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Recent studies have demonstrated that statistical methods
can be used to detect the presence of a single individual within
a study group based on summary data reported from genome-
wide association studies (GWAS). We present an analytical and
empirical study of the statistical power of such methods. We
thereby aim to provide quantitative guidelines for researchers
wishing to make a limited number of SNPs available publicly
without compromising subjects’ privacy.

A major challenge in the design of a GWAS is that of achieving desired
levels of statistical power for detecting weak associations while limiting
the rate of false positives. Power of detection can be enhanced by
combining data across multiple studies in a meta-analysis or by using
replication studies. Such methods require data to be accessible to the
scientific community, which may raise concerns over privacy. Until
recently, many studies have pooled individual genotype data together
while making the allele frequencies of each SNP in the pool publicly
available. It has been implicitly assumed that releasing such summary
data provides a secure way to share the results of a study without
compromising the privacy of the study participants. However,
Homer et al.1 recently showed that it is possible, by examining datasets
based on high-density SNP arrays, to accurately detect the presence
of individual genotypes in a mixture of pooled DNA even when each
individual’s DNA is present in only small concentrations. Although
aimed at applications in forensic science, these findings raised the
possibility that the presence of individual genotypes could be inferred
from summary data, and this possibility has led to the removal of
publicly available summary data from previous studies as a conserva-
tive means of protecting the privacy of human subjects2.

For many applications in genetic analyses3–5, it is sufficient to have
access to the summary SNP data for only a subset of the SNPs
(‘exposed’ SNPs). It is therefore worth investigating whether some
appropriately defined level of privacy can be maintained if the number
of exposed SNPs is sufficiently small. Establishing privacy guidelines
of this kind requires an understanding of how the number of exposed
SNPs varies as a function of factors such as the allele frequencies of the
SNPs, the number of individuals in the DNA pool and—of particular
importance—the method used to detect the individual in the pool.
An analysis of this kind was pursued by Homer et al.1, who proposed
a particular detection method and estimated the statistical power of

detecting an individual genotype in a sample of exposed SNPs using
this new method. But although an analysis of any specific detection
method provides an estimate of its power of detection, it remains
possible that another method could provide increased power and that
therefore no guarantee could be provided that its power of detection
was below some acceptable level. What is needed is an upper bound
on the power achievable by any method.

Here, we present an upper bound on the power of detection, which
yields guidelines as to which set of SNPs can be safely exposed for a
given pool size with a maximal allowable power b and false-positive
level a. We approached this problem through a statistical hypothesis
testing formulation, for which the likelihood ratio test (LR test, as
defined in the Supplementary Methods) attains the maximal power
achievable6. This provides a guarantee that it will be safe to expose
a set of SNPs for which the LR test does not achieve sufficient
power. Moreover, our empirical results show that the LR test is more
powerful than the method suggested in reference 1, especially when
a is small. Finally, our theoretical and empirical results lead to a
conclusion that is qualitatively different than that of reference 1 in that
we found that the power achieved by considering whole-genome
datasets is in fact limited.

We characterize the power of the LR test when m common SNPs in
linkage equilibrium are exposed in a pool of n individuals. In this case,
we show (see Supplementary Note) that the relation between m, n, a
and b can be described by

za+z1�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm=nÞ

p
ð1Þ

where zx is the 100(1 � x)th percentile of the normal distribution.
Equation (1) is valid for large pools (n 4 100) and for common SNPs
(minor allele frequency 4 0.05). It provides an upper bound on the
number of SNPs that can be safely exposed for a particular choice of
false-positive rate and power of detection. Note that equation (1) implies
that m, the allowed number of exposed SNPs, is linear in n for a fixed a
and b, and, importantly, that the power of the test does not depend on
the allele frequencies p1,y,pm, as long as the minor allele frequencies
(MAFs) are sufficiently large. The conditions necessary for our
analysis to hold suggest the following prefiltering protocol to obtain
a set of SNPs that can potentially be exposed: remove all SNPs with
MAF r0.05 and retain a subset of SNPs in linkage equilibrium. We
then use the LR test to determine the set of exposed SNPs.

To illustrate this protocol, we simulated a pool of n ¼ 1,000
individuals, with m exposed SNPs (m ¼ 1,000, 10,000) and a reference
dataset of 2,000 individuals (see Supplementary Methods). The LR
test is based on the population allele frequencies, which in practice are
not known. In our experiments, we estimate these from the allele
frequencies in the pool and the reference dataset. We then calculated
the LR test under two hypotheses: assuming that the tested individual
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is or is not in the pool. The resulting receiver operating characteristic
(ROC) curves (Fig. 1) show that the LR test performs better than the
test of reference 1, and this difference is particularly prominent for low
false-positive rates. We also observe that our theoretical analysis closely
matches the empirical evaluation.

We also evaluated the LR test on the 58C and UKBS control group
of the Wellcome Trust Case Control Consortium (WTCCC)7. This
dataset was genotyped on the 500K Affymetrix array and contained
2,937 individuals (see Supplementary Methods). We applied the
prefiltering described above, asserting independence for P values o
10�5. This resulted in 33,138 SNPs that could potentially be exposed.

We created a pool of size 1,000 and a reference dataset consisting of
the remaining individuals. Using the protocol described above, it is
notable that, at a false-positive level of 10�3, the power stays o0.95 for
all methods (Fig. 1). At a false-positive level of 10�6, the power is found
to be o0.5. The latter contradicts the results of reference 1, which finds
that the power to detect individuals is high even with a false-positive
level of 10�6. This discrepancy can be attributed to different formula-
tions of the hypothesis testing problem (see Supplementary Methods
and Supplementary Figs. 1 and 2). In particular, the method of
reference 1 tests whether an individual is present in the pool or alter-
natively in the reference dataset, whereas our analysis tests whether an
individual is present in the pool or alternatively in the larger under-
lying population. Although the null hypothesis of reference 1 may be
of interest in forensics applications, we argue that our formulation is
more relevant to the discussion of privacy issues.

Further analysis of the LR test in modified scenarios (see Supple-
mentary Methods) led to several additional conclusions: (i) genotyping
errors reduce detection power (see Supplementary Fig. 3); (ii) the
power to detect a relative in the pool is lower than the power to detect
a specific individual (see Supplementary Fig. 4); and (iii) our
protocol yielded the same pattern of results when applied to the
YRI population from the HapMap project, confirming that our
analysis is not population specific (see Fig. 2). A caveat is that the
number of independent SNPs with small MAFs may differ across
populations. This would affect the total number of SNPs that can
potentially be exposed for a given population.

The analysis presented here provides an upper bound on the power
of any method for the detection of an individual in a pool, given the
false-positive rate, the size of the pool and the number of exposed
SNPs. In using this bound, several issues should be kept in mind. First,
our analysis assumes that the exposed SNPs are in linkage equilibrium.
When the exposed SNPs are in linkage disequilibrium, the power of
the LR test is reduced (see Supplementary Fig. 5); nonetheless, under
these circumstances, there is a potential risk that one could leverage
the linkage disequilibrium in order to get better power from a differ-
ent test. We thus recommend that dependent SNPs not be exposed
until this issue can be studied rigorously. Second, equation (1) is
based on the assumptions of common SNPs and large pools
(MAF 4 0.05 and n 4 100). The presence of rare SNPs may
improve the power of the LR test or other tests and thus jeopardize
privacy. The theoretical analysis leading to equation (1) is based on
asymptotic estimation of the mean and variance of the LR test under
the null and alternative hypotheses, hence the requirement for the
pool size. We have studied the effect of pool size empirically using
both simulated data and real summary data (see Supplementary
Methods), and we found that the means and variances converges
to the predicted asymptotic values very quickly (see Supple-
mentary Fig. 6) and that equation (1) is accurate for n 4 100 for a
population of European descent (see Supplementary Fig. 7). How-
ever, unless it is clear that the assumptions of common SNPs and large
pools are met, we would recommend that equation (1) be used as a
rough guide and that final decisions regarding the set of exposed
SNPs should be based on an empirical computation of the power of
the LR test.

To this end, we have implemented a tool, SecureGenome, that
takes as input a genotype dataset (including the individuals’ geno-
types), a reference dataset and a ranking of the SNPs, removes SNPs
that are in linkage disequilibrium, and determines the number of
highly ranked SNPs that can be safely exposed. The program outputs
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Figure 1 ROC curves comparing the LR test with a plug-in allele frequency

estimate, its theoretical power (denoted ‘‘LR theory’’) as computed using a

modified version of equation (1) corrected to account for the use of the

plug-in estimate, and the statistic proposed by Homer et al.1 on a pool of

size n ¼ 1,000. Left, ROC curves for simulated data with m ¼ 1,000,

10,000 exposed SNPs. Right, ROC curves on the WTCCC data with

m ¼ 1,000, 10,000 and 33,138 SNPs (the total set of independent SNPs).

The LR test performs significantly better (P ¼ 3.9 � 10�18) than the

test of Homer et al. Nonetheless, the power stays o0.95 for a false-positive

level of 10�3 even when all the independent SNPs are used. Note the

close agreement between the empirical and the theoretical results.
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Figure 2 The power attained by the LR test is not population specific. The

power of the LR test, with a plug-in allele frequency estimate, computed

for m ¼ 1,000, 10,000 and 33,138 on the HapMap YRI dataset, closely
matches its theoretical power, computed using a modified version of

equation (1) corrected to account for the use of the plug-in estimate. Note

that the theoretical power does not depend on the specific allele frequencies

of a population.
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this value along with the power of the LR test evaluated both
empirically and theoretically. This tool can serve as a practical guide
to allow researchers to develop a consensus that takes into account
both privacy and the need to leverage data collected throughout
the community.

URL. SecureGenome software: http://securegenome.icsi.berkeley.edu/
securegenome/.

Note: Supplementary information is available on the Nature Genetics website.
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