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An important component in the analysis of genome-wide association studies involves the imputation of genotypes that
have not been measured directly in the studied samples. The imputation procedure uses the linkage disequilibrium (LD)
structure in the population to infer the genotype of an unobserved single nucleotide polymorphism. The LD structure is
normally learned from a dense genotype map of a reference population that matches the studied population. In many
instances there is no reference population that exactly matches the studied population, and a natural question arises as to
how to choose the reference population for the imputation. Here we present a Coalescent-based method that addresses this
issue. In contrast to the current paradigm of imputation methods, our method assigns a different reference dataset for each
sample in the studied population, and for each region in the genome. This allows the flexibility to account for the diversity
within populations, as well as across populations. Furthermore, because our approach treats each region in the genome
separately, our method is suitable for the imputation of recently admixed populations. We evaluated our method across a
large set of populations and found that our choice of reference data set considerably improves the accuracy of imputation,
especially for regions with low LD and for populations without a reference population available as well as for admixed
populations such as the Hispanic population. Our method is generic and can potentially be incorporated in any of the
available imputation methods as an add-on. Genet. Epidemiol. 2010. r 2010 Wiley-Liss, Inc.

Key words: genotype imputation; coalescent; GWAS; linkage disequilibrium; weighted panel

�Correspondence to: Bogdan Pas-aniuc, International Computer Science Institute, 1947 Center St., Berkeley, CA 94704.
E-mail: bogdan@icsi.berkeley.edu
Received 5 November 2009; Revised 25 February 2010; Accepted 12 March 2010
Published online in Wiley Online Library (www.wileyonlinelibrary.com).
DOI: 10.1002/gepi.20505

INTRODUCTION

In an effort to reveal the etiology of complex diseases,
genome-wide association studies (GWAS) have been
successfully applied to a wide range of diseases [Barrett
et al., 2008; Wellcome Trust Case Control, 2007; Zeggini
et al., 2008]. In a typical study, a set of cases and a set of
controls is genotyped, and then each of the genotyped
single nucleotide polymorphisms (SNPs) is tested for
association using a statistical test such as the Armitage
trend test [Armitage, 1955]. Recent advances in high-
throughput genotyping allow such studies to examine
about a million SNPs per sample [http://www.affymetrix.
com/products_services/arrays/specific/genome_wide_
snp6/genome_wide_snp_6.affx, 2009]. These account for
about 10% of the total number of common SNPs in the
genome [Kruglyak and Nickerson, 2001]. Because the
causal SNP is often not typed within the study, it is
important to interrogate SNPs that have not been
genotyped directly which is normally done through
imputation. Imputation methods infer the alleles of SNPs
not directly genotyped in the study (or hidden SNPs) using

the correlation structure between the SNPs (linkage
disequilibrium, LD) in the region.

Imputation methods are also used in the case of meta-
analysis of multiple studies; i.e. when more than one study
has been performed on the same phenotype, a combina-
tion of the data sets of the multiple studies will result in
increased power to detect association. However, the
genotyping platforms often differ across the different
studies, and thus, using a naive approach power is only
increased for SNPs that are genotyped in at least two of the
studies. Fortunately, applying imputation to meta-analysis
can overcome this problem as the SNPs that were
genotyped in one study can be imputed in the other
studies. Such an approach has been shown to be useful in
several instances [Barrett et al., 2008; Zeggini et al., 2008].

The starting point of imputation methods is a reference
data set such as the HapMap [The International HapMap,
2005], for which the genotypes of a dense set of SNPs are
provided. The underlying assumption is that the reference
samples, the cases, and the controls are all sampled
from the same population. Under this simplifying
assumption, the three populations share the same LD
structure. Thus, the structure of the LD in the reference
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population, in conjunction with the structure of the LD of
the observed SNPs within the cases and the controls, may
be used to impute the alleles of a hidden SNP.

The assumption that the reference population matches
the studied population cannot always be realized in
practice. First, some studies involve populations that have
no representation in the HapMap project or any other
dense genotype panel and as a result the reference
population has to be a different population than the
studied one. In a first step towards addressing this, recent
works [Egyud et al., 2009; Huang et al., 2009; Pemberton
et al., 2008] have introduced the idea of weighting the
HapMap populations using empirical estimates of ances-
try to capture the variation in populations with no match
in the HapMap. Second, it has been recently shown
[Novembre et al., 2008; Price et al., 2006] that even
homogeneous populations such as the European popula-
tion do not correspond to one large cluster, but rather they
correspond to a continuum across different axes of the
principal component maps. This implies that the notion of
‘‘one reference data set for all samples in the study’’ may
not be an optimal strategy. Potentially, the imputation
accuracy may improve if the imputation procedure uses
different reference populations for different individuals in
the studied population sample.

Based on the above intuition, here we propose a method
for the selection of a reference dataset that optimizes the
overall imputation accuracy. Our method takes as an input
the studied population sample (i.e., a set of genotypes of
the case and control groups), and a reference dataset.
Unlike Egyud et al. [2009] who construct a reference panel
for the whole studied population to model untyped
variation, we select a ‘‘personalized’’ reference data set
that is constructed from a subset of the original reference
data set, for each sample in the studied population.
Intuitively, if we consider a principal component map of
the studied and reference population, the individuals who
are closer to the sample in that map are more likely to be
included in the reference data set of that sample.
Leveraging on the above intuition, the method of IMPUTE
v2 [Howie et al., 2009] constrains phasing updates at each
MCMC iteration in the estimation step of their model to
condition on a subset of k haplotypes, ‘‘closest’’ in
genealogical terms of the individual being updated,
instead of all the available haplotypes (reference haplo-
types and current-guess haplotypes for the study indivi-
duals). Unlike IMPUTE v2, we independently perform
imputation at each study individual using a personalized
tailored reference panel of haplotypes for that individual
constructed only from the reference sample of haplotypes.
In addition, in our framework the reference panel of
haplotypes for a given sample is allowed to differ from
one genomic region to the other. Specifically, we partition
the genome into non-overlapping windows and select a
weighted reference data set for each window in each sample,
where the weights correspond to the contribution of each
haplotype to the reference population (some haplotypes
are ‘‘more important’’ than others). The weights are chosen
to be the inverse of the expected distance on a random
Coalescent realization of the studied sample with each of
the reference samples. This makes our approach more
robust to handle admixed populations. Indeed, we observe
that our framework achieves a considerable improvement
in imputation accuracy over the accuracy achieved
by previous approaches. Furthermore, the decrease in

imputation error rate achieved by our framework can
potentially lead to large gains in statistical power of
detecting associations at the imputed markers [Huang
et al., 2009]. We note, however, that quantifying the gain in
power depends on the imputation error rate as well as on
how one conducts statistical tests on the imputed
genotypes.

Importantly, our approach can be used as an add-on to
any imputation method as it defines the reference
population, which is a separate process from the imputa-
tion method itself. In principle, any existing imputation
method can potentially implement our method as a
subroutine. Thus, we are not proposing a new imputation
method, but an approach that utilizes current imputation
methods in a better way by providing it an optimized
choice for the reference data set.

We evaluated our framework on a large set of popula-
tions both from the HapMap project and the Human
Genome Diversity Project [Li et al., 2008]. We found that
the weighting scheme improves the imputation accuracy
of all genomic regions under any condition tested.
Specifically, we found that our proposed framework
achieves the greatest improvements for regions with low
LD, where existing imputation methods fail to provide
accurate results. We also demonstrate that our framework
is generic such that it can be incorporated into any
imputation method, including Beagle [Browning and
Browning, 2009], IMPUTE [Howie et al., 2009; Marchini
et al., 2007], and GEDI [Kennedy et al., 2009], to improve
the imputation accuracy. The largest gains in accuracy are
attained on admixed populations (e.g., Hispanics), and for
populations where there was no available reference
population. However, we also observed an improvement
in the imputation accuracy for populations that do have
available dense reference panels such as individuals with
European ancestry.

METHODS

The general framework of most imputation methods
involves using the typed makers as ‘‘predictors’’ for the
untyped SNP in conjunction with a model of the LD
structure observed among all the typed and untyped
SNPs. The information about the correlation structure at
the untyped SNPs is usually estimated from large
repositories of SNP variation such as the HapMap [The
International HapMap, 2005] project (the reference panels).
The main underlying assumption employed here is that
the reference panel and the study population share the
same LD patterns. This assumption cannot always be
realized in practice as some studies involve populations
for which no reference panel is readily available. In such
cases, a reference panel of a closely related population can
be used for the imputation although this will incur
additional imputation errors. It was recently shown [see
Huang et al., 2009] that a better approach to impute such
population is to use a mixture of populations for the
reference panel. However, it is unclear how to choose the
relative contribution of each population to the reference
panel.

Here, we introduce a method for the selection of a
reference panel from a set of populations. Once a reference
panel has been selected, any of the existing imputation
methods can be applied. The basic idea behind our
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method is that the optimal reference population should be
different for different samples in the study. Consider for
example a study involving individuals of European
descent. Intuitively, for individuals with northern
European ancestry, it would be beneficial to increase the
relative contribution of northern Europeans in the refer-
ence panel. Therefore, the imputation results can be
improved by creating a separate reference population for
each sample of the study. Furthermore, for a given
individual, different regions in the genome may originate
from different ancestral population. This is obviously the
case in recently admixed populations such as Hispanics or
African Americans, in which the genome can be divided
into long genomic regions originating from one of a few
ancestral populations. However, this also is the case for
other populations where the genome can be divided into
shorter contiguous genomic regions originating from one
of a few ancestral populations. Therefore, a tailor-made
reference population is constructed for each region of the
genome of each of the samples.

THE GENERAL FRAMEWORK

Consider an untyped genotype of an individual in the
study at marker i. Let H be the reference panel of
haplotypes and g be the multi-locus genotype of the
studied individual. We consider haplotypes that span a
window of length n SNPs typed both in the reference panel
as in the study individual around the untyped SNP, and
thus, each haplotype spans n/2 typed SNPs downstream
and upstream of the untyped SNP. Note that, since we
impute every untyped SNP in every study individual
independently, we need only to consider the neighboring
SNPs that are typed both in the reference panel and in the
study individual. That is, the neighboring SNPs untyped
in the study individual bring no additional information to
the imputation procedure at current untyped SNP. Current
imputation methods treat all the haplotypes hAH equally,
a priori. However, we instead give different weights wh to
each reference haplotype h, corresponding to the degree of
similarity between h and g. The weights are used to decide
the contribution of the specific haplotype to the reference
data set for this individual at the SNP i. In practice, a new
reference data set is constructed where this haplotype is
represented wh times.

Our suggested framework is generic in that for each
individual, and for each genomic region, we find the
weights wh, as described below. We then construct a
reference data set tailored to that individual in that genomic
region by duplicating each haplotype in the reference data
set wh times. To impute the untyped marker, we can now use
any of the existing imputation methods [Browning and
Browning, 2009; Howie et al., 2009; Kennedy et al., 2009]. We
note, however, that because the assigned weights wh are not
necessarily integer numbers, they can be rounded to the
nearest whole integer when this method is included as an
add-on to an existing imputation method. In some of the
imputation methods, particularly those that are based on
hidden Markov models, the weights can be easily incorpo-
rated directly, and therefore no rounding is needed. For
example, the imputation method of GEDI [Kennedy et al.,
2009] uses an Expectation Maximization (EM) procedure
based on the reference haplotypes to estimate the parameters
of the model which can be easily adapted to include weights
for the reference haplotypes.

COALESCENT-BASED HAPLOTYPE WEIGHTS

Intuitively, the weights wh are chosen to be proportional
to the inverse of the time since one of the individual
haplotypes and the reference haplotypes coalesced. If the
window length is short enough (i.e., we use n 5 20 for all
our experiments which is equivalent to 15 kb on the
average for the HapMap panels), we can assume that this
region has not been subject to recombination events for a
relatively large number of generations, and that the
infinite site assumption holds. Thus, following standard
coalescent theory [Donnelly and Tavare, 1995; Hudson,
1991; Hudson and Kaplan, 1995], any two haplotypes
(h01; h

0
2) have a unique most recent common ancestor

(MRCA). The similarity measure we use is proportional
to the time to the MRCA of the two haplotypes. Intuitively,
if the time to MRCA is long, enough time has passed for
the two haplotypes to drift away from each other, and
therefore there is a higher chance that the reference
haplotype will be less informative about the untyped SNP.

We now derive the calculation of the time to the MRCA
of a pair of haplotypes (h01; h

0
2). Let k be the number of SNPs

where the two haplotypes match out of n SNPs and let t be
the number of generations since their MRCA. Then the
number of matches k follows a binomial distribution
[Walsh, 2001], with

PðkÞ ¼
n!

ðn� kÞ!k!
½ð1� mÞ2t

�k½1� ð1� mÞ2t
�n�k;

where m is the mutation probability per generation per
marker. Since ð1� mÞ2t

� e�2mt it follows that the likelihood
of t generations since the MRCA given k out of n matches
is:

Lðtjk; nÞ ¼
n!

ðn� kÞ!k!
½e�2mt�k½1� e�2mt�n�k:

The maximum likelihood of 2t̂m is attained for 2t̂m ¼
lnðn=kÞ giving t̂ ¼ ð1=2mÞlnðn=kÞ. This estimate is limited by
its high variance and highly assymetric confidence
intervals [Donnelly and Tavare, 1995; Walsh, 2001].
Particularly for our method, when the two haplotypes
match across all markers, the estimate will be of zero
generations. To account for this Walsh [2001] proposes a
Bayesian posterior estimate, �t, for the time to MRCA using
a prior of p(t) 5 l exp(�lt), where l ¼ N�1

e , as follows:

�t ¼
hðm; k; n; lÞ
Iðm; k;n; lÞ

with variance

s2ðtÞ ¼
gðm; k; n; lÞ
Iðm; k; n; lÞ

� �t
2

where

Iðm; k; n; lÞ ¼
2n�kðn� kÞ!mn�k

Qn�k
i¼0 ðl12mðn� iÞÞ

;

hðm; k; n; lÞ ¼
Xn�k

i¼0

ð�1Þi
ðn� kÞ!

i!ðn� k� iÞ!

1

ð2mððk1iÞ1lÞ2Þ

and,

gðm; k; n;lÞ ¼
Xn�k

i¼0

ð�1Þi
ðn� kÞ!

i!ðn� k� iÞ!

2

ð2mððk1iÞ1lÞ3Þ
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For our experiments we used the Bayesian posterior
estimates assuming a flat prior (l5 0, corresponding to very
large populations) resulting in the following estimate for t:

�t ¼

Pn�k
i¼0 ð�1Þi

ðn� kÞ!

i!ðn� k� iÞ!

1

ð2mðk1iÞ2Þ
ðn� kÞ!Qn�k
i¼0 ðn� iÞ

¼
1

2m
� fðn; kÞ

where

fðn; kÞ ¼
Xn�k

i¼0

ð�1Þi
n!

k!i!ðn� k� iÞ!

1

ðk1iÞ2
:

.
As haplotype weights, we chose

wh ¼ C
2m

fðn; kÞ

where C is a constant. The smallest non-zero weight is 1
which is achieved for k ¼ �k matches (out of the n
considered SNPs) by setting C ¼ fðn; �kÞ=2m. Due to com-
putational requirements, in all our experiments below, we
limited the total size of the reference panel by using n 5 20
and �k ¼ 19 resulting in weights of 1 and 2 for haplotypes
having 19 and 20 matches out of the n 5 20 neighboring
typed SNPs considered. Any haplotype with less than 19
matches is given a weight of 0. In the unlikely case, when
there is no haplotype in the reference panel with at least 19
matches, 30 reference haplotypes are randomly chosen and
assigned weights of 1. When averaging across all regions
and all individuals, weights of 0, 1 and 2 are assigned to
76.31, 12.01 and 11.68% of the reference HapMap haplo-
types. Importantly, we note that, since we are using
weights that are proportional to f(n,k) (the term 2m cancels
out), the mutation rate has no impact on our final
imputation results.

A technical issue to be addressed is that the true
haplotypes of the imputed individuals are unknown. We
therefore weight each reference haplotype h by the inverse
of the lower bound on the time to the MRCA between h and
any of the two haplotypes of the individual. To do this, we
first compute the upper bound u on the number of
matches between h and the unknown haplotypes of the
individual. The upper bound can be easily computed
based on the multi-locus genotype of the individual and a
reference haplotype as n minus the number of markers
where the individual genotype is homozygous for one
allele and the reference haplotype h has the other allele. As
a toy example over 4 SNPs (the notation represents the
number of minor alleles at given SNP), if g 5 0102 and
h 5 1001 then any haplotype compatible with g must have
at least 1 mismatch with h (at first SNP) and thus any
haplotype compatible with g cannot have more than u 5 3
matches when compared to h. By plugging u into the
Bayesian estimates of �t, we obtain an estimate for the lower
bound on the time to MRCA between any haplotype h0

compatible with g and the reference haplotype h. As
discussed above, the final weight is the inverse of that
estimate scaled by a constant factor, namely:
wh ¼ Cð2m=fðn;uÞÞ.

RESULTS

DATA SETS

We assessed the performance of the above framework
on a wide range of data sets and populations. First, we
took the data from the HapMap project [The International
HapMap, 2005] composed of dense genotypes from four
populations: Utah residents of European Ancestry (CEU),
Yoruba people from Ibadan, Nigeria(YRI), Han Chinese
individuals from Beijing China, and a Japanese population
from the Tokyo area, Japan (CHB1JPT). Next, we used the
genotypes provided by the Human Genome Diversity
Project HGDP [Li et al., 2008] that consists of 938 unrelated
individuals spanning 52 population groups from diverse
worldwide locations genotyped at 650,000 SNPs using an
Illumina platform. Finally, we assessed the performance of
our framework on a Hispanic population composed of 89
samples genotyped at 370,000 SNPs using an Illumina
Infinium platform as part of a larger GWAS of the
molecular epidemiology of non-Hodgkin lymphoma
(NHL) in the San Francisco Bay Area to investigate risk
factors for NHL and included incident NHL cases
(N 5 2,055) identified from the cancer registry who were
frequency-matched to Bay Area population-based controls
(N 5 2,081) [Skibola et al., 2008, 2009]. For all the analyses
presented in this paper, we considered all non-mono-
morphic SNPs genotyped in Chromosome 1 (49,105 in
total for the HGDP data sets and 23,809 for the Hispanic
population).

ACCURACY OF IMPUTATION OF AN ADMIXED
POPULATION

We first tested our framework on the Hispanic popula-
tion collected in the San Francisco Bay Area. The Hispanic
population is a recently admixed population; in the last
10–20 generations, three ancestral populations have been
mixing to form that population: individuals of European
descent, individuals of African descent, and Native
Americans. This data set is interesting from an imputation
perspective for two reasons. First, because this is a recently
admixed population, each region in the genome may
originate from a different ancestral population, and
therefore the locality of our framework should play a
key role in improving the accuracy of imputation. Second,
the HapMap populations, which are used as the reference
populations, do not include Hispanics or native Amer-
icans, and therefore the assumption of matching LD
patterns made by current imputation methods is invalid.

We tested our proposed approach as follows. For each
individual and each genomic region, we calculated the
weights wh for the different haplotypes, and created a
reference set by duplicating each haplotype wh times.

For the assessment of the accuracy of the imputation
over the Hispanic population we used a masking
methodology in which a random portion of the study
population SNPs were masked as untyped (all the
genotypes at the masked SNPs were set as missing)
followed by imputation of the masked genotypes. We
masked 15% of the SNPs as missing resulting in 3,326 (out
of 23,809) SNPs in imputation. To measure the error rate of
the imputation we used the standard genotype imputation
error rate that computes the percentage of erroneously
inferred genotypes as a percent of the total masked SNP
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genotypes. Note that genotypes for which at least one
allele is incorrectly inferred are counted as imputation
errors. Following Huang et al. [2009] we also report the
squared correlation coefficient between the imputed geno-
types and the directly measured genotypes computed as:

P
ðxi � �xiÞðgi � �giÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � �xiÞ

2P
ðgi � �giÞ

2
q

0
B@

1
CA

2

where xi and gi are the imputed and the original genotype
and xi and gi are the average genotypes at that SNP; the
genotype encodes the number of minor alleles at a given
location and has possible values 0,1, or 2.

We assessed the performance of our approach in
choosing the reference panel to the ‘‘cosmopolitan’’
method of using all the HapMap populations as reference.
We also included in the comparison the global weighting
approach introduced in Egyud et al. [2009] that consists of
creating a reference panel by weighting each HapMap
population according to estimated ancestries; for this
approach we used the estimated proportions for a self-
reported sample of US Latinos from the Multiethnic
Cohort of Los Angeles and Hawaii (MEC) data set, a
collection of 215,251 adult men and women from Hawaii
and Los Angeles County, California collected for the
purpose of studying diet and cancer in the United States
[Kolonel et al., 2000], resulting in weights of 13:1:6 for the
CEU:YRI:JPT1CHB panels [Egyud et al., 2009]. Note that
our approach also starts from all the original (no global
weights) HapMap populations; however, our algorithm
will decide to remove some of these individuals based on
their local weights.

To impute genotypes at masked SNPs we used IMPUTE
v2 [Howie et al., 2009], a highly accurate and widely used
method for genotype imputation. IMPUTE v2 uses a
hidden Markov model (HMM) to obtain an estimate of the
genotypes at untyped markers in each individual. For all
the results presented here we used the default parameters
when running IMPUTE v2, namely a sliding window of
5 Mb across the genome with a buffer of 250 Kb, k 5 40
clusters and 30 iterations with 10 burn-in steps for
estimating the parameters of the model. For recombination
rates, we used the combined genetic map inferred from all
the HapMap panels. In the case of the global weighting
approach IMPUTE v2 crashed on several windows,
probably due to the large reference panel (the global
weighting approach leads to a reference panel 20 times
larger in the number of haplotypes than using all HapMap
haplotypes), and managed to impute only 2,559 out of
3,326 masked SNPs; the results for the global weighting
approach are given only for the 2,559 imputed SNPs. To
maintain a meaningful comparison and keep a constant
call rate across different scenarios, we used no threshold
on the posterior probabilities of the imputed genotypes
and thus the call rate across all scenarios was 100%.

Table I shows that our approach outperforms both in
terms of error rate and squared correlation coefficient the
other two compared methods. We note that, although
IMPUTE v2 was run in windows of 21 markers only for
our proposed approach, as opposed to thousand of
markers at a time (5 Mb window length) as in the case of
the un-weighted approach or the global haplotype
weighted approach of Egyud et al. [2009], using weights
over haplotypes of 21 markers attains the lowest imputation

error rate. Indeed, our approach leads to an imputation
error rate decrease of over 1% when compared to the other
methods, which can potentially lead to a significant
increase in statistical power at the imputed SNPs [as
recently shown by Huang et al., 2009]. We also note that by
using no weights at all we obtained similar results to the
global weighting approach of Egyud et al. [2009], most
probably because of the weighting procedure implemen-
ted in estimating the phase of every individual in each
MCMC iteration of IMPUTE v2. Given that the discovery
of rare variants has received increasing attention recently,
it is important to quantify the results for various minor
allele frequencies (MAF). Figure 1 plots the results
obtained by IMPUTE v2 under the three approaches
for the reference panel composition showing that our
approach consistently outperforms the other approaches
in terms of accuracy across all MAFs with the largest gains
for the more common variants.

IMPUTATION ACCURACY AND LD

One of the major drawbacks of imputation methods is
that the quality of imputed SNPs in regions of low LD is
very poor. Importantly, we observed that when using our
approach the regions of low LD were the regions with the
largest gain in accuracy. Figure 2 displays the imputation
error rates and squared correlation coefficient obtained by
IMPUTE v2 as a function of the average LD (computed
using the standard r2 measure) between the masked SNPs
and n 5 20 SNPs in their flanking regions (n/2 upstream
and n/2 downstream). Notably, there is a tight correlation
between the gain in using weighted haplotype panels and
the average LD in the imputed regions. Specifically, the
largest gain is attained in regions with low LD (e.g. a
reduction of more than 6% in terms of error rate and an
increase of over 0.1 in terms of correlation coefficient for
SNPs with an average r2o0.05 to their neighboring SNPs)
whereas in high LD regions the weighted and un-weighted
versions achieve similar accuracies. This further under-
lines the capacity of our proposed weighting scheme to
reduce the error rates of imputation methods, making
reliable imputation applicable to more regions across the
genome. For example, haplotype weighting increases the
total number of SNPs imputed correlation greater than 0.6
from 76 to 83% on the Hispanic data set.

TABLE I. Imputation error rate and squared correlation
coefficient of IMPUTE v2 method with or without
weights averaged across all individuals of the Hispanic
data set with 15% (3,326 out of 23,809) random SNPs
masked

Error rate
Squared correlation

coeff.

IMPUTE v2 8.93% 0.764
IMPUTE v2 with local

haplotype weights
7.78% 0.795

IMPUTE v2 with global
haplotype weights
[Egyud et al., 2009]

9.00% 0.758

All the 420 HapMap haplotypes (CEU1YRI1CHB1JPT) were
used as reference panel using either no weighting, our proposed
weighting or the global weighting of Egyud et al. [2009].
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When looking at the accuracy of the imputed allele
frequencies, we found that the imputed frequencies
achieve a Pearson correlation of 99.24 (99.21) for the
weighted (unweighted) versions of IMPUTE v2 when
averaged over all masked SNPs.

GENERALITY OF THE APPROACH

In principle, the weighting scheme framework can be
applied together with any imputation method. Therefore,
in addition to IMPUTE v2, we tested our approach on two
other imputation methods when applied with or without
our proposed weighting scheme: BEAGLE [Browning and
Browning, 2009] and GEDI [Kennedy et al., 2009].
BEAGLE makes use of a special class of HMM’s called
haplotype HMMs to obtain reliable estimates of haplotype
phase and missing data while GEDI implements a model
similar to the one used by Kimmel and Shamir [2005] and
Rastas et al. [2008] trained using a standard EM procedure
on the reference panel of haplotypes. Imputation at

untyped SNPs is performed based on the conditional
probability of the alleles at that SNP given the rest of the
observed genotypes for that individual.

Results in Table II show that in this case, all three
methods yield improved imputation accuracy when our
proposed weighting framework was applied, although the
compared methods were run on short windows of 21
markers when local haplotype weights were used, as
opposed to whole chromosome data sets for the no
weighting approach. Specifically, BEAGLE and IMPUTE
v2 result in substantial improvements in terms of error
rates (a reduction of approximately 2% out of 10% in the
error rate).

IMPUTATION IN THE ABSENCE OF A
REFERENCE POPULATION

As there are only a small number of populations for
which a dense reference panel is available (i.e., the HapMap
populations), we explored the effect of our framework on

Fig. 1. Imputation error rates (top) and squared correlation coefficient (bottom) obtained by IMPUTE v2 with and without weights for

SNPs with various minor allele frequencies (MAF) on the Hispanic dataset with 15% (3,326 out of 23,809) random SNPs masked. In
parentheses below each bar is the frequency of SNPs in that category.
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populations that have no reference. For the following
experiments we used GEDI because of its computational
efficiency. Also, because we had access to the code we were
able to improve the computation efficiency by implement-
ing the full coalescent-based haplotype weighting scheme
inside the code rather than as an external procedure. As

demonstrated above, we expect the results to be transferable
to other imputation methods.

We imputed HGDP genotypes using HapMap popula-
tions as reference. For each HGDP population, we varied
the HapMap panels (we either used the CEU, YRI, CHB1
JPT or All the HapMap haplotypes) to allow us to explore
which HapMap panel best fits each individual from the
HGDP. Due to computational issues for each individual we
randomly masked only 1% of the 49k SNPs of Chromo-
some 1 as untyped resulting in 496 SNPs in imputation.
We report the average error rate across the individuals of
each continental group. Results in Table III show that the
best choice for the reference panel consists of the HapMap
population from the same continent if available, or all the
HapMap haplotypes otherwise. This is consistent with the
findings of Huang et al. [2009]. Data in Table III further
show that the imputation error rate obtained when using
haplotype weighting over all the HapMap haplotypes
usually provides the best accuracy.

Fig. 2. Imputation error rates (top) and squared correlation coefficient (down) obtained by IMPUTE v2 with and without weights for
SNPs with various amounts of local average LD on the Hispanic dataset with 15% (3,326 out of 23,809) random SNPs masked. In

parentheses below each bar is the frequency of SNPs in that category.

TABLE II. Imputation error rate of all compared
methods with or without weights averaged across all
individuals of the Hispanic data set with 15% (3,326 out
of 23,809) random SNPs masked

BEAGLE IMPUTE v2 GEDI

No weighting 10.39% 8.93% 11.62%
Weighted haplotypes 8.78% 7.78% 10.99%

All the 420 HapMap haplotypes (CEU1YRI1CHB1JPT) were
used as reference panel.
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We also looked at the effect of haplotype weighting on
the imputation error rates for each of the HGDP popula-
tions (as opposed to continents). In Figure 3 the error rate
per population is plotted to show that in most scenarios
haplotype weighting decreases the error rate of the
imputation procedure.

PCA-BASED REFERENCE POPULATION

It has been demonstrated that human populations tend
to display a continuum of genetic variation across
different axes of the principal component maps, and that
principal component analysis can be reliably used to detect
differences between populations [Novembre et al., 2008;
Price et al., 2006]. This suggests that PCA could be used as
a guide to construct a reference population. In essence, a
suitable reference population for the imputation of a

genotype g should be physically close to g on the PCA
map. In addition, our proposed weighting scheme can be
used to improve the accuracy of the imputation by
changing the PCA-based reference data sets according to
the weights. Therefore we performed a principal compo-
nent analysis on the HGDP genotypes (we used the
complete genotype data over all the SNPs in the PCA) and
for each genotype g we tested the imputation accuracy
using the haplotypes of the closest 50, 100 or 200
individuals in the PCA map as reference. For the results
presented here, we used the first two principal compo-
nents although similar results (not shown) were obtained
when more principal components are employed. We
compared these scenarios to the cases where the haplo-
types from the same population or continental ancestry of
g were used as the reference. Haplotypes were estimated
from genotype data using the BEAGLE [Browning and

TABLE III. Imputation error rates averaged by continent when different HapMap populations were used as a reference
haplotype panel

Reference panel

Continent

Middle East Africa Oceania East Asia Central Asia Europe America

CEU 8.29% 26.98% 8.99% 8.99% 7.48% 5.27% 7.31%
JPT1CHB 15.70% 28.41% 8.98% 4.40% 12.15% 13.39% 6.02%
YRI 16.32% 12.59% 14.32% 15.93% 16.53% 17.32% 14.51%
All 7.35% 14.34% 6.99% 4.64% 6.90% 6.33% 4.53%
All (weighted) 6.31% 12.74% 6.58% 4.05% 6.11% 5.22% 4.15%

‘‘All’’ denotes the panel of haplotypes obtained by merging all the HapMap haplotypes. 1% of the 49k SNPs from Chromosome 1 were
masked.

Fig. 3. Average imputation error rate for each population in the HGDP data with or without haplotype weights. The X-axis plots the

HapMap population used as reference panel used while the Y-axis shows the error rate obtained by GEDI.
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Browning, 2007] phasing software. For each individual we
randomly masked 1% of the SNPs as untyped.

Table IV presents the average imputation error rates
across the HGDP individuals, with or without haplotype
weighting. As expected, the PCA correctly inferred the
‘‘closest’’ genotypes with respect to genotype imputation.
Indeed, using the closest 200 (100) genotypes yielded an
error rate of 5.10% (5.12%) similar to that obtained when
the continental haplotypes were used as the reference. This
is of particular importance when imputation is performed
on individuals whose origins are ambiguous as PCA can
reliably infer the correct panel of reference haplotypes.
Furthermore, Table IV shows that weighting the haplo-
types significantly improved the imputation in all scenar-
ios, regardless of the reference panel used. The greatest
improvement was observed when all the HGDP haplo-
types were provided as a reference panel, possibly due to a
much larger set from which to choose. We also analyzed
the distribution of improvements in imputation accuracy
across continents. We found that the imputation error
rate was improved consistently across all populations
(see Table V). The largest improvement was observed for
the African genotypes. These results demonstrate that the
haplotype weighting scheme is beneficial regardless of the
continental group of the individual under imputation and
regardless of the reference haplotype panel chosen.

DISCUSSION

Imputation is a widely used tool for increasing the
association power in GWAS, and therefore improving its
performance is critical. It is particularly important to
improve and analyze imputation methods in regions of the
genome in which their accuracy is low (e.g., regions of low
LD) as well as for recently admixed populations and for
populations with no available reference panel. Here, we
suggest a framework that considerably improved the
accuracy of imputation, across all methods and scenarios
studied, improvement that could lead to higher power for
detecting association at the imputed markers. The main
drawback of our framework is the one order of magnitude
increase in runtime, which can greatly be reduced by

incorporating the weighting scheme inside the method
rather than an external add-on as well as by parallelizing
the computations (which is trivial in our framework since
every local window of every individual is imputed
independently).

An important feature of our framework is that it is
especially robust in regions of low LD. Imputation methods
typically perform poorly in regions of low LD, and as we
showed in the Results section, the weighting scheme
reduced the error rates in such regions considerably,
resulting in an increase in the number of reliably imputed
markers that can be added to the association study.

Our framework is based on a personalized construction
of a weighted reference population for each region in the
genome. This decomposition of the genome into separate
regions also leads to considerable improvements in the
imputation accuracy on admixed populations, in which
different regions of the genome may originate from
different ancestries. Furthermore, the personalized con-
struction of the reference population resulted in an
improvement in the overall accuracy across all populations.
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