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Abstract. Genome sequencing will soon produce haplotype data for in-
dividuals. For pedigrees of related individuals, sequencing appears to be
an attractive alternative to genotyping. However, methods for pedigree
analysis with haplotype data have not yet been developed, and the com-
putational complexity of such problems has been an open question. Fur-
thermore, it is not clear in which scenarios haplotype data would provide
better estimates than genotype data for quantities such as recombination
rates.

To answer these questions, a reduction is given from genotype problem
instances to haplotype problem instances, and it is shown that solving
the haplotype problem yields the solution to the genotype problem, up
to constant factors or coefficients. The pedigree analysis problems we
will consider are the likelihood, maximum probability haplotype, and
minimum recombination haplotype problems.

Two algorithms are introduced: an exponential-time hidden Markov model
(HMM) for haplotype data where some individuals are untyped, and
a linear-time algorithm for pedigrees having haplotype data for all in-
dividuals. Recombination estimates from the general haplotype HMM
algorithm are compared to recombination estimates produced by a geno-
type HMM. Having haplotype data on all individuals produces better
estimates. However, having several untyped individuals can drastically
reduce the utility of haplotype data.

Pedigree analysis, both linkage and association studies, has a long history
of important contributions to genetics, including disease-gene finding and some
of the first genetic maps for humans. Recent contributions include fine-scale
recombination maps in humans [4], regions linked to Schizophrenia that might be
missed by genome-wide association studies [11], and insights into the relationship
between cystic fibrosis and fertility [13]. Algorithms for pedigree problems are of
great interest to the computer science community, in part because of connections
to machine learning algorithms, optimization methods, and combinatorics [7, 16,
12,10, 15].

Single-molecule sequencing is an attractive alternative to genotyping and
would yield haplotypes for individuals in a pedigree [6]. Such technologies are
being developed and may become commercial within five to ten years. Sequencing
methods would apparently yield more information from the same set of sampled
individuals, which is critical due to the limited availability of individuals for
sampling in multi-generational pedigrees (i.e. individuals usually must be living



at the time of sampling). There is substantial evidence that haplotypes can be
more useful than genotypes for both population and family based studies when
using methods such as association studies [1, 3] and pedigree analysis [2, 8]. While
it is intuitive that haplotypes provide more information than genotypes, there
are instances with family data in which there are few enough typed individuals
that there is little practical difference between haplotype and genotype data.
Additionally, in order to exploit the information contained in haplotype data,
we need to understand the instances where diploid inheritance is computationally
tractable given haplotype data.

Pedigree analysis with genotype data is well studied in terms of complex-
ity [12,10] and algorithms [5,9,14]. Less is known about haplotype data on
pedigrees. This paper shows that, given haplotype data on a pedigree, find-
ing both minimum recombination and maximum probability haplotypes is as
tractable as computing the same quantities for pedigrees with genotype data
(i.e., these problems are NP- and #P-hard, respectively). To obtain a reduc-
tion that applies equally well to several types of pedigree calculations, we will
consider a modular polynomial-time mapping from the genotype problem to the
haplotype problem. The reduction preserves the solutions to the analyses, mean-
ing that the solution to the haplotype problem is the solution to the genotype
problem after adjusting by constant factors or coefficients.

Since the reduction uses a biologically unlikely recombination scenario, we
will investigate the accuracy and information of realistic examples with hap-
lotypes and genotype data on the same pedigree. Pedigree data was simulated
having a known number of recombinations. The recombination distributions were
computed at a particular locus of interest and compared to the ground-truth.
Since both the haplotypes and genotypes of a specific person contain the same
alleles, the differences between the haplotype and genotype recombination dis-
tributions were determined by the extra information in the haplotype data. As
expected, the haplotype data reliably yields greater accuracy when all the pedi-
gree individuals are typed. However, as fewer pedigree individuals are typed,
there is less practical difference between the utility of haplotype versus genotype
data. The number of untyped generations that separate typed individuals influ-
ences whether haplotype data are actually more accurate than genotype data.
For instance with two half-siblings, having two untyped parents results in esti-
mates from genotype data that are nearly as accurate as the estimates computed
from haplotype data.

Finally, there is an important instance where haplotype data is more com-
putationally tractable than genotype data. When all individuals in the pedigree
are typed, although unlikely from a practical perspective of obtaining genetic
samples, the computational problem decomposes into conditionally independent
sub-problems, and has a linear-time algorithm. This can be contrasted with the
known hardness of the genotype problem even when all individuals are geno-
typed. The existence of this linear-time algorithm for haplotype data could facil-
itate useful approaches that combine population genetic and pedigree methods.
For instance, if the haplotypes of the founders are drawn from a coalescent and



the pedigree individuals are all haplotyped, the probability of a combined model
could easily be computed for certain coalescent models.

1 Introduction to Pedigree Analysis

A pedigree is a directed acyclic graph where the set of nodes, I, are individuals,
and directed edges indicate genetic inheritance between parent and child. A
diploid pedigree (i.e. for humans) necessarily has either zero or two incoming
edges for each person. The set, F', of individuals without incoming edges are
referred to as pedigree founders. An individual, i, with two parents is a non-
founder, and we will refer to their two parents as m( ) and p(%).

As is commonly done to accommodate inheritance of genetic information, we
will extend this model to include a representation of the alleles of each individual
and of the inheritance origin of each allele. More formally, we represent a single
chromosome as an ordered sequence of variables, x;, where each variable takes
on an allele value in {1,...,k;}. Each variable represents a polymorphic site,
J, in the genome, where there are k; possible sequence variants. Since diploid
individuals have two copies of each chromosome, one copy inherited from each
parent, we will use a superscript m and p to indicate the maternal and paternal
chromosomes respectively. For a particular individual ¢, the information on both
copies of a particular chromosome at site j is represented as z!™ i and z¥ i

Furthermore, we assume that inheritance in the pedigree proceeds with re-
combination and without mutation (i.e. Mendelian inheritance at each site). This
imposes consistency rules on parents and children: the allele z7"; must appear
in the mother m(i)’s genome as either the grand-maternal or grand paternal al-
lele, xm(l) ; or xi@ ORE and similarly for the paternal allele and the father p()’s
genome.

Let = be a vector containing all the haplotypes z!", z¥ for all individuals
1 € I, then we are interested in the probability
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where the superscript m and p indicate maternal and paternal alleles, while
the functions m(i) and p(i) indicate parents of i. The first product is over the
independent founder individuals whose haplotypes are drawn from a uniform
prior distribution, while the second product, over the non-founders, contains the
probabilities for the children to inherit their haplotypes from their parents. The
unobserved vector x is not immediately derived from observed haplotype data,
since vector x contains haplotype alleles labeled with their parental origins for
all the individuals. To compute this quantity, we need notation to represent the
parental origins of each allele where differing origins for neighboring haplotype
alleles will indicate recombination events.

For each non-founder, let us indicate the source of each maternal allele using
the binary variable s7; € {m,p}, where the value m indicates that 27" allele has

i,j
grand-maternal orlgln and p indicates grand-paternal origin. Similarly, we define



s? ;,; for the origin of s paternal allele. For a particular site, these indicators for
all the individuals, s;, is commonly referred to as the identity-by-descent (IBD)
inheritance path. A recombination is observed at consecutive sites as a change
in the binary value of a source vector, for instance, s;"; = p and si"; = m. To
compute the inheritance portion of Equation 1, we W111 sum over the inheritance
options P[z] = 3, P[z|s|P[s] where P[s] = 1/22I/\F

We can observe two kinds of data for pedigree individuals whose genetic
material is available. The first, and most common, is genotype data, a tuple of
alleles (¢? 1 Yi j) that must appear in the variables x7"; and x7; for each site
j. Since these alleles are unlabeled for origin, we do not know which allele was
inherited from which parent. The second type of data is haplotypes, where we
observe two sequences of alleles hY and h} and each sequence represents alleles
that were inherited together from the same parent. However, we do not know
which sequence is maternal and which is paternal. For either type of data define a
function Cj ; for locus j which indicates compatibility of the assigned haplotype
alleles with the data and requires inheritance conslstency between generatlons

Specifically, for genotype data C;; = 1 if 7 = a:n;(]l)d, G = f(Z)J, and
{27} = {g?j,gllj} Under haplotype data, the C; ; = 1 when the first two
equahtles above, hold and {z%,z};} = {h?;,n};}, which are the haplotype
alleles at locus j.

Now, we write Equation 1 as a function of the per-site recombination proba—
bility 6 < 0.5. For particular values of all the haplotype alleles z;"; and ¥ 3 the
haplotype probability conditional on the inheritance options and the observed
data through C; ; is
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where RY; =1[s7_y # s7%] and Ry ; =1[s} ;_; # s} ,].

1.1 Pedigree Problem Formulations

Given a pedigree and some observed genotype or haplotype data, there are three
problem formulations that we might be interested in. The first is to compute the
probability of some observed data, while the last two problems find values for
the unobserved haplotypes of individuals in the pedigree.

Likelihood. Find the probability of the observed data by summing over all the
possible unobserved haplotypes, i.e. Y > Plx|s]P[s].

Maximum Probability. Find the values of 2", and xp7 that maximize the
probability of the data, i.e. max, Y P[z|s ]IP’[ ].

Minimum Recombination. Find the values of 27", ; and x ; that minimize the
number of required recombinations, i.e.

ming sy, ijz H[Sf,jq # Sij] + H[S?,lj—l # SZ”J]



The likelihood is commonly used for estimating site-specific recombination
rates, relationship testing, computing p-values for association tests, and perform-
ing linkage analysis. Haplotype and/or IBD inferences, obtained by maximizing
the probability or minimizing the recombinations, are useful for non-parametric
association tests, tests on haplotypes, and tests where there is disease informa-
tion for unobserved genomes.

2 Hardness Results

With genotype data, the likelihood and minimum recombination problems are
NP-hard, while the maximum probability problem is #P-hard. Piccolboni and
Gusfield [12] proved the hardness of the likelihood and maximum probability
computations by relying on a single locus sub-pedigree with half-siblings. Al-
though their paper discussed a more elaborate setting involving a phenotype,
their proof, however, applies to this setting. Li and Jiang proved the minimum
recombination problem to be hard by using a two-locus sub-pedigree with half-
siblings [10]. In all these proofs, half-siblings were pivotal to establishing reduc-
tions from well known NP and #P problems.

In this paper, we introduce a simple and powerful reduction that converts any
genotype problem on a pedigree of n individuals into a haplotype problem on a
pedigree of at most 6n individuals. This reduction is simple, because it merely
introduces four full-siblings and an extra parent for each genotyped individual.
We do not need complicated structures involving inbreeding or half-siblings. The
reduction works equally well for all three problem formulations.

Mapping. Given a pedigree with genotype data, for any of the three pedigree
problems, we define a polynomial mapping to a corresponding haplotype problem
with exactly 5|G| individuals haplotyped. First we create the pedigree graph
for the new haplotype instance, and later we construct the required haplotype
observations from the genotype data.

Let G C I represent the set of genotyped individuals in a pedigree having
individuals I and edges E. We will create a haplotype instance of the problem,
with individuals HUI and edges RUE. To obtain the set H, we add five individ-
uals, ig, 11, 72,13, 14, to H for every individual i € GG. The set of new relationship
edges, R, will connect individuals in sets H and G. Specifically, the edges stip-
ulate that ¢ and iy are the parents of full-siblings i1, 72, i3, and 74 by including
the edges: i() — il, io — iQ, io — ig, i() — i4, T — il, T — iQ, 71— i3, and i — 4.
We will refer to these five individuals, iq, i1, i2, i3, and i4, and their relation-
ships with ¢ as the proxzy family for individual i. For example in Figure 1, the
6-individual genotype pedigree in becomes a 21-individual haplotype pedigree.
This produces a pedigree graph with exactly 5|G|+|I| individuals and 8|G|+ |E)|
edges.

To obtain the new haplotype data from the genotype data, we type only
individuals in |H| such that the corresponding genotyped individual in G is
required, by the rules of inheritance, to have the observed genotypes. Without



loss of generality, assume that the genotype alleles are sorted such that g?, ;< g}, -
Now we can easily constrain the parental genotype for individual ¢ € G by
giving the spouse, ig, homozygous haplotypes of all ones while giving child
the haplotypes {1, g%}, child i» haplotypes {1, g}}. This guarantees the correct
genotype, but does not ensure that the haplotypes of that genotype have the
same probability or number of recombinations.

Since there is an arbitrary assorting of genotype alleles at neighboring loci
into the parent haplotypes 2! and z7*, we will use the remaining two children to
represent possible re-assortments of the genotyped parent’s T; heterozygous loci,
indexed by ¢; where 1 < j < T;. In addition to the haplotype 1, child i3, will

have haplotype consisting of h;,,¢; := gil,;jj mod 2 while child i4 has the genotyped

parent’s complementary alleles h;, ¢; := gf)tijd 2 This results in child i3 and i,
alternating in having the smaller allele at every other heterozygous locus.

Untyped O D Untyped
Female Male
Fonde e

Fig. 1. Genotype and Haplotype Pedigrees. Values are averages computed from
500 simulations. (Left) Genotyped individuals are shaded, and all the individuals are
labeled. Individuals 1, 2, and 5 are the founders, and individual 6 is the grandchild
of 1 and 2. (Right) Haplotyped individuals are shaded, and individuals have the same
labels. For each of the genotyped individuals, i, from the previous figure, the mapping
adds a nuclear family containing five new individuals labeled %o, i1, @2, i3, 4.

This reduction preserves the solutions to the three problems up to constant
factors or constant coefficients. Specifically, the solution to the haplotype version
of the problem is the solution to the genotype version with the values of the
functions being related by constant factors or coefficients, depending on whether
the function is a recombination count or a probability.

Lemma 1 Let ry be the minimum number of recombinations in the genotype
problem instance. The mapping yields a haplotype problem instance having rp =
Tg+ > icq 2(Ti — 1) for the minimum number of recombinations, where T; is the
number of heterozygous sites in genotype .



To prove this result, we exploit the alternating pattern of alleles assigned to
the four children. This pattern forces there to be two recombinations, among the
four children, between consecutive heterozygous loci.

After applying the mapping, the haplotype probability turns out to have a
coeflicient that is independent of the haplotype assignment to the non-founding
parent of the proxy family. This coefficient can be computed in linear time from
the genotype data using a Markov chain. The Markov chain has 16 states and has
a transition step between each pair of neighboring loci. This small Markov model
can be thought of in the sum-product algorithm as an elimination of the typed
individuals in the proxy family; alternatively, it is also equivalent to peeling-off
the typed proxy individuals in the Elston-Stewart algorithm [5]. Once we have
this coefficient, independent of the haplotype assignment, it is clear that the
likelihood and maximum probability haplotype problems also have haplotype
solutions related proportionally to the genotype solution.

Lemma 2 The mapping yields a haplotype problem instance having haplotype
probabilities proportional to the haplotype probabilities of the genotype instance.
Specifically, for all x,

Pplz] = (Pg[{xiﬁ € I}]) Hpt(i) HP[xfo’j = 1Pz ; = 1]
ieG j

where the proxy family transmission probability is a function of genotype g;, the

recombination rate 8 < 0.5, and of the transition matrices P, Qo110, and Q1001,

T;
pe(i) = <%) 1. ph H(Oonuo + (1 - 0)Q1001) - P - 17
j=0

and Oj; indicates whether index j is odd, hg is the number of homozygous loci
that begin proxy parent’s genotype, and h; is the number of consecutive ho-
mozygous loci after the j’th heterozygous locus where there are T; heterozy-
gous loci for proxy parent i. The transition probabilities are given by P;; =
O (53) (1 — 0)4=H ) where H(i,j) is the Hemming distance between inheritance
states i and j. Let Qo110 be a transition matriz having non-zero recombination
probabilities only in column 0110 (i.e. Qo110,:,; = Pij when j = 0110). Similarly,
let Q1001 be a transition matriz with non-zero recombination probabilities only
in column 1001.

Although this reduction establishes the hardness of these haplotype pedigree
problems, it does so by constructing children whose haplotypes require many
recombinations and would be extremely unlikely to occur naturally. Accordingly,
we suspect that realistic instances of these haplotyping problems may provide
more information about the locations of recombinations than genotype instances.

3 Algorithms and Accuracy of Estimates

One indication that the haplotype problem might be practically more tractable
is the amount of information in the haplotype data relative to the genotype



data. To understand this, we can consider a pedigree with a fixed set of sam-
pled individuals. Assume that there are two input data sets available, either the
haplotype or the genotype data, for all the sampled individuals. Note that the
alleles observed will be identical in both the haplotype and genotype data, so
we are interested in the distribution that these data impose on the inheritance
probabilities. By comparing the accuracy of the recombination estimates under
these two data sets, we can get an idea for how useful the respective probability
distributions are.

Let R; be a random variable representing the number of recombinations in
the whole pedigree that occur between loci j — 1 and j. Similar to our notation
before, Rj = 37, Ry ; + R};. We want to compute the distribution of R; under
both the genotype and haplotype inheritance probability distributions. These
two inheritance distributions are different precisely because there are haplotypes
and inheritance paths that are consistent with the genotype constraints but
disallowed by the haplotype constraints.

These distributions are obtained by constructing a hidden Markov model for
the linkage dependencies along the genome. At each locus, the HMM considers
the constraints given by either the haplotype or genotype data (i.e. the haplo-
type data HMM is a variation on the Lander-Green algorithm [9]). We first use
the forward-backward algorithm to compute the marginal inheritance probabil-
ities for each locus using a hidden Markov model. Once we have the marginal
probabilities, we can easily obtain the distribution for R;.

3.1 General Haplotype and Genotype HMMs

The likelihood can be modeled using a hidden Markov model along the genome
with inheritance paths as hidden states. An inheritance path is a graph with
nodes being the alleles of individuals and directed edges between alleles that are
inherited from parent to child. The transition probabilities are functions of 6
and the number of recombinations between a given pair of inheritance graphs.

Given the data, we compute the marginal inheritance path probabilities at
each site by using the forward-backward algorithm for HMMs. Sobel and Lange
described a method for enumerating the inheritance paths compatible with the
allele data observed at each locus [14]. There are at most k = 22//\F| inheritance
paths when '\ F is the set of non-founder individuals, and both the forward and
backward recursions do an O(k?) calculation at each site.

To compute the analogous probability for haplotype data, we use a similar
HMM. For haplotypes, the hidden states must consider the haplotype orienta-
tions, which specify the parental origins of all the observed haplotypes. Notice
that these orientations are not equivalent to inheritance paths, since they only
specify inheritance edges between haplotyped individuals and their parents. For
each of the 2217l haplotype orientations, where H is the set of haplotyped in-
dividuals, we enumerate the inheritance paths compatible with the haplotype
alleles, their orientations, and the pedigree relationships. Alternatively, each of
the inheritance paths enumerated for the genotype algorithm induces a particu-
lar orientation on the haplotypes heterozygous for that locus (i.e. parental origin



of the entire haplotype). Thus, the hidden states for the haplotype HMM are
the cross-product of the orientations and the inheritance paths.

The haplotype HMM has transition probabilities that are nearly identical
to the genotype HMM with the exception that transitions between inheritance
paths with different haplotype orientations have probability zero. Recombina-
tions are only allowed when they do not occur between typed haplotypes.

The forward-backward algorithm is also used on the haplotype HMM. How-
ever, there are 22(/I+1HI=IF]) hidden states, yielding a slightly slower calculation.
Fortunately, the haplotype recursions can be run simultaneous with the geno-
type recursions, meaning that the inheritance paths need only be enumerated
once.

3.2 Haplotype Likelihoods in Linear Time

There is one obvious instance of the haplotyping problems where there are
polynomial-time algorithms. Even though it is impractical to assume that we
can sample genetic material from deceased individuals in a multi-generational
pedigree, for a moment, let us consider the case where all the individuals in the
pedigree are haplotyped.

The Elston-Stewart algorithm [5] for genotype data has a direct analogue for
haplotype data. This algorithm calculates the likelihood via the belief propaga-
tion algorithm by eliminating individuals recursively from the bottom up. Each
individual is “peeled off”, after their descendants have been peeled off, by using
a forward-backward algorithm on the HMM for the mother-father-child trio.

The haplotype version of this algorithm is linear when all the individuals
are haplotyped, since each elimination step is conditionally independent of all
the others. Given the parents’ haplotypes, regardless of which was inherited from
which grand-parent, the probability of the child’s haplotype is independent of all
other trios. Therefore, we can take a product over the likelihoods for all the trios,
and compute each trio likelihood using a 4-state HMM. Then for k£ non-founding
individuals, and [ loci, this algorithm has O(kl) running time.

This same intuition carries through to the minimum recombination problem,
and each trio can be considered independent of the others. This contrasts with
the genotype minimum recombination problem which is known to be hard, even
when all the individuals are genotyped [10].

3.3 Results

To simulate realistic pedigree data, SNPs were selected from HapMap that span
100mb on both sides of a loosely-linked pair of sites. There are 40 SNPs total,
with 20 tightly linked SNPs on each side of a strong recombination breakpoint
having 8 = 0.25. The haplotypes for these SNPs were selected randomly from
HapMap. Pedigree haplotype and genotype data were simulated for each child by
uniformly selecting one of the parental alleles for the first locus, and subsequent
loci were selected on the same parental haplotype with probability 6; for each
locus j. Inheritance was simulated for 500 simulation replicates.



The simulation yielded completely typed pedigrees. For each pedigree, we
removed the genotype and haplotype information for increasing numbers of un-
typed individuals. For each instance of a specific number of untyped individuals,
two values were computed on the estimated number of recombinations between
the central pair of loci: the haplotype and genotype accuracies. Accuracy was
computed as a function of the [; distance between the deterministic number
of recombinations and the calculated distribution. Specifically, accuracy was
2 — > .~olzi — a;|, where ; was the estimated probability for ¢ recombinations
and a; was the deterministic indicator of whether there were ¢ recombinations
in the data simulated on the pedigree.

In all the instances we observed a trend where the best accuracy was ob-
tained with haplotype data where everyone in the pedigree was haplotyped. For
example, a five-individual pedigree with two half-siblings is shown in Figure 2,
left panel. With the three founders untyped, the haplotype data yielded similar
accuracy as the genotype data. Consider a three-generation pedigree having two
parents, their two children, an in-law, and a grandchild for a total of six indi-
viduals, three of them founders. This pedigree has a similar trend in accuracy
as the number of untyped founders increases, Figure 2, right panel. As the num-
ber of untyped individuals increases, the accuracies of genotype and haplotype
estimates appear to converge.

Half-Sibling Pedigree Three-Generation Pedigree

Accuracy
1
L
Accuracy
1
L

HMM HMM

-8~ Haplo -8~ Haplo

o J e ceno o | |-e Geno
T T 1 T T 1

0 1 2 3 0 1 2 3

Number of Untyped Individuals Number of Untyped Individuals

Fig. 2. Predicting Recombinations. The left panel is the average accuracy for pre-
dictions from a pedigree with two half-siblings and three parents. The right panel shows
results from a six-individual, three-generation pedigree. In both cases, 500 simulation
replicates were performed, and the average accuracy of estimates from the haplotype
data is superior to those from genotype data. However, as the number of untyped
founders increases, in both cases, the accuracy of estimates from haplotype data drop
relative to the accuracy from genotype data. The accuracies of genotype and haplotype
estimates appear to converge.



4 Discussion

Sequencing technologies would seem to solve the phasing problem by yielding
haplotype data. However, if we wish to consider diploid inheritance with recombi-
nation, the phasing problem remains, even when we are given chromosome-length
haplotype data. This is demonstrated by reduction of the phasing problem for
genotypes to the phased version of the same problem for three common pedigree
problems. This theoretical result is due largely to the unavailability of genetic
material for deceased individuals.

Three pedigree calculations were discussed: likelihood, maximum probability,
and minimum recombination. Each of these calculations on haplotype data have
the same computational complexity as the same computation on genotype data.
In the worst case, it takes only a single generation to remove the correlation
between sites in the haplotype. This worst case provided the reduction that
proves the the complexity results for the haplotype computations, and it worked
equally well for all three pedigree computations.

The worst-case is not biologically realistic, since it requires roughly 2(m — 1)
recombinations for m sites in 4 meioses. This is very unlikely to occur under
typical models for inheritance. To investigate more likely scenarios, sequences
were simulated in a region of the genome surrounding a recombination break-
point. From haplotype and genotype data, we estimated the distribution of the
number of recombinations at the breakpoint and compared the estimates to the
ground-truth for accuracy.

When typing everyone in the pedigree, the estimates from haplotype data
were very accurate, because the haplotype data provides enough constraints to
determine where the recombinations must have occurred. With decreasing num-
bers of typed individuals, the accuracy of haplotype-based estimates dropped
until it seemed to converge to the genotype accuracy due to a lack of constraints.
From the structure of the calculations, we observed that with fewer typed indi-
viduals there were more haplotype orientations to consider, and the haplotype
calculation more closely resembled the genotype calculation. However, the hap-
lotype calculation had more constraints and lost accuracy at a slower rate.

Several interesting open problems remain. First, approximation algorithms
might be a useful approach for haplotypes on pedigrees. The existence of a
linear-time algorithm when all individuals are haplotyped may suggest that the
general haplotype problem instance could be amenable to approximation algo-
rithms. Second, these proofs apply when there is no missing data in a genotyped
individual (i.e. a proxy parent). The proof requires knowing whether the proxy
parent is heterozygous or homozygous at each locus, and this is unknown when
there is missing data. Third, there is an interesting case of mixed haplotypes
and genotypes. For this case to be interesting, the ends of haplotypes must oc-
cur at different locations in different individuals in the pedigree. Otherwise, the
haplotypes that start and end at the same positions in all individuals can easily
be converted into multi-allelic genotypes, with an allele for each haplotype. The
mixed haplotype-genotype problem is not amenable to the proof techniques used
here. However, the haplotype HMM in Section 3.1 can easily be revised to handle



the mixed case. This is important because the data produced by single polymer
sequencing is more likely to resemble the mixed case than either the haplotype
or the genotype cases.
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