
Algorithms to Detect Multiprotein Modularity
Conserved During Evolution

Luqman Hodgkinson and Richard M. Karp

Computer Science Division, University of California, Berkeley,
Center for Computational Biology, University of California, Berkeley,

and the International Computer Science Institute
luqman@berkeley.edu,karp@icsi.berkeley.edu

Abstract. Detecting essential multiprotein modules that change infre-
quently during evolution is a challenging algorithmic task that is impor-
tant for understanding the structure, function, and evolution of the bio-
logical cell. In this paper, we present a linear-time algorithm, Produles,
that improves on the running time of previous algorithms. We present a
biologically motivated graph theoretic set of algorithm goals complemen-
tary to previous evaluation measures, demonstrate that Produles attains
these goals more comprehensively than previous algorithms, and exhibit
certain recurrent anomalies in the performance of previous algorithms
that are not detected by previous measures.

Keywords: modularity, interactomes, evolution, algorithms.

1 Introduction

Interactions between proteins in many organisms have been mapped, yielding
large protein interaction networks, or interactomes [1]. The present paper con-
tinues a stream of scientific investigation focusing on conservation of modular
structure of the cell, such as protein signaling pathways and multiprotein com-
plexes, across organisms during evolution, with the premise that such structure
can be described in terms of graph theoretic properties in the interactomes [2–6].
This stream of investigation has led to many successes, discovering conserved
modularity across a wide range of evolutionary distances. However, there re-
main many challenges, such as running time, false positive predictions, coherence
of predicted modules, and absence of a comprehensive collection of evaluation
measures.

Evidence of conservation in the interaction data across organisms is essential
for modules claimed by an algorithm to be conserved over a given evolutionary
distance [7]. Due to the additivity of the scoring function for some previous
algorithms in the interaction densities across organisms, a very dense network
in one organism can be aligned with homologous proteins in another organism
that have zero or few interactions among them. In this case, the interaction data
does not support the claim of conservation across the given organisms.

2 L. Hodgkinson and R.M. Karp

Fig. 1. Cartoons describing difficulties with additivity across data types and organ-
isms. Organisms are represented by ovals. Proteins are represented by circles. Protein
interactions are represented by thick lines. Proteins with high sequence similarity are
connected with thin lines. Algorithms that are additive across the interaction and se-
quence data may predict the module on the left to be conserved due to high sequence
similarity. In this case, the module boundaries are not well-defined, most likely contain-
ing portions of multiple modules that may have no relation with each other. Algorithms
that are additive in the interactions across organisms may predict the module on the
right to be conserved though there is no evidence for module conservation across the
organisms in the protein interaction data.

Good boundaries are important for the modules that are returned by an
algorithm. Some previous algorithms, such as NetworkBlast [3] and Graemlin [5],
use a scoring function that is a sum of multiple scores: one score based on
protein sequence similarity, and one score from each organism based on the
density of interactions among the module proteins in the interactome for that
organism. These algorithms then use a greedy search on this scoring function
to find conserved modules. Due to the additivity, module pairs similar to the
cartoons in Fig. 1 may receive high scores and be reported as conserved.

Produles is an important step to address these issues. It runs in linear time,
scaling better than Match-and-Split [6] and MaWISh [4], and does not exhibit
the recurrent anomalies that result from the additivity of the scoring function
across organisms and data sources that forms the basis for NetworkBlast and
Graemlin. Our objective is to initiate discussion of evaluation measures that
are sensitive to these and similar issues by introducing the important algorithm
goals described in Section 3.

2 Algorithms

Input Data

An interactome is an undirected graph G = (V,E), where V is a set of proteins
and (v1, v2) ∈ E iff protein v1 interacts with protein v2. In this study the input
is restricted to a pair of interactomes, Gi = (Vi, Ei), for i ∈ {1, 2}, and protein
sequence similarity values, h : V1×V2 → R+, defined only for the most sequence
similar pairs of proteins appearing in the interactomes. In this study, h is derived

Algorithms to Detect Multiprotein Modularity Conserved During Evolution 3

from BLAST [8] E-values. As BLAST E-values change when the order of the
interactomes is reversed, h is defined with the rule

h(v1, v2) = h(v2, v1) =
E(v1, v2) + E(v2, v1)

2

where E(v1, v2) is the minimum BLAST E-value for v1 ∈ V1, v2 ∈ V2 when
v1 is tested for homology against the database formed by V2. Any algorithm
using only this data is a general tool as it can be easily applied to any pair of
interactomes, including those for newly studied organisms.

Modularity, Conductance, and Degree Bounds

A modular system consists of parts organized in such a way that strong in-
teractions occur within each group or module, but parts belonging to different
modules interact only weakly [9]. Following this, a natural definition of multipro-
tein modularity is that proteins within a module are more likely to interact with
each other than to interact with proteins outside of the module. Let G = (V,E)
be an interactome. A multiprotein module is a set of proteins M ⊂ V such that
|M |� |V | and M has a large value of

µ(M) =
|E(M)|

|cut(M, V \M)|+ |E(M)|

where E(M) is the set of interactions with both interactants in M , and cut(M,V \M)
is the set of interactions spanning M and V \M . Of the interactions involving
proteins in M , the fraction contained entirely within M is given by µ(M). This
is similar to the earlier definition of λ-module [10].

The conductance of a set of vertices in a graph is defined as

Φ(M) =
|cut(M, V \M)|

|cut(M,V \M)|+ 2 min(|E(M)|, |E(V \M)|) .

When |E(M)| ≤ |E(V \M)|, as for all applications in this study,

Φ(M) =
|cut(M, V \M)|

|cut(M,V \M)|+ 2|E(M)| =
1− µ(M)
1 + µ(M)

.

Thus, when searching for relatively small modules in a large interactome, min-
imizing conductance is equivalent to maximizing modularity. This relationship
allows us to modify powerful algorithms from theoretical computer science de-
signed for minimizing conductance [11]. It has been shown that conductance
in protein interaction networks is negatively correlated with functional coher-
ence, validating both this definition of modularity and the notion that biological
systems consist of functional modules [12].

Assuming we are searching for modules of size at most b with modularity at
least d, the vertices in any such module have bounded degree. Let δ(u) be the
degree of u in G.

4 L. Hodgkinson and R.M. Karp

Theorem 1. If d > 0, the objective function in the optimization problem

max
G,M,u

δ(u)

s.t. u ∈ M

|M | = b

µ(M) ≥ d

µ(M) > µ(M\{u})

satisfies the bound δ(u) < (b− 1)(1 + d)/d.

Proof. Let M
� � M\{u}. Let y � |E(M �)|. Let x � |cut(M �

, {u})|.

µ(M �) =
y

|cut(M �, V \M �)|+ y
< µ(M)

so
|cut(M �

, V \M �)| > y(1− µ(M))
µ(M)

Thus,

µ(M) =
x + y

[δ(u)− x] + [|cut(M �, V \M �)|− x] + [x + y]
<

x + y

δ(u)− x + y + y(1−µ(M))
µ(M)

which implies
µ(M) <

x

δ(u)− x

As µ(M) ≥ d,

δ(u) <
x(1 + d)

d
≤ (b− 1)(1 + d)

d

��

The motivation for the restriction µ(M) > µ(M\{u}) is that when searching
for modules with high modularity, there may be proteins with such high degrees
that it always improves the modularity to remove them from the module. It can
be shown that this bound is tight and that neither requiring connectivity of M

in the underlying graph nor requiring connectivity of M\{u} in the underlying
graph can allow the bound to be further tightened.

Modularity Maximization Algorithm

PageRank-Nibble [11] is an algorithm for finding a module with low conductance
in a graph G = (V,E). Let A be the adjacency matrix for G. Let D be a diagonal
matrix with diagonal entries Dii = δ(i) where δ(i) is the degree of vertex i in G.
Let W = (AD

−1 + I)/2 where I is the identity matrix. W is a lazy random walk
transition matrix that with probability 1/2 remains at the current vertex and

Algorithms to Detect Multiprotein Modularity Conserved During Evolution 5

with probability 1/2 randomly walks to an adjacent vertex. A PageRank vector
is a row vector solution pr(α, s) to the equation

pr(α, s) = αs + (1− α)pr(α, s)WT

where α ∈ (0, 1] is a teleportation constant and s is a row vector distribution
on the vertices of the graph called the preference vector. Define the distribution
that places all mass at vertex v

χv(u) =
�

1 if u = v

0 otherwise

Intuitively, when s = χv, a PageRank vector can be viewed as a weighted sum
of the probability distributions obtained by taking a sequence of lazy random
walk steps starting from v, where the weight placed on the distribution obtained
after t walk steps decreases exponentially in t [11].

Let p be a distribution on the vertices of G. Let the vertices be sorted in
descending order by p(·)/δ(·) where ties are broken arbitrarily. Let Sj(p) be the
set of the first j vertices in this sorted list. For j ∈ {1, ..., |V |}, the set Sj(p) is
called a sweep set [11].

The PageRank-Nibble algorithm consists of computing an approximate Page-
Rank vector with s = χv, defined as apr(α, s, r) = pr(α, s)− pr(α, r), where r is
called a residual vector, and then returning the sweep set Sj(apr(α,χv, r)) with
minimum conductance [11].

From the definition, if p is a vector that satisfies p+pr(α, r) = pr(α,χv), then
p = apr(α,χv, r). Thus, 0 = apr(α,χv, χv). After initializing p1 = 0, r1 = χv, the
solution is improved iteratively. Each iteration, called a push operation, chooses
an arbitrary vertex u such that ri(u)/δ(u) ≥ �. Then pi+1 = pi and ri+1 = ri

except for the following changes:

1. pi+1(u) = pi(u) + αri(u)
2. ri+1(u) = (1− α)ri(u)/2
3. For each v such that (u, v) ∈ E, ri+1(v) = ri(v) + (1− α)ri(u)/(2δ(u))

Intuitively, αri(u) probability is sent to pi+1(u), and the remaining (1−α)ri(u)
probability is redistributed in ri+1 using a single lazy random walk step [11].

Each push operation maintains the invariant [11]

pi + pr(α, ri) = pr(α,χv)

When no additional pushes can be performed, the final residual vector r satisfies

max
u∈V

r(u)
δ(u)

< �

The running time for computing apr(α,χv, r) is O(1/(�α)) [11]. If we set �

and α to constants, which is reasonable given their meanings, and if we consider
only the first b sweep sets, the algorithm runs in constant time. As we desire the
degrees of the vertices in the final set to be bounded, we do not consider any
sweep sets that contain vertices with degree (b− 1)(1 + d)/d or greater, and we
also require connectivity in the underlying graph.

6 L. Hodgkinson and R.M. Karp

Algorithm to Detect Conservation

The algorithm begins by finding a multiprotein module,

M ⊂ V1

with high modularity in G1 using the algorithm described previously. Let

HT (M) = {v | ∃ u ∈ M such that h(u, v) ≤ T}

Modules corresponding to the connected components of the subgraph of G2

induced by HT (M) are candidates for conservation with M . Let these modules
be N1, N2, ..., Nk. For i = 1, ..., k, let

RT (M,Ni) = {u ∈ M | ∃ v ∈ Ni such that h(u, v) ≤ T}

If the following are true:

a ≤ |RT (M,Ni)| ≤ b

a ≤ |Ni| ≤ b

1
c
|Ni| ≤ |RT (M,Ni)| ≤ c|Ni|

µ(RT (M,Ni)) ≥ d

µ(Ni) ≥ d

where a is a lower bound on size, b is an upper bound on size, c is a size balance
parameter, and d is a lower bound on desired modularity, and ifRT (M, Ni) yields
a connected induced subgraph of G1, then we report the pair (RT (M,Ni), Ni)
as a conserved multiprotein module.

Each protein is used exactly once as a starting vertex for the modularity
maximization algorithm. A counter is maintained for each protein in G1. When
a protein is placed in a module by the modularity maximization algorithm, the
counter for the protein is incremented. Each counter has maximum value e for
some constant e. If the modularity maximization algorithm returns a module
containing any protein with counter value e, the entire module is ignored. If a
protein in G1 is reported to be in a conserved module, the counter for the protein
is set to e in order to reduce module overlap. When all proteins in G1 have been
used as starting vertices, the roles of G1 and G2 are reversed, and the entire
process is repeated.

Proof of Linear Running Time

Each value of h(v, ·) for v ∈ V is considered only when constructing HT (M)
for {M : v ∈ M}, so each value of h(v, ·) is considered at most e times. If v is
stored at each vertex in HT (M) when constructing HT (M), then constructing
RT (M, Ni) is a union of vertex lists and does not require additional considera-
tions of h(v, ·) values. As for all v ∈ V1,

|{M : v ∈ M}| ≤ e

Algorithms to Detect Multiprotein Modularity Conserved During Evolution 7

the number of consideration of h values is
�

M

�

v∈M

|h(v, ·)| =
�

v

�

M :v∈M

|h(v, ·)|

≤ e

�

v

|h(v, ·)|

= e|h(·, ·)|

After finding HT (M), it is necessary to compute N1, N2, ..., Nk. This can be
problematic if any of the vertices in HT (M) have large degree, which could con-
ceivably be as large as |V2|−1. However, as we desire Ni such that µ(Ni) ≥ d and
|Ni| ≤ b, which ideally do not contain any vertex u such that µ(Ni\{u}) > µ(Ni),
we can discard, by Theorem 1, any vertex v ∈ HT (M) with degree in G2 of
(b − 1)(1 + d)/d or greater. A modified depth-first search that transitions only
among vertices in HT (M) is then used to compute N1, N2, ..., Nk. This requires
time

O((
(b− 1)(1 + d)

d
)|HT (M)|) = O(|HT (M)|)

As
|HT (M)| ≤

�

v∈M

|h(v, ·)|

all of these depth-first searches over the full run of the algorithm require time

O(
�

M

|HT (M)|) = O(
�

M

�

v∈M

|h(v, ·)|) = O(|h(·, ·)|)

For a given M , constructing all RT (M, Ni) by a union of lists stored at
the vertices in the Ni requires time O(

�
i |Ni|b log b) = O(|HT (M)|). Test-

ing for connectivity of a single RT (M, Ni) with a modified depth-first search
that transitions only among vertices in RT (M, Ni) requires constant time as
|RT (M,Ni)| ≤ b and as each vertex in M has degree bounded by (b−1)(1+d)/d.
All of these constructions and depth-first searches over the full run of the algo-
rithm can be completed in time O(

�
M |HT (M)|) = O(|h(·, ·)|).

Computing the modularity of module U ∈ {Ni,RT (M,Ni)} requires com-
puting the sum of degrees of the vertices in U and the number of edges with
both endpoints in U . These can be computed in constant time when |U | ≤ b as
each vertex in U has degree bounded by (b− 1)(1 + d)/d.

3 Biologically Motivated Algorithm Goals

These goals address the challenges described in the introduction. Goal 1 is a
measure of how many sequence dissimilar proteins participate in the module.
Goal 2 is a measure of quality of module boundaries. Goal 3 is a measure of
evidence for the claim of conservation in the interaction data. Goal 4 measures
fit to an evolutionary model that includes interaction formation and divergence,
protein duplication and divergence, and protein loss. Goal 5 measures proteome
coverage and module overlap. We now quantify these goals mathematically.

8 L. Hodgkinson and R.M. Karp

Definition 1. (Algorithm output) Let k pairs of conserved modules returned
by an algorithm be M = {(M i

1, M
i
2) | i ∈ {1, ..., k}}. Let (M1, M2) ∈ M. Let

M ∈ {M1, M2}.

Definition 2. (Filled module) Let Gint(M) = (M,E(M)).

Definition 3. (Module homology graph) Let Ghom(M1, M2) = (M1∪M2, H(M)),
where, for p1 ∈ M1, p2 ∈ M2, (p1, p2) ∈ H(M) iff h(p1, p2) is defined.

Definition 4. (Module size) Let S(M) = |M |.

Definition 5. (Module density) Let ∆(M) = |E(M)|/
�|M |

2

�
.

Definition 6. (Interaction components) Let C(M) be the number of connected
components in Gint(M).

Definition 7. (Module average) Let fa(M1, M2) = (f(M1) + f(M2))/2, where
f ∈ {µ, S,∆, C}.

Definition 8. (Module difference) Let fd(M1, M2) = |f(M1) − f(M2)|, where
f ∈ {µ, S,∆, C}.

Definition 9. (Module overlap) LetOi(M i
1, M

i
2) = maxj �=i min{|M j

1∩M
i
1|/|M i

1|,
|M j

2 ∩M
i
2|/|M i

2|}. A value of Oi = x implies that no module pair j �= i exists
that covers more than fraction x of each module in module pair i.

Definition 10. (Ancestral protein) Let p = (P1, P2), where P1 ⊆ M1, P2 ⊆ M2,
and Ghom(P1, P2) consists of a single connected component.

Definition 11. (Ancestral protein projection) For ancestral protein p = (P1, P2),
Pi is the projection of p on Mi for i ∈ {1, 2}.

Definition 12. (Ancestral module) Let Ma(M1, M2) be the set of ancestral pro-
teins for (M1, M2). The arguments, M1, M2, may be omitted for brevity when
the context is clear.

Definition 13. (Relationship disagreement) Let p, q ∈ Ma, where p = (P1, P2),
q = (Q1, Q2). For i, j ∈ {1, 2}, relationship disagreement means there is an
interaction in Gi between some p

� ∈ Pi and some q
� ∈ Qi, but no interaction in

Gj between any p
�� ∈ Pj with any q

�� ∈ Qj . Let R(M1, M2) be the number of
relationship disagreements.

Definition 14. (Relationship evolution) Let Er(M1, M2) = R(M1, M2)/
�|Ma|

2

�
,

the fraction of possible relationship disagreements.

Definition 15. (Ancestral module projection) For i ∈ {1, 2}, let πi(Ma) =
{Pi | (P1, P2) ∈ Ma ∧ Pi �= ∅}.

Definition 16. (Number of protein duplications) Let D(M1, M2) = |M1| −
|π1(Ma)|+ |M2|− |π2(Ma)|.

Algorithms to Detect Multiprotein Modularity Conserved During Evolution 9

Definition 17. (Protein duplication evolution) Let Ed(M1, M2) = D(M1, M2)/
(|M1|+ |M2|− 2), the fraction of possible protein duplications.

Definition 18. (Number of protein losses) Let L(M1, M2) = 2|Ma|−|π1(Ma)|−
|π2(Ma)|.

Definition 19. (Protein loss evolution) Let E�(M1, M2) = L(M1, M2)/(|M2|+
|M1|), the fraction of possible protein losses.

Definition 20. (Ancestral components) Let C(Ma) be the number of connected
components in a graph with vertex set Ma, where an edge is defined between two
ancestral proteins p, q ∈ Ma if any protein in the projection of p on Mi interacts
with any protein in the projection of q on Mi, for some i ∈ {1, 2}.

Definition 21. (Proteome coverage) Let Ci = |Ui|/|Vi|, where Ui is the set of
proteins from Vi that are part of conserved modules. Let C = (C1 + C2)/2.

Goal 1. |Ma| is the number of ancestral proteins and should be reasonably large
for significant multiprotein modules.

Goal 2. Any value of C(Ma) > 1 implies that the module pair is not well-
defined as there is no evidence that the various connected components belong in
the same module.

Goal 3. ∆d, Ca, and Cd should be reasonably low to provide evidence for the
claim of conservation across organisms. This may be problematic for models that
are additive in the interaction densities across organisms.

Goal 4. Er, Ed, and E� should be reasonably low for a good fit with evolution.

Goal 5. C and k should be in reasonable ranges with a low average value of Oi.

4 Experiments and Results

Produles, NetworkBlast-M [13], Match-and-Split [6], and MaWISh [4] were ap-
plied to iRefIndex [14] binary interactions, Release 6.0, for Homo sapiens and
Drosophila melanogaster, consisting of 74,554 interactions on 13,065 proteins for
H. sapiens and 40,004 interactions on 10,050 proteins for D. melanogaster. The
evaluation was performed on the module pairs returned that had 5-20 proteins
per organism. This removes a large number of module pairs from Match-and-Split
and MaWISh that consist of modules on two or three proteins, single edges
or triangles, and the few huge modules from MaWISh with nearly a thou-
sand proteins each and C(Ma) > 1, that likely have little information con-
tent. This has little effect on NetworkBlast-M for which nearly all of its mod-
ules have 13-15 proteins per organism [15]. All programs were run with varying
h threshold, corresponding to varying numbers of homologous protein pairs:
h = 10−100: 5,675 pairs, h = 10−40: 25,346 pairs, h = 10−25: 50,831 pairs, and

10 L. Hodgkinson and R.M. Karp

0
10
20
30
40
50
60
70
80
90

100
110
120

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Ru
nn

in
g

Ti
m

e
in

 M
in

ut
es

0
1
2
3
4
5
6
7
8
9

10
11

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

|M
a|

0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

C(
M

a)

Fig. 2. Comparison of running time and performance on Goal 1 and Goal 2. The x-axis
is the number of homologous protein pairs. The y-axis, from left to right, is the running
time in minutes, the average |Ma|, and the average C(Ma).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Match-and-Split

MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e
Δd

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Match-and-Split
MaWISh

NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Ca

-1

0

1

2

3

4

5
Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Cd

Fig. 3. Comparison of performance on Goal 3. The x-axis is as in Fig. 2. The y-axis,
from left to right, is the average ∆d, the average Ca, and the average Cd.

h = 10−9: 138,824 pairs. Considering only the module pairs from NetworkBlast-
M with highest NetworkBlast-M score does not significantly change the distribu-
tions [15]. Graemlin has nineteen network-specific parameters over a wide range
of values. Together with the authors of Graemlin, we were unable to find settings
that would yield results for the networks in this study.

As expected, Produles returns multiprotein modules with much higher val-
ues of µ than other approaches [15]. What is remarkable is that by focusing only
on this measure, other desirable properties are attained. In Fig. 2, the linear
running time of Produles is seen to be very desirable. Neither Match-and-Split
nor MaWISh could complete on the data set with 50,831 homologous protein
pairs. NetworkBlast-M has high average value of |Ma| due mainly to its focus
on modules with 13-15 proteins per organism. Both Match-and-Split and Pro-
dules guarantee that C(Ma) = 1. NetworkBlast-M has a high average value of
C(Ma) due to additivity across data types. MaWISh has a few module pairs
with C(Ma) > 1 in a larger size range. Fig. 3 shows that NetworkBlast-M has
difficulty with Goal 3 due to additivity of its scoring model in the interaction
densities across organisms. NetworkBlast-M frequently aligns a dense module
in one organism with a module that has zero or few interactions in the other
organism. For all algorithms, average ∆a is approximately 0.3 [15]. Fig. 4 shows
that Produles performs comparably on the evolutionary model with algorithms
that attempt to match topologies. By searching only for modularity, Produles
detects conserved multiprotein module pairs in this data set that are consistent
with evolution. Fig. 5 shows that NetworkBlast-M produces many overlapping

Algorithms to Detect Multiprotein Modularity Conserved During Evolution 11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Er

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

Ed

-0.01

0.00

0.01
Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

Av
er

ag
e

El

Fig. 4. Comparison of performance on Goal 4. The x-axis is as in Fig. 2. The y-axis,
from left to right, is the average Er, the average Ed, and the average E�.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

C

0
100
200
300
400
500
600
700
800
900

1000
Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Match-and-Split

MaWISh
NetworkBlast-M

Produles

138,82450,83125,3465,675
Homologous Protein Pairs

av
er

ag
e
O

i

Fig. 5. Comparison of performance on Goal 5. The x-axis is as in Fig. 2. The y-axis,
from left to right, is C, k, and the average O

i.

module pairs. As indicated by Figs. 3-4, for many of these, the interaction data
does not support the claim of conservation.

As a final test, we computed GO biological process enrichment [16] with
Bonferroni correction at 0.05 significance level. All the algorithms in this study
performed comparably for modules in each size range. More than 95% of Network-
Blast-M modules were in the size range 13-15 proteins for which the percentage
of modules enriched were: 100% for Produles, 98% for NetworkBlast-M, 100% for
MaWISh, and 100% for Match-and-Split. All remaining NetworkBlast-M mod-
ules were in the size range 10-12 proteins for which the percentage of modules
enriched were: 79% for Produles, 66% for NetworkBlast-M, 89% for MaWISh,
with no modules in this size range for Match-and-Split.

5 Conclusion

We present a linear-time algorithm to detect conserved multiprotein modularity,
and a new set of evaluation measures, comparing with leading algorithms and
describing reasons for lower performance of earlier approaches. The measures
introduced are sensitive to important issues not addressed by previous measures.

Acknowledgments. The authors would like to thank those who helped with
the study: Maxim Kalaev with NetworkBlast-M, Jason Flannick and Antal Novak
with Graemlin, Mehmet Koyutürk with MaWISh, Manikandan Narayanan with
Match-and-Split, and Sabry Razick and Ian M. Donaldson with iRefIndex. This

12 L. Hodgkinson and R.M. Karp

work is supported in part by NSF grant IIS-0803937. Bonnie Kirkpatrick graciously
provided a critical reading of the manuscript for which the authors extend their
warmest thanks.

References

1. Vidal, M.: Interactome modeling. FEBS Letters 579, 1834–1838 (2005)
2. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R.,

Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. Proc. Natl. Acad. Sci. 100(20), 11394–11399 (2003)

3. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T.,
Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species.
Proc. Natl. Acad. Sci. 102(6), 1947–1979 (2005)

4. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W.,
Grama, A.: Pairwise alignment of protein interaction networks. Journal of Com-
putational Biology 13(2), 182–199 (2006)

5. Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin:
general and robust alignment of multiple large interaction networks. Genome Re-
search 16, 1169–1181 (2006)

6. Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph
match-and-split algorithm. Journal of Computational Biology 14(7), 892–907 (2007)

7. Beltrao, P., Serrano, L.: Specificity and evolvability in eukaryotic protein interaction
networks. PLoS Computational Biology 3(2), e25 (2007)

8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

9. Simon, H.A.: The structure of complexity in an evolving world: the role of near
decomposability. In: Callebaut, W., Rasskin-Gutman, D. (eds.) Modularity: Under-
standing the Development and Evolution of Natural Complex Systems. MIT Press:
Vienna Series in Theoretical Biology, Cambridge (2005)

10. Li, M., Wang, J., Chen, J., Pan, Y.: Hierarchical organization of functional modules
in weighted protein interaction networks using clustering coefficient. In Măndoiu, I.,
Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNCS (LNBI), vol. 5542, pp. 75-86.
Springer-Verlag, Berlin (2009)

11. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank
vectors. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp. 475–486. IEEE Press, New York (2006).

12. Voevodski, K., Teng, S., Xia, Y.: Finding local communities in protein networks.
BMC Bioinformatics 10, 297 (2009)

13. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein
networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol.
4955, pp. 246-256. Springer, Heidelberg (2008)

14. Razick, S., Magklaras, G., Donaldson, I.M.: iRefIndex: a consolidated protein in-
teraction database with provenance. BMC Bioinformatics 9, 405 (2008)

15. Hodgkinson, L., Karp, R.M.: Algorithms to detect multi-protein modularity con-
served during evolution. EECS Department, University of California, Berkeley,
Technical Report UCB/EECS-2011-7 (2011)

16. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.:
Go:termfinder—open source software for accessing gene ontology information and
finding significantly enriched gene ontology terms associated with a list of genes.
Bioinformatics 20(18), 3710-3715 (2004)

