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Estimating Local Ancestry in Admixed Populations

Sriram Sankararaman,1 Srinath Sridhar,2 Gad Kimmel,1 and Eran Halperin3,*

Large-scale genotyping of SNPs has shown a great promise in identifying markers that could be linked to diseases. One of the major

obstacles involved in performing these studies is that the underlying population substructure could produce spurious associations. Pop-

ulation substructure can be caused by the presence of two distinct subpopulations or a single pool of admixed individuals. In this work,

we focus on the latter, which is significantly harder to detect in practice. New advances in this research direction are expected to play

a key role in identifying loci that are different among different populations and are still associated with a disease. We evaluated current

methods for inference of population substructure in such cases and show that they might be quite inaccurate even in relatively simple

scenarios. We therefore introduce a new method, LAMP (Local Ancestry in adMixed Populations), which infers the ancestry of each in-

dividual at every single-nucleotide polymorphism (SNP). LAMP computes the ancestry structure for overlapping windows of contiguous

SNPs and combines the results with a majority vote. Our empirical results show that LAMP is significantly more accurate and more

efficient than existing methods for inferrring locus-specific ancestries, enabling it to handle large-scale datasets. We further show that

LAMP can be used to estimate the individual admixture of each individual. Our experimental evaluation indicates that this extension

yields a considerably more accurate estimate of individual admixture than state-of-the-art methods such as STRUCTURE or EIGENSTRAT,

which are frequently used for the correction of population stratification in association studies.
Introduction

Recent advances in genotyping technologies have opened

up unprecedented opportunities to improve our under-

standing of complex diseases through disease association

studies. In these studies, a population of cases and controls

are genotyped across the genome, and the allele frequen-

cies are compared across these two groups. Currently, in

a typical study, hundreds of thousands of single-nucleotide

polymorphisms (SNPs) are genotyped for thousands of

individuals.1 These numbers are expected to grow in the

coming years because of the constant improvements in

genotyping technologies.1

A significant discrepancy between the allele frequencies

in the cases and the controls gives evidence for an associa-

tion between the SNP and the phenotype and therefore

links the SNP to the disease. However, a growing concern

is that many of the associations found are due to confound-

ing effects. In particular, if the cases and the controls are

not sampled from the same population, many spurious as-

sociations will be discovered because the two populations

might have different allele frequencies at a SNP regardless

of the disease status.2–10 This bias can be observed in dis-

eases that are more prevalent in one population than in

another. In such cases, the collection of the cases is a biased

sample of the population.

Various methods have been proposed to deal with popu-

lation substructure in association studies.2,11 One of the

most intuitive approaches is to first find the population

substructure within the cases and the controls by using

a clustering algorithm such as STRUCTURE12 and then to

correct it by using regression or other methods that take

the subpopulation variable into account.13 The clustering
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algorithms need to be accurate enough, so that the signal

obtained from the difference in population substructure

will be weaker than the signal obtained from the difference

in the disease status.

The problem of inferring the population substructure is

especially challenging when recently admixed populations

are involved. In these populations (e.g., African Americans

and Latinos), two or more ancestral populations have been

mixing for a relatively small number of generations, result-

ing in a new population in which the ancestry of every

individual can be explained by different proportions of

the original populations. Because of recombination events,

even within the DNA of a single individual, different

regions of the genome could originate from different ances-

tral populations. This adds to the complexity of the prob-

lem of finding the ancestral information of an individual

because in nonadmixed populations, the whole genome

can be used as evidence for the population membership

of an individual, whereas in the admixed case, the genome

of each individual is fragmented into shorter regions of

different ancestry. It is therefore challenging to find the

ancestral information of these individuals and, in particu-

lar, to find the locus-specific ancestries.

An accurate inference of locus-specific ancestry in ad-

mixed populations could lead to improved analysis of

studies based on admixture mapping. In these studies, a

set of cases from a recently admixed population is geno-

typed, and the genome is scanned for regions in which

the proportions of ancestral populations are significantly

different than the rest of the genome.14,15 Unfortunately,

most of the current methods for inference of locus-specific

ancestral information12,16–18 do not scale to large datasets.

The only existing method that copes with large datasets
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is SABER,19 which is based on an extension of a Hidden

Markov Model20 that deals with local haplotype blocks.

Here, we propose a new method, LAMP (Local Ancestry

in adMixed Populations), for de novo estimation of the lo-

cus-specific ancestry in recently admixed populations (see

Figure 1). Our method is based on the observation that pre-

vious methods that use a Hidden Markov Model, or exten-

sions of it, are set to infer a very large set of parameters,

including the exact position of the recombination events,

making the search over the parameter space infeasible. In-

stead, our method operates on sliding windows of contig-

uous SNPs. We first calculate an optimal window length.

Next, we use a clustering algorithm that operates on these

windows and estimates each individual’s ancestry. We then

use a majority vote for each SNP, over all windows that

overlap with the SNP, in order to decide the most likely an-

cestral populations at the SNP. This simple approach has

two advantages over previous ones. First, we show analyt-

ically that the estimates of the algorithm are asymptoti-

cally correct across the entire genome. Second, it optimizes

fewer parameters than previous methods, and hence the

optimization is much faster and more robust than previous

methods.

We tested LAMP extensively on various datasets of ad-

mixed populations generated from the HapMap resource.

Our simulations show that LAMP is significantly more

accurate than state-of-the-art methods such as SABER and

Figure 1. Two Individuals in an Admixed Population
Ancestries predicted by LAMP (top panel) and true ancestries (bot-
tom panel) are shown for each individual (A and B). As shown in the
figure, the ancestries (represented by red and blue) vary across the
genome, and LAMP performs well in inferring the ancestry at each
location.
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STRUCTURE. In addition, LAMP is highly efficient, with

a running time that is about 200 times faster than SABER

and about 104 times faster than STRUCTURE. The effi-

ciency of LAMP allows us to estimate ancestries across

the genome in several hours on a single computer.

An additional advantage of LAMP is that unlike previous

methods, such as SABER, it does not require the ancestral

genotypes to infer the locus-specific ancestries (though

it can take advantage of these, if available). This might

be crucial when the ancestral genotypes cannot be typed

or are unknown. For instance, if one studies the population

genetics of populations in remote geographic locations

where historical admixing has not been recorded, a method

such as LAMP could be used to reveal such recent admix-

ing. Furthermore, even in cases where the history of ad-

mixing is known, it is not always possible to genotype all

the ancestral populations because some of the subpopula-

tions have become extinct and some have entirely mixed

with other populations. On the other hand, as genotypes

of major population groups become available, it would

be beneficial to use LAMP-ANC (ANC: ancestral), which

can take advantage of the pure genotypes.

Surprisingly, we find that in many cases where LAMP

does not receive the genotypes of the ancestral populations

as input, it performs considerably better than SABER.

In particular, on a simulated dataset of African Americans,

when measuring the percentage of individuals that are

predicted with an accuracy of at least 90%, LAMP achieves

high accuracies on 90% of the individuals, whereas SABER

and STRUCTURE achieve less than 10%.

Finally, we used LAMP to estimate the individual admix-

ture and showed empirically that this results in much more

accurate estimates than methods such as STRUCTURE12 or

EIGENSTRAT.2 This reduction in errors might be used to

considerably reduce the rate of spurious association results

in disease association studies.

Material and Methods

The inference of locus-specific ancestry depends on the mathe-

matical model representing the mixing process of the populations.

We will first describe the model assumptions and then describe the

inference algorithm under the model.

Model Assumptions
We assume that there are K ancestral populations A1, ., AK that

have been mixing for g generations. If the populations have mixed

at different times, then g is taken to be an upper bound on the

number of generations since the beginning of admixture. The frac-

tion of population Ai in the ancestral population that we call the

admixture fraction is ai, where
P

i
ai ¼ 1. We assume for conve-

nience that a1 R a2. R aK. In each generation, we assume ran-

dom mating within the combined pool of the k populations. We

denote the recombination rate at position j by rj. Note that rj is

the recombination rate at position j at a specific meiosis (one gen-

eration), and not through history. We model the transmission of

a chromosome from a parent to a child by walking along the chro-

mosome from the 50 end to the 30 end, with crossovers between
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chromosomes occurring as a Poisson process with rate rj.
21 For sim-

plicity of the presentation, we will assume a uniform recombina-

tion rate, i.e., that r ¼ rj for every position j. The algorithm and

analysis remain qualitatively the same when applied to nonuni-

form recombination rates.

We denote the genotype data of individual i at position j as gij,

where gij ˛ {0, 1, 2} is the minor allele count at that position. At po-

sition j, the two alleles of individual i have descended from one or

two of the K ancestral populations. We denote by a
p
ij ˛ {0, 0.5, 1} the

fraction of alleles descended from population p at position j in

individual i. The quantities a
p
ij are unknown; the objective of this

paper is to present a method LAMP that accurately estimates these

quantities.

The LAMP Framework
In this work, we consider a recently admixed population in which

the number of generations g since the beginning of the mixing is

small. Therefore, we expect the total number of recombinations in

these g generations to be small, as well. The resulting chromo-

somes are mosaics of the k populations, where the ancestral break-

points in which the chromosome ancestry changes from one pop-

ulation to the other are determined by the recombination events.

We assume that the quantities g, ai, and r are known for the

admixed population. The basic idea in LAMP is to estimate the

ancestries of the individuals in a sliding window that spans l sites.

We term l the length of the window. The choice of the length l will

be discussed later. Intuitively, if l is small enough, and the number

of generations g is not too large, a typical window of length l will

have almost no recombination events throughout history, and

therefore almost no breakpoints. Therefore, within each window,

it is reasonable to use an inference algorithm that assigns the se-

quence of genotypes in the window to one or two of the popula-

tions under the assumption that there are no breakpoints in any

of the chromosomes. The latter is a simple clustering problem, al-

though the accuracy of the inference in a given window improves

when the number of SNPs l in the window increases. We therefore

search for a window length l that is short enough so that most

individuals have no breakpoints and large enough so that there

is enough information to correctly cluster the individuals within

the window. This procedure is repeated by sliding the window to

cover all the SNPs on the genome. The windows that overlap

a SNP are then combined into a single solution with a majority

vote for the ancestry assignment. We note that unlike previous

methods (e.g., SABER19 or STRUCTURE12), we are not attempting

to estimate the exact positions of the breakpoints; instead, we are

trying to minimize the errors in the locus-specific ancestry pred-

iction across the genome.

The LAMP algorithm works as follows. We first find the optimal

window length on the basis of the parameters g, ai, and r. Then, we

use a clustering algorithm that operates on a window and esti-

mates for each individual i, and for each ancestral populations

Aj, Ak, the probability pi
jk for individual i to have one chromosome

descended from population Aj at this window and another

descended from population Ak. We then use a majority vote for

each SNP, over all windows that overlap with the SNP, in order

to decide the most likely ancestral populations at the SNP. As we

argue below, even though this scheme optimizes less parameters

than previous methods, such as SABER, or a regular hidden Mar-

kov model (HMM), we show analytically and empirically that

the estimates of the algorithm are asymptotically correct across

the entire genome.
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Estimating the Ancestry in a Single Window
We assume that none of the individuals have a breakpoint within

a window and estimate a single ancestral origin for each individual

across the length of the window. This assumption is largely true if

the length of the window is determined correctly (see Choosing

the Window Length, as well as Estimate of Window Length in

the Appendix). We further assume that the values a1, ., aK are

known. These values are the admixture fractions of each of the

populations across the whole genome, and they can be estimated

with existing tools such as STRUCTURE.12 In the Results section,

we show that our method is robust to reasonable inaccuracies in

the estimates of a1, ., aK.

Clustering Algorithm

We assume that subpopulation Ai has minor allele frequencies
~fi ¼ fi1,.,fin for n SNPs in a given window of length l and that

the different SNPs in the window are independent. The latter

assumption can be achieved in practice by the greedy removal of

SNPs having a high correlation coefficient (r2 > 0.1) from the win-

dow. We look for a classification function q : I/ 1,.,K 2
��

, where I

is the set of individuals and the range corresponds to the possible

pairs of subpopulations. In particular, we write q(i)¼ (q1(i), q2(i)) to

denote the ancestries of the two chromosomes of individual i in

the current window. We use a clustering algorithm known as Iter-

ated Conditional Modes (ICM)22 to find an optimal classification

of each individual in terms of the likelihood. For increased effi-

ciency in the running time, we seed the algorithm with an initial

classification as described in the Initializing the Clusters section.

The updates in the ICM algorithm differ from those in a tradi-

tional expectation maximization (EM) method only in the E step.

In the latter, the E step consists of obtaining the expected classifica-

tion q, given the values~fi. This would provide fractional class mem-

bership for each individual i. However, because we assume that the

initial classification provides a reasonable solution, we find the

maximum aposteriori estimate of q as shown below. For brevity,

we use Gi to refer to the genotype (gi1, ., gin) of the individual i.

bqðiÞ ¼ argmaxAsAt ˛f1,.,Kg2 Pr
�
qðiÞ ¼ AsAt j~f1 ,.,~fK,Gi

�
¼ argmaxAsAt ˛f1,.,Kg2 Pr

�
Gi j~f1,.,~fK,qðiÞ

¼ AsAt

�
,Pr
�
qðiÞ ¼ AsAt j~f1,.,~fK

� (1)

Because a1, ., aK are known, under the assumption of random

mating, we can estimate the first term Pr ½qðiÞ ¼ AsAt j~f1,.,~fK �
as Pr[q(i) ¼ AsAt] ¼ 21�d(s, t)asat where d(x, y) is 1 iff x ¼ y and 0

otherwise.

The other term can be estimated as

Pr½Gi j~f 1,.,~f K ,qðiÞ ¼ AsAt �

¼
Q

gij˛Gi j gij¼2 fsjftj,
Q

gij˛Gi j gij¼0

h
ð1� fsjÞð1� ftjÞ

i
,
Q

gij˛Gi j gij¼1

h
fsjð1� ftjÞ þ ftjð1� fsjÞ :

i
In the M step, we obtain the maximum-likelihood estimate of

~f1,.,~fK by finding

argmax~f1,.,~fK
Pr
�
ðGiÞmi¼1 j~f1,.,~fK,q

�
¼
Ym
i¼1

Pr
�
Gi j~f1,.,~fK,qðiÞ

�
: ð2Þ

If the phase of the individuals is known, then the maximum-

likelihood estimate of ~f1,.,~fK could have been computed simply

by the counting of the number of alleles in each of the subpopu-

lations at every position. However, when the phase is not known,

the problem becomes more complicated. Consider for instance
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a heterozygous site j in an individual i, with q1(i) s q2(i). In this

case, it is not clear whether the minor allele count should be added

to fq1ðiÞj or to fq2ðiÞj. To solve this problem, we introduce another

classification function per site, ~lj : I/ 0,1 K
��

. This function is de-

fined on the set of SNPs for which the assignment of counts is am-

biguous, i.e., heterozygous SNPs in individuals i with classification

q1(i) s q2(i). We denote this set of heterozygous SNPs Hi. The func-

tion ~lj is defined as

~ljðiÞ ¼ f~es, if j ˛Hi, one ofðq1ðiÞ,q2ðiÞÞ ¼ s,
and the minor allele is counted to fsj

not defined for j;Hi

:

Here,~es is the vector with 1 in coordinate s and 0 elsewhere.

For a heterozygous site j in individual i such that j ˛Hi, we can

now define

Pr
h
~lj ðiÞ ¼~eq1ðiÞ j f1j,.,fKj,qðiÞ

i
¼ fq1ðiÞjð1� fq2ðiÞjÞ

Pr
h
~ljðiÞ ¼~eq2ðiÞ j f1j,.,fKj,qðiÞ

i
¼ fq2ðiÞjð1� fq1ðiÞjÞ:

Pr
h
~ljðiÞ ¼~es;fq1ðiÞ,q2ðiÞg j f1j,.,fKj,qðiÞ

i
¼ 0

By using the assumption of independence of the SNPs and the ~lj

just defined, we can rewrite Equation 2 as follows. The usefulness

of this will be apparent later.

�bf1j,.,bfKj

�
¼ argmaxf1j ,.,fKj

Qm
i¼1 Y

j˛Hi

XK

u¼1

Pr
h
~ljðiÞ ¼~eu j f1j,.,fKj,qðiÞ

i!

3

 Y
j˛f1,.,ngyHi

Pr
h
gij j f1j,.,fKj,qðiÞ

i!
: ð3Þ

The MLE for bfij,.,bfKj can be found with an EM algorithm where

E step : lj,s ðiÞ¼ E
h
lj,sðiÞ j fq1ðiÞj,fq2ðiÞj,qðiÞ,gij ¼ 1

i

¼

fq1ðiÞjð1� fq2ðiÞjÞ
fq1ðiÞjð1� fq2ðiÞjÞ þ ð1� fq1ðiÞjÞfq2ðiÞj

, for s ¼ q1ðiÞ

fq2ðiÞjð1� fq1ðiÞjÞ
fq1ðiÞjð1� fq2ðiÞjÞ þ ð1� fq1ðiÞjÞfq2ðiÞj

, for s ¼ q2ðiÞ

0, for s;fq1ðiÞ,q2ðiÞg:

ð4Þ

8>>>>>><>>>>>>:

M step : bfsj ¼
2nsj

2,2 þ nsj
2,1 þ nsj

1,2 þ
P

j˛Hi
lj,sðiÞ

2nsj
2,2 þ 2nsj

2,1 þ 2nsj
2,0 þ nsj

1,2 þ nsj
1,1 þ nsj

1,0

: (5)

Here, lj,s(i) refers to coordinate s of the vector lj(i). n
sj
k,u refers to the

number of individuals who have u ˛ {0, 1, 2} minor alleles and k ˛ {1,

2} copies of alleles from population As at site j. The counts of these in-

dividuals canbeobtainedon the basisof theclassification q(i).Notice

that the termcorrespondingto theheterozygous sites that havea sin-

gle allele from population As has its contribution modified by lj,sðiÞ.
We can now perform expectation-maximization iterations by using

Equations 5 and 4. The convergence of these iterations provides us

a maximum-likelihood estimate of ~f1,.,~fK. These estimates can

then be used in the next iteration to estimate q with Equation 1.

Initializing the Clusters

We now describe how we obtain an initial setting of the parame-

ters, i.e., the classification function q or the allele frequencies
~f1,.,~fK, which are used as starting points by the EM algorithm.

We focus here on two specific scenarios. The first scenario is the
The Am
case where there are two ancestral populations, i.e., K ¼ 2, and

unknown allele frequencies ~f1,.,~fK. In this instance, we use an

algorithm called MAXVAR to provide an initial solution to the EM

algorithm. The main motivation behind MAXVAR is the quick

production of a reasonable classification. The algorithm takes

advantage of results computed from adjacent windows, and its

running time grows linearly with the number of SNPs. We have

also considered using spectral clustering, but in practice, we found

that the final classification accuracy is nearly the same as MAXVAR

though the running time is increased. The result from MAXVAR is

a classification of the individuals, which is then used in Equation

2 of the EM.

The second scenario is the case where K R 2 and estimates of the

allele frequencies bf1,.,bfK in the ancestral populations are known.

In this case, these allele frequencies are used as a starting solution

in Equation 1 of the EM algorithm.

The MAXVAR Algorithm. When we have two populations, we es-

timate a window length l such that most of the individuals have

no breakpoints within a window. Thus, the ancestries of these

individuals are A1A1, A1A2, or A2A2. We define a¼ a2 as the admix-

ture fraction of the smaller of the two populations. We now

describe a method for finding the ancestry of each individual in

this window. We call this the MAXVAR algorithm.

We first define a similarity score S between a pair of individuals.

For each SNP j, let mj ¼
P

i
gij

n , where n is the number of individuals,

and let sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ðgij�mjÞ2

n

r
. For two individuals i1, i2, we define

Sði1,i2Þ ¼
Xl

j¼1

ðgi1 j � mjÞðgi2 j � mjÞ
s2

j

:

For each i % n, let VarðiÞ ¼ S
i0 :i0si

Sði,i0Þ2 denote the similarity of all

other individuals to individual i, and let i* ¼ argmaxi{Var(i)}. The

MAXVAR algorithm simply finds i* and clusters the individuals ac-

cording to the values Sði�,iÞ. In particular, we order the individuals

according to these values, and the smallest (1 � a)2n individuals

are assigned the ancestry of A1A1, the largest a2n individuals are

assigned the ancestry of A2A2, and the rest are assigned A1A2. We

provide a formal proof of correctness of the MAXVAR method in

the Appendix (Correctness of MAXVAR).

Known Ancestries. The problem of estimating the ancestry is con-

siderably simpler if we are provided estimates of the ancestral allele

frequencies. In this case, as before, we first estimate the window

length l. Within each window, we then estimate the ancestries

by using the likelihood function given by Equation 1 with the

given ancestries bf1,.,bfK used as the starting solution. The ances-

tries predicted at each SNP are combined with a majority vote.

Choosing the Window Length
In order for the local predictions to achieve reasonable accuracy,

the length of the window l should be short enough so that most

individuals do not have a breakpoint in the window and long

enough so that the SNPs provide sufficient information for the ob-

servation of a difference between the populations. Note that we

use the term breakpoint to refer to a recombination event that re-

sults in a change in ancestry of the adjacent SNPs. The power of our

method stems from the fact that long windows provide much

more information than any local behavior, provided that there

are not too many individuals with breakpoints in the window.

We are looking for the maximum window length l so that the

errors in the classification that are due to breakpoints in the
erican Journal of Human Genetics 82, 290–303, February 2008 293



window are bounded. We present empirical results that validate

the window-length estimates in the Estimate of Window Length

section of the Appendix.

In each window, the errors in the classification depend on the

length of the window, the number of individuals, and the distance

between the populations. Evidently, it is hard to predict these

errors because the distance between the populations is unknown,

and the performance of the EM algorithm is unpredictable for a

finite sample. To obtain a bound on the errors, we consider the

most accurate classification of the individuals in a window. Such

a classification is allowed to assign ancestries to the individuals

in a window with knowledge of their true ancestral states a
p
ij for

p ¼ 1, ., K. Thus an individual whose ancestry is AsAt over the

length of the window is always classified correctly. The only errors

made by such a classification are due to the locations of the break-

points. In the presence of a breakpoint, an individual would be

assigned an ancestry so that the number of errors is minimized.

For instance, an individual with a breakpoint at position j and an-

cestries As1
and As2

on either side of the breakpoint gets assigned

the majority ancestry over the length of the window i.e., the in-

dividual gets classified as As1
if j > Q

l
2S and As2

otherwise. It is easy

to see that the larger the window size l, the more likely it is for

an individual to have a breakpoint, and hence, more errors are

introduced in the optimal classification.

The number of recombination events throughout time along

a specific window is assumed to be Poisson distributed with pa-

rameter (g � 1)lr. Therefore, as long as (g � 1)lr << 1, it can be

verified that the probability to have a breakpoint in the window

is upper bounded by 2ðg � 1Þlr
P

i<j
aiaj under the assumption

of random mating and that the admixture fractions of the

population right before recombination are ai. Therefore, the prob-

ability for a breakpoint on either chromosome is bounded by

g ¼ 4ðg � 1Þrl
P

i<j
aiaj.

For a given window, the above analysis shows that the expected

fraction of individuals with no breakpoints is 1 � g. We can now

use this to obtain a bound on the fraction of errors in a window.

Let X be the fraction of errors in a window of an algorithm that

makes the optimal classification. Let I be the number of break-

points in the window. We compute

E½X� ¼ E½E½X j I�� ¼
X

i

Pr½I ¼ i�E½X j I ¼ i�:

Note that E[E[XjI ¼ 0]] ¼ 0 because the optimal classification in

this case makes no errors. When there is a single breakpoint I ¼ 1,

the breakpoint is distributed uniformly over the length of the

window. We denote the position of the breakpoint J ~Unif(1, l).

The fraction of errors in the presence of a single breakpoint at

position J is

EðX j I ¼ 1,J ¼ jÞ ¼
(

1� j
l

j > Q
l
2
S

j
l

otherwise
: (6)

We now have

E½X j I ¼ 1� ¼ 2
XQ l
2S�1

j¼1

j

l

1

l
%

1

4
:

If glr << 1, we can ignore Pr [I > 1] so that

E½X�%0,Pr½I ¼ 0� þ 1
4
,Pr½I ¼ 1� þ 1,Pr½I > 1�

zg
1

4

: (7)
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For a bound 3 on the expected fraction of errors, we get g < 43.

Rewriting the window length l in terms of 3, we get

l%
e

ðg � 1Þr
P

i<j
aiaj

: (8)

Although these arguments bound the errors in a single window,

it is also possible to bound the errors due to overlapping windows

at a SNP. In this case, the use of a majority vote can be shown to

further improve the accuracy of the predictions. The details of

this analysis can be found in the Appendix (Accuracy of the

Window Length and the Majority Vote).

The analysis presented here is specific to the model of admixture

described at the start of the Model Assumptions section. However,

it is easy to see that the analysis can be extended to the case

of nonuniform recombination rate, where the probability for a

recombination in position i is ri. In that case, the term (g � 1)lr

should be replaced by ðg � 1ÞSl
i¼0ri.

The model considered so far does not take into account the dis-

tance between the ancestral populations while choosing the win-

dow length. When the ancestral genotypes are known, the window

length can be chosen to trade off the accuracy in separating the an-

cestral genotypes with an increase in the errors due to breakpoints.

A binary search over the window lengths can then pick the optimal

window length, as discussed in the Appendix (Practical Issues in

Implementing LAMP).

Results

We empirically evaluated LAMP on various datasets and

compared its performance with other tools that infer an-

cestry in admixed populations. When one is comparing

this to previous methods, it is important to note that the

inputs needed for the different methods are different.

In particular, in SABER,19 the genotypes from the pure an-

cestral populations are assumed to be known, whereas in

LAMP, we do not need this extra information. On the other

hand, similar to SABER, LAMP assumes that the recombi-

nation rates across the genome and the admixture fraction

(a1, ., ak) are known; the latter can be found with reason-

able accuracy with existing methods such as STRUCTURE

or EIGENSTRAT, wheras the former can be obtained from

the previous estimates of recombination rates based on

the HapMap data.23 We also provide LAMP with an esti-

mate of the number of generations g of admixture, and

this number can be approximated if the history of the

admixed populations is known. We show below that our

method is robust to deviations in the estimate of g. For

SABER, we set the parameter t, which roughly corresponds

to the number of generations since admixing, to g. We

found that allowing SABER to estimate the values of t

yielded much poorer estimates of ancestry.

Simulated Datasets

We simulated admixed populations from the HapMap data

in the following manner. We used the SNPs of chromo-

some 1 from the 500K Affymetrix GeneChip assay from

each of the four HapMap populations: Yoruba people

from Ibadan, Nigeria (YRI); Japanese from the Tokyo area
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(JPT); Han Chinese from Beijing (CHB); and Utah residents

with ancestry from northern and western Europe (CEU).

Overall, these span 38,864 SNPs for 60 unrelated individ-

uals from CHB and YRI and 45 unrelated individuals

from CHB and JPT.

For each pair of HapMap populations, we simulated

admixed populations by random mating of individuals

from the two populations across several generations. We

started by joining a random set of an individuals from

the first population and (1 � a)n individuals from the sec-

ond population. For the next generation, we repeatedly

picked a random pair of individuals from the combined

set of individuals and generated a child for this pair by

transmitting one chromosome from each individual. We

repeated this process for g generations. We set the recombi-

nation rate to be 10�8 per base pair per generation, consis-

tent with previous studies.24 We note that this model is

a worst-case scenario in the sense that in practice, the

populations are expected to mix in a slower rate because

individuals tend to mate with individuals from a similar

ancestral background. We simulated admixture for various

values of g and a; in the rest of this manuscript, the values

of g and a are 7 and 0.2, unless stated otherwise. These

parameters roughly match the nature of admixing in

African American populations.16,17,25–27

LAMP’s Performance and Accuracy

We evaluated the accuracy of the ancestry estimates in-

ferred by LAMP. We consider the two versions of LAMP,

i.e., the de novo inference of the local ancestries and the

inference of the local ancestries based on genotype data

of the original ancestral populations. We refer to the latter

method as LAMP-ANC. For each individual i and SNP j,

LAMP finds an estimate bap
ij˛ 0,0:5,1gf for the true ancestry

a
p
ij by a majority vote across the windows overlapping with

position j. We measure the accuracy of LAMP as the frac-

tion of triplets (i, j, p) for which a
p
ij ¼ bap

ij.

We compared LAMP to two state-of-the-art methods:

STRUCTURE12 and SABER.19 SABER requires the input

genotypes, admixture fraction a, physical location of the

SNPs, and the ancestral sequences that were used in the

simulation (i.e., the original HapMap populations) and

was also provided the number of generations g. For STRUC-

TURE, we only needed to provide the genotypes. We did

not compare LAMP to methods such as AdmixMap18 and

AncestryMap16 because the high density of markers made

these methods infeasible.

Table 1 summarizes the prediction accuracies of LAMP,

LAMP-ANC, SABER, and STRUCTURE. LAMP and LAMP-

ANC were run on the set of 38,864 SNPs of chromosome

1. SABER and STRUCTURE were run on nonoverlapping

windows of 4000 SNPs that included 36,000 of the original

38,864 SNPs. This was done because STRUCTURE got into

numerical instabilities when a large number of SNPs were

used and SABER crashed for an unknown reason when

run on all of the SNPs over the set of 500 individuals. For

STRUCTURE, the linkage model was used with 10,000
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burn-in and 50,000 MCMC iterations. SABER was also seen

to crash on some of the 4000 SNP blocks, and these were

excluded from the analysis. The accuracy of the ancestry

estimates were obtained on the SNPs for which all methods

returned a result. From Table 1, it is clear that LAMP achieves

considerable improvement over the YRI-CEU and the CEU-

JPT datasets, when compared to SABER or STRUCTURE.

For the JPT-CHB dataset, LAMP is worse than SABER, but

LAMP-ANC achieves a higher accuracy than SABER.

The accuracy of each of the methods varies across the

population. We therefore measured the average accuracy

in predicting the ancestries for each of the individuals. Fig-

ure 2 shows the cumulative distribution function of the

accuracies achieved by each of the methods across the set

of 500 individuals. As can be seen from the figure, the im-

provement of LAMP compared to STRUCTURE and SABER

is quite significant. For the YRI-CEU dataset, when measur-

ing the percentage of individuals that are predicted with an

accuracy of at least 90%, LAMP achieves 90%, whereas

SABER and STRUCTURE achieve less than 10%. In general,

the accuracy in the predictions that STRUCTURE makes

has a higher variance than the predictions made by SABER

and LAMP. On the CEU-JPT dataset, LAMP is more accurate

than SABER. On the JPT-CHB dataset, SABER performs con-

siderably better than LAMP; this is probably due to the fact

that the ancestral populations, which are given to SABER

but not to LAMP, are too similar to distinguish within a win-

dow; because LAMP-ANC uses the allele frequencies of the

ancestral individuals as input while still inferring ancestries

over entire windows, it is more accurate than SABER.

Table 1 also shows that LAMP achieves a gain in running

time of at least two orders of magnitude. We found that on

a single computer, LAMP and LAMP-ANC take less than

30 s to run on a 4000 SNP block and less than 7 min to

run on the entire set of 38,864 SNPs.

These experiments suggest that LAMP is especially useful

when the ancestral populations are sufficiently different

Table 1. A Summary of the Comparison between LAMP,
LAMP-ANC, SABER, and STRUCTURE

Dataset Distance LAMP LAMP-ANC SABER STRUCTURE

YRI-CEU 0.055 0.94 0.95 0.87 0.84

CEU-JPT 0.036 0.87 0.93 0.82 0.47

JPT-CHB 0.0045 0.48 0.72 0.68 0.40

Time (s) 394 246 7681 2.57 3 105

Number of SNPs 38,864 38,864 4000 4000

The accuracy across all positions on chromosome 1 is shown for the three

admixed populations. The distance between the admixing population (mea-

sured by the mean squared distance between the allele frequency vectors) is

also shown, indicating the difficulty in separating alleles from the popula-

tions. The time taken to run each of the methods is shown. LAMP and LAMP-

ANC were run on the entire set of 38,864 SNPs while SABER and STRUCTURE

were run on nonoverlapping blocks of 4000 SNPs because of issues with

scaling them to the entire dataset. For SABER and STRUCTURE, the accura-

cies reported here are obtained by averaging of the accuracies across the

blocks, whereas the running time is the time to run a single block. Each

of these methods was run on a single computer.
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Figure 2. Accuracy of Ancestral
Inference in Admixed Populations
Comparison of the accuracies of LAMP,
LAMP-ANC, SABER, and STRUCTURE on three
admixed populations—YRI-CEU (left), CEU-
JPT (middle), and JPT-CHB (right). The
cumulative distribution function (CDF) is
obtained from the accuracy of ancestry pre-
dictions for each individual. Note that the
scales differ across the plots. CDFs that are
to the right side correspond to higher accu-
racy. The graph on the left, for instance,
shows that LAMP achieves an accuracy of
at least 92% on 90% of the individuals.
LAMP achieves an improved accuracy over
SABER and STRUCTURE in the YRI-CEU and
CEU-JPT populations while performing

worse on the JPT-CHB population. LAMP-ANC performs consistently well on all three populations. Also notice the decrease in accuracy across
all methods as we move from left to right as the ancestral populations become more similar.
from each other (e.g., CEU and YRI). In those cases, it is

actually not essential to genotype the ancestral individuals

because we observe that LAMP-ANC and LAMP achieve

similar accuracy levels. When the populations are closer

(e.g., CHB-JPT), even for a modest number of generations

of mixing (in our case, seven generations), none of the

methods performs well, even when the ancestral popula-

tions are given.

Inferring Individual Admixture

Current studies often use the individual admixture of each

individual across the genome to correct for population

stratification.17,28–30 The individual admixture of an indi-

vidual is defined by the proportion of ancestors of the

individual from each of the ancestral populations. For in-

stance, for an individual with a mother from CEU and a

father from YRI, the individual admixture would be 50%

YRI and 50% CEU.

Even though LAMP is designed to estimate the locus-spe-

cific ancestry, we can use it to find the individual admixture.

We compare the estimates of the individual admixture

obtained from LAMP with those from STRUCTURE. We

used the YRI-CEU dataset with g¼7 and a¼0.20. We picked

4318 equally spaced SNPs from chromosome 1. This

roughly matches the number of SNPs required to distin-

guish nonadmixed individuals from even very closely re-

lated subpopulations.31 We ran STRUCTURE on this set of
296 The American Journal of Human Genetics 82, 290–303, Februar
SNPs with 10,000 burn-in iterations and 50,000 iterations

with the NOLINKAGE model and the NOADMIX mode

option set to 0. We ran LAMP on the entire chromosome

and then calculated the locus-specific ancestry of each indi-

vidual by averaging the ancestries predicted across the same

set of 4318 SNPs given to STRUCTURE. As shown by Fig-

ure 3, LAMP consistently achieves considerably better esti-

mates for the individual admixture. In particular, the aver-

age error rate for LAMP is 2.1%, whereas the average error

rate for STRUCTURE is 5.4%. The difference in the perfor-

mance between the methods is statistically significant (Wil-

coxon signed rank test p value of 9.9 3 10�51). This experi-

ment suggests that because LAMP is more than 600 times

faster than STRUCTURE (see Table 1), it would be better to

use LAMP across the entire genome to infer the individual

admixture than to use STRUCTURE across a smaller set of

ancestry-informative markers (AIMs). We also inferred the

individual admixture by using the LINKAGE model in

STRUCTURE but found that this gave a significantly higher

average error rate of 9.0%.

Another method for the inference of the individual

admixture is EIGENSTRAT. We ran EIGENSTRAT on the

SNPs used above and chose the largest eigenvector. We

obtained the ancestries of the individuals by scaling the

entries of the eigenvector to the interval [0, 1]. We found

this procedure to result in individual admixtures with an

average error rate of 13.4%. When we included ten ancestral
Figure 3. Comparison of the Accuracy
of Methods for Predicting Individual
Admixture
The left panel shows the errors in the
individual ancestries for each of the 500
YRI-CEU individuals. The right panel shows
errors in the left panel plotted as a cumula-
tive distribution function. The top-left
region of the curve corresponds to higher
accuracy. LAMP predicts the individual ad-
mixture with an error of less than 3% in
80% of the cases.
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individuals each from the HapMap YRI and CEU popula-

tions, the average error was reduced to 4.1% (Wilcoxon

signed rank test p value of 1.3 3 10�83). The use of all

38,864 SNPs decreased the average error to 11.1% and

3.6%, respectively.

LAMP’s Performance across Three

Admixed Populations

When more than two populations are mixed, de novo in-

ference of the locus-specific ancestry is a more challenging

task. We therefore compared LAMP-ANC, which uses the

genotypes from the ancestral populations, to SABER, on

a dataset generated by the mixing of three populations

(YRI, CEU, and JPT). We mixed these populations in the ra-

tio 0.4:0.4:0.2 for seven generations. Figure 4 shows the

ancestry estimates of LAMP-ANC for one of the individ-

uals. LAMP-ANC accurately infers the ancestry over most

of the chromosome, and it is clear that qualitatively the es-

timates are very close to the true ancestry. To give a more

quantitative measure for the accuracy of LAMP-ANC, we

calculated the cumulative distribution function of the

accuracies for each individual of LAMP-ANC and of SABER

(see Figure 5). Evidently, LAMP-ANC achieves a signifi-

cantly better accuracy than SABER across the population

(average accuracies of 92% and 74%, respectively).

Empirical Robustness of LAMP

The performance of LAMP clearly depends on the nature

of the data, on the number of generations g, and on a.

We varied g for a simulated YRI-CEU admixed population

with the fraction of CEU a ¼ 0.20. As shown in Figure 6,

even when g is as large as 20, LAMP reaches an accuracy

of 88%, and LAMP-ANC reaches an accuracy of 93%.

For more realistic values of g, (i.e., g < 10) the accuracy of

LAMP is above 93%.

To measure the effect of a on the performance of LAMP,

we measured the performance for simulated data with g¼7

for different values of a (see Figure 6). We observe that LAMP

performs well for values of a of up to 0.40 with its accuracy

Figure 4. Ancestry Estimates for a Mixed-Ancestry Individual
Ancestry estimates for an individual in an admixture of YRI-CEU-
JPT in the ratio 0.4, 0.4, 0.2. The top panel shows the LAMP ances-
try estimates and the bottom panel the true ancestries. Red, green,
and blue represent YRI, CEU, and JPT, respectively.
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remaining above 90%, and its performance drops sharply

to a little above 50% accuracy for a¼ 0.5.

Finally, we measured the effect of the distance between

the ancestral populations by comparing the accuracy of

LAMP across the YRI-CEU, CEU-JPT, and the JPT-CHB data-

sets. As shown in Table 1 (see also Figure 6), LAMP is quite

accurate on the CEU-JPT and the YRI-CEU datasets, but its

performance is quite poor on the JPT-CHB dataset. In such

a situation, the availability of allele frequencies is essential

for accurate inference, because we observe that LAMP-ANC

maintains an accuracy of around 70%.

Robustness to Parameter Settings

Because LAMP requires as an input the values of a and g,

verification that inaccurate estimates of these parameters

do not affect the results significantly is important. We

tested LAMP by benchmarking it over the simulated YRI-

CEU dataset, with true values of g ¼ 7 and a ¼ 0.2. We

ran LAMP on this dataset with different erroneous input

values of g and a. In Figure 7, we observe that if the number

of generations g is mistakenly given to LAMP as four

or larger, then the accuracy of LAMP is kept reasonably

high, and in particular it is at least 90%. On the other hand,

it seems that if the input a is very different from the true a,

LAMP can perform quite poorly. For instance, when the

input a is set to 0.4 instead of 0.2, the accuracy level is about

85%. However, because a is a single parameter across

all individuals, standard methods such as STRUCTURE12

give reasonable accuracy for a (e.g., the estimates for the

YRI-CEU dataset are between 0.17 and 0.24 across ten

runs), we can safely assume that the error in the prior esti-

mate of a is within a factor of 0.5, in which case LAMP

maintains a very good performance.

The model used in LAMP requires the SNPs to be inde-

pendent. To ensure this, we discard SNPs with r2 above

a threshold. We empirically chose a threshold of 0.10 for

r2 so that we retain a majority of the SNPs. However, as

shown in Figure 8, the accuracy of LAMP does not change

much even when this threshold is raised so that the SNPs

Figure 5. Cumulative Distribution Function of the Accuracy
Achieved per Individual
The methods compared are LAMP-ANC and SABER for the YRI-CEU-
JPT admixture. LAMP achieves an accuracy of at least 80% on all
the individuals.
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Figure 6. The Effects of Admixing
Parameters on Accuracy
Accuracy of LAMP and LAMP-ANC with vary-
ing number of generations g, fraction of
admixture a, and populations. In each fig-
ure, inferring the ancestries becomes in-
creasingly harder as we move from left to
right. The difference in the accuracies
between LAMP and LAMP-ANC shows the
advantage conferred by a knowledge of
the ancestral allele frequencies.
retained are no longer independent. The accuracy begins

to decrease only at stringent thresholds below 0.005 be-

cause of the algorithm’s tendency to discard informative

SNPs. We also examined the impact of the sample size

on the ancestry estimates. Although an increase in sample

size might lead to SNPs being significantly linked even

when the mutual r2 is small, for practical purposes, such

SNPs are essentially uncorrelated. Thus, LAMP is also ro-

bust to the sample size, as shown in Figure 8.

Finally, we measured the effect of the method used to

simulate the data on the different algorithms. To achieve

this, we amplified the HapMap haplotypes for YRI and

CEU populations by using the model of Li and Stephens.32

Briefly, the Li and Stephens model generates additional

haplotypes based on the ones already observed. The newly

generated haplotypes are composed from previous ones,

assuming mutation and recombination. The recombina-

tion rate in this model depends on the number of observed

haplotypes, such that the rate is higher when less haplo-

types are observed. This reduces the recurrent sampling

of haplotypes and, as was shown by Li and Stephens,

mimics more accurately the generation of haplotypes.

This resulted in a set of 10,000 ancestral individuals; this

set then underwent admixture with g ¼ 7 and a ¼ 0.20,

as described earlier. On this new dataset, the accuracies

obtained by LAMP, LAMP-ANC, and SABER were 94.72%,

94.70%, and 89.09%, respectively. The accuracies are close

to the accuracies obtained on the YRI-CEU dataset

described in Table 1.

Figure 7. Robustness of LAMP Estimates to Uncertainty in the
Parameters
Robustness of LAMP estimates to uncertainty in the parameters—g
and a. The accuracy of LAMP has been shown on the YRI-CEU data-
set for different values of g and a with true values of g ¼ 7 and
a ¼ 0.20.
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Because the ancestral allele frequencies used in LAMP-

ANC were estimated from the same data that were used

for the generation of the admixed datasets, there is a poten-

tial risk of over fitting. To make sure that this is not the

case, we partitioned the fouding YRI and CEU populations

into two equal-sized sets. We chose one of the two sets

from each population to generate a YRI-CEU dataset with

parameters g ¼ 7 and a ¼ 0.20. Ancestral allele frequencies

were estimated from the other set. The accuracy of LAMP-

ANC in this setting was 94.06%, which is very close to the

previous estimates obtained. Running the same procedure

on the amplified datasets gave an accuracy of 94.44%, and

thus we conclude that the results were not due to over

fitting.

Discussion

We have presented a new method, LAMP, for de novo

estimation of locus-specific ancestry in recently admixed

populations. Unlike previous methods for locus-specific

ancestry (e.g., SABER), LAMP does not use any information

about the ancestral populations (i.e., it estimates the an-

cestries de novo). We show that LAMP is analytically justi-

fied and that it achieves significant improvements over

existing methods both in terms of accuracy of prediction

and speed. In particular, LAMP can easily be applied to

whole-genome datasets, and the resulting locus-specific

ancestries can be estimated within a few hours.

Figure 8. Robustness of LAMP Estimates to Sample Size and to
the Choice of the Correlation-Coefficient Threshold
Robustness of LAMP estimates to the r2 threshold used to discard
SNPs and the sample size. The accuracy of LAMP has been shown
on the YRI-CEU dataset for different values of g and a with true
values of g ¼ 7 and a ¼ 0.20.
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Figure 9. Empirical Validation of the
Window-Length Estimates
The window length is estimated in the
Material and Methods (Choosing the Win-
dow Length). These estimates are based
on a parameter 3, which represents the
average desired fraction of errors incurred
by the most accurate classification algo-
rithm that can only return one of A1A1,
A1A2, A2A2 for the entire window. The fig-
ure presents the actual average error rates

for different values of g and a, run on the CEU-YRI dataset, with 3 ¼ 0.1. Evidently, the actual average error rate falls within the
desired error bound. The maximum and the minimum fraction of errors in a window are also shown.
De novo estimation of the locus-specific ancestries is

sometimes infeasible, especially when the ancestral popu-

lations are very close to each other (e.g., CHB and JPT). We

therefore extended LAMP to a method called LAMP-ANC,

which uses additional genotypes from the ancestral popu-

lations as priors. This approach has been shown to be use-

ful before by methods such as SABER.

When compared to previous methods, LAMP is shown to

achieve significantly better accuracy than other methods

(SABER and STRUCTURE). The increase in accuracy might

be crucial when one is trying to correct for population strat-

ification in studies that involve recently admixed popula-

tions, as well as in studies that are based on admixed map-

ping. Furthermore, improved accuracy in the locus-specific

ancestry estimation has potential applications in finding

better signals for selection and other events across the

genome.

Although LAMP relies on a knowledge of the parame-

ters g and a, we have shown the robustness of the ances-

try estimates to inaccuracies in these parameters. These

parameters control the window size. As the window size

is decreased, each window might contain fewer informa-

tive SNPs. On the other hand, errors in classifying indi-

viduals who have breakpoints within a window are re-

duced. This tradeoff is illustrated in Figure 7, where we

see that the ancestry estimates are robust when g is over-

estimated. In practice, we would therefore recommend

the use of an upper bound on g when g cannot be esti-

mated accurately. Furthermore, g might actually be a

more complex parameter—for example, if some portions

of the admixed population have admixed for g1 genera-

tions and other portions have been admixed for only g2

generations, where g2 is smaller than g1. In this case, g

is set to be g1, and more accurate results are expected

than if the whole population has admixed for exactly

g1 generation.

The fact that the LAMP algorithm performs better on

the unbalanced case (a << 0.5) than on the balanced

case seems counterintuitive at first. The reason for this

phenomenon is the fact that a small a helps to break

the symmetry. Even if all windows were perfectly clus-

tered, the combination of the solutions of the different

windows into one integrated solution is not a simple
The Am
task when a ¼ 0.5 because of symmetry. That is, after

clustering the individuals in every given window, we are

still left with the problem of deciding which cluster is

population 1 and which one is population 2. If a < 0.5,

then this decision is easier because the smaller cluster

could be labeled as population 1 and the larger cluster as

population 2.

Further, it is interesting to note that even though SABER

models the linkage disequilibrium (LD) structure whereas

LAMP does not, it appears that LAMP performs better

than SABER. This could be attributed to several possible

reasons. First, it might be that the LD structure only adds

slightly to the information captured by the independent

SNPs. Second, it might be that optimization of the model

in SABER is a harder task than optimization of the model

in LAMP because of the larger number of parameters, and

thus SABER might potentially not converge to the global

optimum of its parameter space.

A simple extension to LAMP can be used to infer the indi-

vidual admixture. As we show here, the resulting estimates

of the individual admixture are considerably better than the

estimates achieved by STRUCTURE or EIGENSTRAT. A

number of recent studies have produced panels of AIMs in

admixed populations;33–36 AIMs are SNPs that have differ-

ing frequencies in the ancestral populations. It is possible

that the AIMs might be used to improve the accuracy of

individual admixture prediction done by STRUCTURE or

other methods, including LAMP. However, the AIMs have

disadvantages because there is a risk of over fitting, and

the studied population might be somewhat different than

the population for which the AIMs were found. As we

show here, in an era where the genotyping technology is

getting cheaper, it is useful to use the entire set of genotyped

SNPs in the analysis of population stratification.

There are many possible improvements to this work, and

in particular it would be important to improve the current

methods in the case of very similar ancestral populations,

or when more than two populations are involved. Further-

more, removing the dependency of the method on the

input parameters (e.g., the number of generations g, or

the admixture fraction a) might be quite useful for the

generation of a rigorous statistical test for admixing. Addi-

tional improvements in the running time can be achieved
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by the parallelization of the LAMP algorithm. This is

straightforward in our case because each window could be

run independent of the others, and the results for windows

overlapping a SNP could be aggregated in a final step.

Appendix

Correctness of MAXVAR

In this section, we analyze the correctness of the MAXVAR

algorithm. We have two populations, A1 and A2. We de-

note a ¼ a2 as the admixture fraction of A2—the smaller

of the two populations. The MAXVAR algorithm classifies

the individuals into three types of ancestries, i.e., A1A1,

A1A2, and A2A2. The algorithm works by first picking a spe-

cific individual termed a pivot and then clustering individ-

uals on the basis of their similarity to the pivot. We show

that when the the populations are significantly different

from each other, the pivot will have an ancestry A2A2

with high probability. In this case, we show that one can

define a similarity score S (as defined in the Material and

Methods), such that the individuals who are also of ances-

try A2A2 have positive similarity score to the pivot, whereas

those with ancestry A1A1 have negative similarity scores in

expectation. Thus, the individuals with the smallest (1 �
a)2n values of the similarity score are assigned an ancestry

of A1A1, the largest a2n values are assigned an ancestry of

A2A2, and the rest are assigned A1A2.

Let pA1A1
,pA1A2

, and pA2A2
be the frequencies of individuals

of the three types in the population. We assume that

pA1A1
¼ ð1� aÞ2, pA2A2

¼ a2, and pA1A2
¼ 2að1� aÞ. Let pk

and qk be the minor allele frequencies of population

A1 and A2, respectively, in position k. Furthermore, we as-

sume that the values of mk and sk (as defined in the Material

and Methods) are constants and that mk¼ 2(1� a)pkþ 2aqk,

s2
k ¼ 2ð1� aÞ2pkð1�pkÞþ2að1�aÞ½pkð1�pkÞ þ qkð1� qkÞ�þ

2a2qkð1� qkÞ: Note that by simplifying the above, one gets

that s2
k ¼ 2ð1� aÞpkð1� pkÞ þ 2aqkð1� qkÞ, and therefore

it is of the same order of magnitude as mk for common

SNPs. If the number of individuals is large enough, the

variance is quite low, and therefore this is not a restrictive

assumption. We define the distance between the two popu-

lations as W ¼
P

k

ðpk�qkÞ2
s2

k

. Under these assumptions, it is

easy to see that if aa, ab, and bb are three given individuals

with ancestry A1A1, A1A2, and A2A2, respectively, in the

window, then the expected similarity score S between pairs

of individuals is

E½Sðaa,aa0Þ� ¼ 4a2W, E½Sðaa,abÞ� ¼ �2ð1� 2aÞaW,

E½Sðaa,bbÞ� ¼ �4ð1� aÞaW, E
�
S
	
ab,ab0


�
¼ ð1� 2aÞ2W,

E½Sðab,bbÞ�¼2ð1� 2aÞð1� aÞW, E
�
S
	
bb,bb0


�
¼4ð1� aÞ2W,

(9)

where aa0, ab0, and bb0 are individuals with ancestries A1A1,

A1A2, and A2A2, but they are different individuals than aa,

ab, and bb. From this, it is easy to verify that the sum of

squares of expectations over all individuals that are differ-

ent from aa, ab, and bb can be approximated as:
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P
i:isaa

½E½Sði,aaÞ��2z8a3ð1� aÞW2nP
i:isab

½E½Sði,abÞ��2z2að1� aÞð1� 2aÞ2W2nP
i:isbb

½E½Sði,bbÞ��2z8ð1� aÞ3aW2n

: (10)

The only reason for the approximation is that the num-

ber of individuals with ancestry A2A2 that are different

from bb is (1 � a)2n � 1, whereas we consider it as

(1 � a)2n. This approximation is not restrictive when the

number of individuals is reasonably large.

Similarly, it is easy to verify that if m is the number of

SNPs, then the following holds:

P
i:isaa

Var½Sði,aaÞ�<n
P
k

4m2
kðp2

k
þaðpk�qkÞð1�mkÞÞ

s4
k

¼ OðnmÞP
i:isab

Var½Sði,abÞ�<n
P
k

4m2
kðpkqkþð2a�1Þðpk�qkÞð1�mkÞÞ

s4
k

¼ OðnmÞP
i:isbb

Var½Sði,bbÞ�<n
P
k

4m2
kðq2

k
�ð1�aÞðpk�qkÞð1�mkÞÞ

s4
k

¼ OðnmÞ

:

The bounds O(m) follow from the fact that mk ¼ Qðs2
kÞ for

every common SNP with minor allele frequency bounded

away from zero. Therefore, if we assume that W >>
ffiffiffiffiffi
m
p

(i.e., the populations are distant from each other), we get that

for every individual x,
P

i:isx
E½Sði,aaÞ�2 >>

P
i:isx

Var½Sði,aaÞ�.
On the other hand,X

i:isx

E
h
ðSði,xÞÞ2

i
¼
X
i:isx

E½Sði,xÞ�2

þ
X
i:isx

Var½Sði,xÞ�z
X
i:isx

E½Sði,xÞ�2:

From Equation 10, we conclude that the expectation of

the square of distances of the population from an individ-

ual from A2A2 is larger than from and individual from

A1A2, or A1A1. If the number of individuals is large enough,

the distribution is concentrated around the mean, and

thus we expect an A2A2 individual to be chosen as the

pivot. In that case, by Equation 9, the ordering of the indi-

viduals according to their similarity to the pivot should

give the correct clustering with a fraction of errors expo-

nentially small in W.

Accuracy of the Window Length and the Majority Vote

For a given window, the analysis in the Choosing the

Window Length section shows that the expected fraction

of individuals with no breakpoints is 1 � g. Here, we

strengthen this analysis under the assumption that the

errors in the predictions of the different windows are

independent.

It is easy to see that the expected fraction of individuals

with two or more breakpoints in a window is smaller than

g2. For a given individual with a breakpoint in position i,

we denote the ancestry by ðAs1
,As2

,i,As3
Þ, where As1

is the

ancestry of the nonrecombinant chromosome and As2

and As3
are the ancestries of the recombinant chromo-

some. We assume that the probability to classify such an

individual as As1
As2

is i
l and the probability to classify it as
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As1
As3

is 1� i
l. There are l windows that overlap with any

SNP. Consider a SNP that is a distance d away from a break-

point. Let X be the number of times that the SNP is incor-

rectly classified as As1
As3

. Clearly,

E½X� ¼
Xl�d

i¼1

i

l
z
ðl� dÞ2

2l
:

With a Chernoff bound,37 the probability of incorrectly

classifying this SNP after the majority vote is

PrðX >
l

2
Þ ¼ PrðX > ð1þ d

l� d
Þ

2

E½X�Þ<e�
ð d

l�dð2þ d
l�dÞÞ

2
E½X�

2

¼ e�
ðdð2þ d

l�dÞÞ
2

4l < e�
d2

l :

In the case that there are no other breakpoints within

distance l from the breakpoint considered, the expected

number of errors around the breakpoint for the individual

is bounded byðl

0

e
�x2

l dx ¼
ð ffiffiffi2l
p

0

e
�x2

2

ffiffiffiffiffiffiffi
l=2

p
dx%

ffiffiffiffiffiffiffi
l=2

p ffiffiffiffiffiffi
2p
p

¼
ffiffiffiffiffiffiffi
l=p

p
:

If there are breakpoints within distance l of each other,

we take the worst-case assumption that all windows con-

taining the two breakpoints make erroneous predictions

over their entire length l. Because the expected fraction

of breakpoints in an individual is g
l and the expected frac-

tion of pairs of breakpoints that are of distance smaller

than l is at most g2

l , we can bound the expected fraction

of errors as gffiffiffiffi
pl
p þ g2 ¼ 4

P
i<j

aiajðg � 1Þrð
ffiffiffi
l
p

q
þ 4ð

P
i<j

aiajÞ
ðg � 1Þrl2Þ. On the basis of this analysis, a sufficient con-

dition to achieve a desired error rate of 3 is to have

l < min

8><>: 1

4ðg � 1Þr
P

i<j
aiaj

ffiffiffi
e

2

r
,

pe2

ð4ðg � 1Þr
P

i<j
aiajÞ2

9>=>;
Estimate of Window Length

The window length derived in Equation 8 bounds the

classification errors within each window to a desired error

rate 3. Because all SNPs within a window are assigned the

same ancestry, any algorithm that is used within this win-

dow will incur some errors in the presence of breakpoints.

Hence, the window length was calculated under the

assumption that the classification algorithm within the

window was the most accurate possible, i.e., any errors in

the classification were only a result of breakpoints within

a window. Here, we empirically show that for the window

lengths computed with Equation 8, the average classifica-

tion error for a most accurate classification is bounded by

the error rate 3, which is set to 0.10.

Within each window, the most accurate ancestry assign-

ment is inferred with the assumption that the true ances-

tries are known. The most accurate assignment consists

of assigning to an individual the ancestry found in a major-

ity of the SNPs in that window. Thus, an individual who
The Am
has no breakpoints is always correctly classified, whereas

an individual with a breakpoint at position i < Q
l
2S in a win-

dow of length l and ancestries As1
and As2

on either side of

the breakpoint will have errors in positions {1,.,i}. The

error rate for a window is the fraction of positions that

are incorrectly classified in the window.

We computed the average of these errors in overlap-

ping windows that span chromosome 1 of the YRI-CEU

dataset for different values of g and a. We see in Figure 9

that the average error is below 3. However, the variance

of the estimates (indicated by the minimum and the

maximum fraction of errors) increases with larger g or

with a/0:5. The window-size estimates seem to provide

a good bound on the average fraction of errors due to

breakpoints.

Practical Issues in Implementing LAMP

In this section, we describe some of the issues that we faced

while implemeting LAMP. One of the issues that we needed

to address was how to determine the degree of overlap

between adjacent windows. An extreme degree of overlap

would require adjacent windows to differ in a single SNP.

In practice, we found that a smaller degree of overlap, where

consecutive windows overlapped in a fraction c ¼ 80% of

their length, did not significantly change the accuracy

while resulting in faster running times. The overlap be-

tween adjacent windows can be exploited to further

improve the running time. Although using the MAXVAR

algorithm to obtain an initial classification, each window

requires a computation of the similarity score between all

pairs of individuals. The similarity score is computed with

an inner product of the normalized genotypes, as described

in the Initializing the Clusters section. Instead of comput-

ing these similarity scores over entire windows of length l,

we can compute these scores over chromosomes of length

(1 � c)l. The similarity score in a new window can then be

computed from that of the previous window by adjusting

for the nonoverlapping regions.

As we mentioned at the end of the Choosing the Win-

dow Length section, the window length calculation should

take into account the distance between the two popula-

tions. This is feasible when the ancestral genotypes are

known. In this scenario, the accuracy of the classification

for a given window length can be obtained by running

LAMP-ANC on the ancestral genotypes. With an increase

in the window length, this accuracy is exptected to in-

crease. On the other hand, the errors due to breakpoints,

as given in Equation 8, increase with window length. We

can then search for the window length that maximizes

the product of the fraction of individuals who do not

have breakpoints and the fraction of these individuals

who are accurately classified. For populations that are

well separated, such as YRI-CEU and CEU-JPT, we find

that the number of SNPs needed to accurately classify

a nonadmixed individual is much smaller than the length

of the window obtained from Equation 8, so that it suffices

to simply set the window length to the latter estimate.
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