi,0 P(x |θi,0) and 0 otherwise.

The Bayes error (probability of misclassifying a sample
drawn from the mixture of Gaussians) is:

εBayes = π0 P(h(x) = 1|zx = 0)

+ π1 P(h(x) = 0|zx = 1); (8)

This error is the best we can achieve when classifying
samples using Fi only, and is intuitively a reasonable mea-
sure of the discriminability of Fi . For highly discrimina-
tive features, we anticipate that εBayes is small. Thus we
may rank features according to their discriminability, in an
order determined by εBayes .

Note that a mixture model can also be used as a
quantizer, allowing discretization of the measurements
for a given feature. We simply replace the measurement
xi with the associated binary value fi = h(xi) (such
quantization scheme is adopted throughout the rest of
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the feature selection sections in this paper unless oth-
erwise specified). This discretization allows us to bring
information-theoretic techniques to bear in determining
the degree of agreement between a feature and any given
partition of the samples. We can also reuse the same
quantization in any further partitions of the samples such
as in the case of hierarchical clustering.

Information gain ranking
As mentioned before, in the supervised learning paradigm,
feature quality is much easier to assess, because we can
explicitly measure the degree of agreement of each feature
to the reference sample partition. A standard measure for
such purpose is the information gain. For a reference
partition S1, . . . , SC , let the probability of each part be
the empirical proportion: P(Sc) = |Sc|/|S|. Now suppose
a test on feature Fi induces a partition of the training set
into E1, . . . , EK . Let P(Sc|Ek) = P(Sc ∩ Ek)/P(Ek).
The information gain due to this feature with respect to
the original partition is:

Igain = H(P(S1), . . . , P(SC))

−
K∑

k=1

P(Ek)H(P(S1|Ek), . . . , P(SC|Ek)), (9)

where H is the entropy function (the entropy of a discrete
probability distribution {pi } is defined as −∑

i pi ln pi ).
The information gain measure is applicable when the

reference partition is consistent with the target concept
we would like to learn. For simplicity, we deal with a 2-
way partition with the two parts denoted S0 and S1. Note
that we also need a decision rule for each feature Fi in
order to generate the partition induced by that feature.
For this, we turn to the classification rule fi = h(xi)

obtained from independent feature modeling described in
last section. This induces a subjective partition based on
measurements on Fi only. Naturally, higher information
gain for Fi suggests that the Fi -induced partition is more
consistent with the reference partition, and thus Fi is a
relevant feature.

Markov blanket filtering
It is natural to assume that many features, such as
gene transcription levels, are redundant or secondary
responses to the biological or experimental conditions that
distinguish the different samples. It is often desirable to
retain only the non-redundant, directly relevant features.
We can formalize our goal as follows: select a feature
subset G ⊆ F, such that, the two distributions P(C|F = f)
and P(C|G = fG) are the same or very close, where fG is
just the projection of f onto the variables in G.

For some computational purposes it will be convenient
to replace the original feature values by the binary

values that result from discretization using a mixture
of two Gaussians. This replacement is done throughout
this subsection except where otherwise noted. Thus, for
example, fi denotes the binary value resulting from
discretization of the original real-valued measurement xi .
Define the distance of a feature subset G ⊆ F to F, as
the expectation, over discrete values f of the feature subset
F, of the cross-entropy (denoted as D(. ‖.)) between the
conditional distribution of C given f and the conditional
distribution of C given fG , the projection of f on G:

�G =
∑

f

P(f) · D(P(C|F = f) ‖P(C|G = fG)),

We want to find a small feature set G for which �G
is small. Intuitively, if the information contributed by a
feature Fi is subsumed by some small subset of the other
features (which is often called a Markov blanket of Fi
in the graphical models literature), then we should be
able to neglect Fi without compromising the accuracy
of class prediction. This naturally suggests a filtering
approach of deleting ’bad’ features one by one, rather than
conducting a combinatorial search through the power set
of the feature set. (Koller and Sahami, 1996) proposed
the technique of sequentially identifying such features
based on the (non)existence of a Markov blanket in the
candidate feature set. In most cases, however, few if any
features will have a Markov blanket of limited size, and we
must instead look for features that have an “approximate
Markov blanket”.

For this purpose we define:

�(Fi |Mi ) =
∑

fMi , fi

P(Mi = fMi , Fi = fi)

D(P(C|Mi = fMi , Fi = fi) ‖P(C|Mi = fMi )).(10)

If Mi is a Markov blanket for Fi then �(Fi |Mi ) = 0.
Since this fortunate case is unlikely to occur, we relax
the condition and seek a set Mi such that �(Fi |Mi) is
small. Since the goal is to find a small irredundant feature
subset, and those features that form an approximate
Markov blanket of feature Fi are most likely to be more
strongly correlated to Fi , we construct a candidate Markov
blanket for Fi by collecting the k features that have the
highest correlations with Fi , where k is a small integer.
In computing these correlations we use the original real
values of the features, rather than the discretized values.
Here is how the algorithm goes as proposed in (Koller and
Sahami, 1996):

Initialize
- G = F

Iterate
- For each feature Fi ∈ G, let Mi be the set of k

features Fj ∈ G − {Fi } for which the
correlations between Fi and Fj are the highest.
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- Compute �(Fi |Mi ) for each i
- Choose the i that minimizes �(Fi |Mi), and

define G = G − {Fi }
This heuristic sequential method is far more efficient

than methods that conduct a more extensive search over
subsets of the feature set. The heuristic method only
requires independent feature modeling to discretize (or
binarize, in this case) the data for each gene, followed
by computation of quantities of the form P(C|Mi =
fMi , Fi = fi) and P(C|Mi = fMi ).

THE FULL ALGORITHM
Thus far we have described two types of modules for
the analysis of gene expression data. The Approximate
Normalized Cut (NCut) algorithm takes an affinity matrix
defined over objects in a certain feature space as input, and
outputs a partition of the objects. The mixture of feature
selection experts, except for the first feature modeling
stage, where no supervised information is needed, take a
given partition as reference, and output an ordering of all
the features in terms of their relevance or irredundancy
with respect to the reference partition. Here we outline
an procedure that combines these two modules in an
interactive way, alternating between computing a new
reference partition given the currently selected features,
and selecting a new set of features based on the current
reference partition. The bootstrapping step to select an
initial set of features is based entirely on independent
feature modeling.

Specifically, we first use the unsupervised independent
feature modeling technique to rank all features in terms of
their discriminability. Then we generate an initial partition
based on the k most discriminative features, where k
is specified in advance. Based on this partition, we can
treat feature selection roughly as a ’supervised’ learning
problem, where information gain ranking and Markov
blanket filtering can be applied, and the newly determined
feature subset can then be used to generate a new partition,
which in turn can be used to further improve the feature
selection. The scenario is that although we do not know
the exact target partition a priori, with respect to which we
would like to optimize the feature subset, at each iteration
we can expect to obtain an approximate partition that is
close to the target one, and thus allows the selection of an
approximately good feature subset, which will hopefully
draw the partition even closer to the target partition in
the next iteration. The algorithm is similar in spirit to the
EM algorithm (Dempster et al., 1977), where one searches
the parameter space for local minima via a coordinate
descent type of approach (improving an objective function
along one direction at a time, assuming invariance along
other directions). Such an approach will always lead to
some local minimum, either a point or a basin (a cyclic

Initialize
– using independent feature modeling, compute the

Bayes error εBayes for each feature
– G1 = {features corresponding to the k smallest

Bayes errors }
– generate partition C1 based on G1 using NCut,

let C = C1
Iterate
– using C as a reference partition, compute the

information gain Igain for each feature
– G2 = {features corresponding to the k smallest

Igain values }
– generate partition C2 based on G2 using NCut,

let C = C2

– order features according to �(Fi |M) via Markov
blanket filtering using C as reference

– G3 = {features corresponding to the k smallest
values of �(Fi |M) }

– generate partition C3 based on G3 using NCut,
let C = C3

if C and G3 converge, end iteration

Fig. 1. The CLIFF algorithm.

set of attraction points). Figure 1 lists the details of the
algorithm.

EXPERIMENTS AND RESULTS
In this section, we report the results of using CLIFF on
a microarray clustering problem. Our data is a collection
of 72 Leukemia patient samples reported in (Golub
et al., 1999). Each sample is measured over 7130 genes.
According to pathological/histological criteria, these
samples include 47 type I leukemias (called ALL) and 25
type II leukemias (called AML). We want to see whether
CLIFF is able to generate a partition that matches well
with this pathological/histological categorization of the
samples based on their gene expression profiles.

Feature relevance analysis of the expression data
As a prelude to partitioning the samples without the help
of a reference partition, we used the ‘correct’ partition (the
actual subtype labeling of the Leukemia samples) to gauge
the possible value of feature selection. We evaluated each
gene according to three measures:

1. Its degree of discriminability, as measured by the
Bayes error of a mixture of two Gaussians model;

2. Its information gain with reference to the correct
reference partition;

3. The value of �(Fi |M), where a small value indi-
cates that the feature is redundant.
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Fig. 2. Feature selection using using a 3-stage procedure. (a) Genes
ranked by εBayes (Eq. 8), which indicates discrimination power. (b)
Genes ranked by Igain (Eq. 9), which indicates degree of relevance.
(c) Genes ranked by �(Fi |M) (Eq. 10) which indicates degree of
redundancy.

We found that there was great variation among the genes
with respect to each of these measures.

Figure 2a shows the Bayes errors (defined by Eq. 8)
of the genes in ascending order. It can be seen that,
only a small percentage of the genes actually resolve into
two states with an error rate significantly better than a
random guess (ε � 0.5). Not all the gene expressions can
be successfully modeled as a mixture of two Gaussians
in practice, for example, due to presence of outliers or
possibly multiple (rather 2) underling states (we spare
further discussion of this issue for the sake of simplicity).

Figure 2b plots the information gain of the individual
genes with respect to the reference partition. Note that
only a very small fraction of the genes induce a significant
information gain, and hence are indeed relevant. We take
the top 360 genes from this list (rather than the whole set,
for the sake of computational efficiency) to proceed with

the (approximate) Markov blanket filtering.
Figure 2c shows the value of �(Fi |Mi ) (defined by

Eq. 10) for each Fi , which measures to what extent Mi
subsumes information carried by Fi , and thus renders
Fi redundant. Genes are removed in increasing order of
�(Fi |Mi ), since a small value of this quantity indicates
more complete blanketing of Fi by Mi . In our experiment
we choose the size of each Markov blanket to be small to
avoid fragmenting our small sample set too much. Since
in a real biological regulatory network system each gene
is expected to be directly influenced by only a few others,
our small Markov Blanket assumption is plausible.

In a separate paper (Xing et al., 2001), we used the same
mixture of feature selection experts used in this paper in a
supervised classification setting. We found that when only
a small subset of selected features are used for concept
learning, the resulting classifier significantly outperforms
the one that takes the full feature set into account. Thus,
it is reasonable to expect that in a cluster analysis, feature
selection will lead to a less error-prone result.

Clustering via CLIFF
We compared four algorithms for partitioning the
Leukemia samples into two classes:

1. Approximate NCut without feature selection;

2. K-means (for K =2) without feature selection;

3. CLIFF (Approximate NCut with iterative feature
selection and partitioning);

4. K-means (for K = 2) with feature selection.

We used the quality measures applied in (Shamir and
Sharan, 2000), the Minkowski measure (M) and the
Homogeneity (HAve and HMin ) to evaluate the quality
of the resulting partitions. The Minkowski measure of
disagreement between the computed partition and the
correct partition is defined as

√
A/B where A is the

number of pairs of samples that are in the same part of one,
but not both, of the two partitions, and B is the number
of pairs that lie in the same part of the true partition.
The quantities HAve and HMin refer only to the computed
partition, not to the true partition; they are the average
and minimum of the correlations between the expression
vector of a sample and the mean of the expression vectors
of the samples in the same cluster.

Figure 3 shows the results from Approximate NCut and
CLIFF. From the graphic display of the input affinity ma-
trix M (upper left panel), we can see that, without fea-
ture selection (Figure 3a), the contrast of strong pairwise
affinity to poor pairwise affinity is very low and the eigen-
vector on which NCut bases its partition does not exhibit
a sharp separation between small and large values. This
lack of separation seems to be due to the large number of
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Fig. 3. Cluster analysis. (a) Clustering via Approximate NCut with-
out feature selection. Upper left: the input affinity matrix computed
from the full feature set; Upper right: The same affinity matrix with
columns and rows reordered according to the eigenvector to reveal
the dichotomy structure; Lower panel: the elements of the eigenvec-
tor in ascending order. (b) Initial partition obtained by CLIFF. Here,
the input affinity matrix is computed from the 15 most discrimina-
tive features. (c) The final partition obtained by CLIFF. Here, the in-
put affinity matrix is computed from the final feature subset consist-
ing of the 15 most qualified features determined by iterative passes
of the mixture of feature selection experts.

(c)

irrelevant features. NCut without feature selection gener-
ates a partition that significantly disagrees with the orig-
inal Leukemia subtype labeling of the samples (Cluster I
contains 7 AML and 33 ALL, and cluster II has 18 AML
and 14 ALL).

Table 1. Performance comparison of clustering algorithms with and without
iterative feature selection.

no feature selection with feature selection
algorithm M HAve HMin M HAve HMin

K-Means 0.950 0.164 -0.097 0.903 0.674 -0.297
N-Cut 0.938 0.337 0.057 0.387 0.633 -0.073

* N-cut with iterative feature selection is just CLIFF

The number of features selected and used to compute
the affinity matrix M during each iteration is chosen em-
pirically, and the clustering result is sensitive to different
choices of this number. For some other choices CLIFF
identified other tight and well separated dichotomies as-

sociated with a small set of relevant genes, or alternated
between 2 or 3 such dichotomies. It is possible that such
dichotomies may be genetically meaningful even though
they are not revealed or documented in the pathological
sample records.

When we use a small number of features determined
by the feature selection filters, the affinity matrix exhibits
much more contrast among the affinity strengths of
different pairs of samples (Figure 3b and 3c). The initial
partition derived from the 15 most discriminative features
(later on we use the 20 best features determined by
the feature filters for the iterative clustering) is already
somewhat close to the actual labeling of the samples
(Cluster I: AML/ALL=1/40, Cluster II: AML/ALL=24/7).
It takes 9 full iterations for CLIFF to converge to an
invariant clustering solution. In the final partition, cluster
I contains 44 samples, all of which are ALL; cluster II
contains 28 samples, of which 25 are AML and 3 are ALL.
Given that no expert knowledge is provided regarding
which genes out of the more than 7000 candidates are
relevant to the leukemia subtype categorization, the degree
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Fig. 4. Change of sample affinity distributions during the CLIFF iterations. (a) Histograms of pairwise sample correlations in the full feature
space. (b) Correlations in the space spanned by the 15 most discriminative features. (c) Correlations in the space of features determined in
the first full iteration of CLIFF. (d) Correlations in the final feature space determined by CLIFF.

of agreement of the partition generated by CLIFF to
the actual leukemia sub-categorization is remarkable.
It should be noted, however, that other phenotypically
significant partitions that are unrelated to leukemia may
still be left undetected by our algorithm.

Detailed analyses not given here also showed that
the Markov Blanket filter imposes more influence on
the stability and correctness of the clustering than the
information gain filter, especially when the number of the
features to be finally used is small.

In a comparison of the clustering result using different
approaches (Table 1), we can see that CLIFF outperforms

both K -means with feature selection and NCut without
feature selection.

Recall that the CLICK algorithm (Shamir and Sharan,
2000) assumes that the distributions of inter- and intra-
cluster pairwise sample correlations are well separated and
Gaussian. As shown in Figure 4 these assumptions do not
hold when all the original features are used. However, we
observed that, as the CLIFF iterations proceeded and only
the most significant features were retained, there was a
clear trend of gradual separation of the two distributions.
By the end of the process the two distributions appear to
be reasonably separable, although not exactly Gaussian.
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This observation suggests that, for some data sets, the
assumptions underlying CLICK may be valid only when
relevant and irredundant features, rather than all the
features, are considered in sample affinity measure.

It is worth mentioning that ten of the top 20 genes (7 of
the top 10 genes) of our final feature ranking are among the
50 ’informative’ genes used in (Golub et al., 1999) (which
is scored by some ’relevance’ measure). But since our
procedure filters out redundant genes, it is not surprising
that many of the genes in that list are not included here.
The affinity matrix derived from the top 20 genes shows a
very strong contrast among the affinity strengths, and the
eigenvector from which NCut derives its final partition has
a sharp distinction between the values in the two parts of
the final partition.

CONCLUSION
In this paper we presented the use of CLIFF: Clustering
via Iterative Feature Filtering, in the cluster analysis of
high-dimensional gene expression data, for which the
presence of large numbers of irrelevant and redundant
features and the limited number of samples often prevent
accurate grouping of the samples. Our results show that
even without sample labels as training information, it
is still possible to do feature selection together with
cluster analysis by coupling the two processes in a such
way that each process uses the output of the other
process as an approximate input. The dimensionality
reduction achieved in our algorithm should enhance the
performance of any clustering algorithm, not only the
eigenvalue-based NCut algorithm that we used. CLIFF
is fully generalizable to arbitrary multi-way clustering,
either through recursive 2-way cuts or simultaneous use
of several eigenvectors. As with the CLICK algorithm,
CLIFF needs no prior assumptions on the structure or
the number of the clusters as long as a proper threshold
measure of partition quality is given. Furthermore, the
complex adoption and merging steps in CLICK for dealing
with singletons and unbalanced cuts are avoided by the
Normalized Cut technique, and the assumption of a
mixture of two Gaussians for distributions of the similarity
measures (which may not be true in a high-dimensional
feature space) is alleviated due to the iterative feature
selection techniques.

In summary, our results suggest that the CLIFF algo-
rithm, with its iterative use of a mixture of feature filters
followed by reclustering, is capable of capturing the par-
tition that characterizes the samples but is masked in the
original high-dimensional feature space. Not only can hid-
den biologically meaningful partitions of the sample set be
identified in this way, but also the selected features are of
significant interest because they represent a set of causal
factors that elicit such partitions. Such information can

be used to establish causal models connecting quantita-
tive microscopic features (gene expression patterns) with
qualitative and empirical macroscopic phenotypes such as
disease symptoms and pathologies, and can serve as a ba-
sis for grouping genes into functional clusters.
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