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Abstract. In this paper we study the capacitated vertex cover prob-
lem, a generalization of the well-known vertex cover problem. Given a
graph G = (V,E), the goal is to cover all the edges by picking a mini-
mum cover using the vertices. When we pick a vertex, we can cover up
to a pre-specified number of edges incident on this vertex (its capac-
ity). The problem is clearly NP-hard as it generalizes the well-known
vertex cover problem. Previously, 2-approximation algorithms were de-
veloped with the assumption that multiple copies of a vertex may be
chosen in the cover. If we are allowed to pick at most a given number of
copies of each vertex, then the problem is significantly harder to solve.
Chuzhoy and Naor (Proc. IEEE Symposium on Foundations of Com-
puter Science, 481–489, 2002 ) have recently shown that the weighted
version of this problem is at least as hard as set cover; they have also
developed a 3-approximation algorithm for the unweighted version. We
give a 2-approximation algorithm for the unweighted version, improving
the Chuzhoy-Naor bound of 3 and matching (up to lower-order terms)
the best approximation ratio known for the vertex cover problem.

Key Words and Phrases: Approximation algorithms, capacitated covering,
set cover, vertex cover, linear programming, randomized rounding.



1 Introduction

The capacitated vertex cover problem can be described as follows. LetG = (V,E)
be an undirected graph with vertex set V and edge set E. Suppose that wv
denotes the weight of vertex v and kv denotes the capacity of vertex v (we assume
that kv is an integer). A capacitated vertex cover is a function that determines
a value xv ∈ {0, 1, . . . , bv}, ∀v ∈ V such that there exists an orientation of the
edges of G in which the number of edges directed into vertex v ∈ V is at most
kvxv. (These edges are said to be covered by or assigned to v.) The weight of the
cover is

∑
v∈V xvwv. The minimum capacitated vertex cover problem is

that of computing a minimum weight capacitated cover. The problem generalizes
the minimum weight vertex cover problem which can be obtained by setting
kv = |V | − 1 for every v ∈ V . The main difference is that in vertex cover, by
picking a node v in the cover we can cover all edges incident to v, and in this
problem we can only cover a subset of at most kv edges incident to node v.

Guha et al. [8] studied the version of the problem in which bv is unbounded.
They obtain a 2-approximation algorithm using the primal-dual method. They
also gave a 4-approximate solution using LP-rounding. Gandhi et al. [7] gave a
2-approximate solution using LP-rounding for the same problem.

The problem becomes significantly harder when bv is specified for each vertex.
For arbitrary weights on the vertices the problem is at least as hard to approx-
imate as the set cover problem for which it is known that an approximation
guarantee of (1 − ε)lnn will imply that NP ⊆ DTIME[nlog logn]. For the case
when wv = 1, for all v ∈ V , Chuzhoy and Naor [5] gave a nice 3-approximation
algorithm for this problem in polynomial time. Their algorithm uses random-
ized LP-rounding with alterations. In this paper, we modify the algorithm of
Chuzhoy and Naor in two crucial ways to obtain a 2-approximate solution. This
is in a sense the “best ratio” possible at the moment, as 2 is also the best ratio
known for the simpler vertex-cover problem. We add a pre-processing step in
which we make certain capacity-1 vertices ineffective by making their capacities
0. We also modify their alteration step in an important way that helps us to
bound the cost of the alteration step in a better way and changes the algorithm.

Related work: The best-known approximation algorithms for the vertex cover
problem achieve an approximation ratio of (2− o(1)) for arbitrary graphs [1, 10,
11]. A nice overview of the work on this problem is presented in [13].

The vertex cover is a special case of the set-cover problem that requires to
select a minimum number (or minimum cost) collection of subsets that cover
the entire universe. The set-cover problem with hard capacities generalizes the
set-cover problem in that a set has a capacity bound on the number of elements
it can cover. In a seminal paper Johnson [9], gave the first (greedy) logarithmic
ratio approximation for the unweighted uncapacitated set cover problem. This
was generalized by Chvátal [3] to the weighted uncapacitated case, and further
generalized by Dobson [6] to approximating with logarithmic ratio the integer
linear program min c · x subject to Ax ≥ b with all the entries in A nonnega-
tive. A much more general result is given by Wolsey [18], giving a logarithmic
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ratio approximation algorithm for submodular cover problems. Both the vertex
cover problem with hard capacities, and set cover problem with hard capaci-
ties are an example of a submodular cover problem. Hence [18] gave the first
nontrivial approximation for both problems. See also the work by Bar-Ilan et.
al. [2], for a generalization of the method including, e.g., generalization of the
set-cover problem with hard capacities problem, facility location problems under
flow constraints and the 2−layered facility location problem (without triangle
inequality) under hard capacity constrains.

Indeed, a closely related problem to set cover with hard capacities, is facility
location with hard capacities. In this problem, we are given a set of facilities F
and a set of clients C. There is a cost function d : L→ F which defines the cost
of assigning a client to a facility. Each facility f ∈ F has a cost wf , a bound
bf denoting the number of available copies of f and capacity kf denoting the
maximum number of clients that can be assigned to an open facility. Each client i
has demand gi. The goal is to open facilities so that each client can be assigned to
some open facility. The objective is to minimize the sum of cost of open facilities
and the cost of assigning the clients to them. A logarithmic greedy approximation
problem for the uncapacitated case appears in [12] and for the capacitated case
and some generalizations in [2]. Slightly improved (still logarithmic) bounds for
the uncapacitated case are given in [19] using randomized methods.

There has been a lot of work on metric facility location (see [17] for details).
For the metric facility location problem with hard capacities, Pál, Tardos and
Wexler [16] gave a (9 + ε)-approximation algorithm using local search.

Research has also been conducted on the multi-set multi-cover problem. In
this problem, the input sets are actually multi-sets, i.e., an element can appear
in a set more than once. The problem with unbounded set capacities can be
defined as the following IP: min{wTx|Ax ≥ d, 0 ≤ x ≤ b, x ∈ Z}. The LP has
an unbounded Integrality gap. Dobson [6] gave a greedy algorithm achieving a
guarantee of H(max1≤j≤nAij). Recently, Carr et al. [4] gave a p-approximation
algorithm, where p denotes the maximum number of variables in any constraint.
Their algorithm is based on a stronger LP-relaxation. Kolliopoulos and Young
[14] obtained an O(log n) approximation algorithm.

Remark: We will solve the special case of the vertex cover problem in which at
most one copy of each vertex can be used. As in [5], our algorithm can be easily
extended to the general case where multiple copies of each vertex can be used.

2 IP Formulation and Relaxation

A linear integer program (IP) for the problem can be written as follows (as in
[8]).

In this formulation, yev = 1 if and only if the edge e ∈ E is covered by vertex
v. Clearly, the values of x in a feasible solution correspond to a capacitated
cover. While we do not really need the constraint xv ≥ yev v ∈ e ∈ E for the
IP formulation, this constraint will play an important role in the relaxation. (In
fact, without this constraint there is a large Integrality gap between the best
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fractional and integral solutions). For any vertex v, let E(v) denote the set of
edges incident on v.

Minimize
∑
v xv

yeu + yev = 1 e = {u, v} ∈ E,
kvxv −

∑
e∈E(v)

yev ≥ 0 v ∈ V,

xv ≥ yev v ∈ e ∈ E,
yev ∈ {0, 1} v ∈ e ∈ E,
xv ∈ {0, 1} v ∈ V.

(1)

In the relaxation to a linear program, we restrict yev ≥ 0 and 0 ≤ xv ≤ 1.

3 Algorithm

Our algorithm differs from the Chuzhoy-Naor algorithm in the following two
ways. We perform a pre-processing step (Step 1) in which we make some of
the capacity-1 vertices ineffective by making their capacities 0. Our alteration
step (Step 5) is also different than the alteration step used in the Chuzhoy-
Naor algorithm. Both these changes are crucial to our analysis. Let (x′, y′) be a
solution in which x′ is a binary vector and y′ is fractional. Once we have such a
solution, we can convert it to a solution (x′, y′′) in which y′′ is integral (Step 6).

1. Pre-Processing. Keep “removing” capacity 1 vertices (make their capacity
0) from the graph until we have a graph in which removing any capacity 1
vertex will result in an infeasible solution. Include the remaining capacity 1
vertices in the cover (add the “xv = 1” constraint in the LP for each such
vertex v). Checking whether a graph, G = (V,E), has a feasible solution
or not can be done as follows. Let B = (A1, A2, F ) be a bipartite graph
in which each node in A1 represents an edge in E and each vertex in A2

represents a vertex in V . An edge (e, v) ∈ F iff in G, edge e is incident to
vertex v. Construct a flow network in which the source is connected to all
vertices in A1 and each vertex in A2 is connected to the sink. The capacities
of the edges in F is 1. The capacities of the edges emanating from the source
are all 1. The capacity of an edge from any node v ∈ A2 to the sink is kv.
G has a feasible solution iff the maximum flow value from the source to the
sink is |E|.

2. LP Solution. Solve the LP relaxation (that has the additional constraint
xv = 1 for each capacity-1 vertex v that survived the pre-processing step)
optimally. To facilitate the discussion of the remainder of the algorithm let
us introduce some notation.
U = {u|xu ≥ 1/2}.
U = V \ U .
E′ = {(u, v)|u ∈ U, v ∈ U}.
∀u ∈ V,E′(u) = E′ ∩ E(u) and du = |E′(u)|.
∀u ∈ U, εu = 1− xu, 0 ≤ εu ≤ 1/2.
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3. Partial Cover. Include all vertices of U in the cover, i.e., ∀u ∈ U, x′u = 1.
Note that all capacity-1 vertices belong to U . For any edge e = (u, v) ∈ E\E′,
set y′eu = yeu and y′ev = yev. The contribution of u ∈ U towards covering
edge e = (u, v) ∈ E′(u) is at least y′eu = yeu/xu ≥ (1−yev)/(1−εu). For each
e = (u, v) ∈ E′(u), let hev = 1− (1− yev)/(1− εu) = (yev − εu)/(1− εu). To
cover all the edges in E′(u) fractionally, we are going to need an additional
coverage of hu =

∑
e=(u,v)∈E′(u) hev. In the following steps we will get the

necessary additional coverage from vertices in U . Note that there are no
edges within U .

4. Randomized Rounding. Round each vertex v ∈ U to 1 independently with
probability 2xv. Let I be the set of vertices that are rounded to 1 in this
step. For each edge e = (u, v) ∈ E′ such that v ∈ I, let y′ev = yev/xv be the
contribution of v towards covering e. By constraint (1),

∑
e∈E(v) yev/xv =∑

e∈E(v) y
′
ev ≤ kv.

5. Alteration. Let P be the set of vertices in U that still need some help from
vertices in U , i.e., P = {u ∈ U |

∑
e=(u,v),v∈I y

′
ev < hu}. In this step, we will

choose a set of vertices I ′ ⊆ U\I, such that ∀u ∈ P,
∑
e=(u,v),v∈I∪I′ y

′
ev ≥ hu,

where for each vertex v ∈ I ′, y′ev is set according to step (c) below. For each
vertex u ∈ P , we define a set of vertices helper(u). Each vertex in helper(u)
contributes towards hu. Each vertex in I ′ belongs to exactly one such set.
Initially, I ′ ← ∅ and helper(u)← ∅,∀u ∈ P . We perform the following steps
until P is empty.
(a) Pick a vertex u ∈ P .
(b) Consider any edge (u, v) such that v ∈ U\(I∪I ′). helper(u)← helper(u)∪
{v}. I ′ ← I ′ ∪ {v}. Let P ′v = {w ∈ P |w 6= u, e′ = (w, v) ∈ E′}.

(c) For each w ∈ P ′v and e′ = (w, v), set y′e′v = ye′v and set y′e′w = 1− y′e′v.
Set y′ev, where e = (u, v), to be the minimum of 1 and the remaining
capacity of v. Set y′eu = 1− y′ev.

(d) For each vertex w ∈ P ′v, if
∑
e=(w,a),a∈I∪I′ y

′
ea ≥ hw remove w from P .

For each edge f = (w, b) ∈ E′ such that b 6∈ I ∪ I ′, set y′fb = 0 and
y′fw = 1.

(e) Remove u from P iff
∑
e=(u,a),a∈I∪I′ y

′
ea ≥ hu.

Once P is empty, we have a feasible solution (x′, y′) in which x′ is integral
and y′ may be fractional.

6. Integral Solution. At this point x′ is a binary vector but y′ is fractional.
This can be converted to an integral solution using the integrality of flows
property on a flow network. The flow network is exactly the same as the one
constructed in Step 1 with the difference that the capacity of an edge going
from a node representing v ∈ V , to the sink is kvx′v.

4 Analysis

In Step 5 of the algorithm we choose the set of vertices I ′ and include them as
part of our cover. We have to account for the cost of these vertices. Note that for
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each vertex v ∈ I ′ there is exactly one vertex u ∈ P , such that v ∈ helper(u). We
will charge u the cost of adding v to our solution. Note that in the LP solution
the cost of vertex u is xu = 1− εu. In our solution, vertex u ∈ U pays for itself
and for the vertices in helper(u). We will show that the total expected charge on
u due to vertices in helper(u) is at most 1−2εu. Thus, the total expected cost of
vertex u is 2−2εu = 2xu. Also, the total expected size of I is

∑
v∈U 2xv. Thus we

obtain a 2-approximation in expectation, by using the linearity of expectation.

Theorem 1. Let Cost be the random variable that represents the cost of our
vertex cover, C. Then E[Cost] ≤ 2OPT .

Our primary goal will be to show that for any u ∈ U , the total expected
charge on u due to vertices in helper(u) is at most 1− 2εu. Before doing so, we
will first show that our preprocessing step (of removing capacity 1 vertices) is
justifiable:

Lemma 1. Let R be the set of vertices of capacity 1 removed from a graph Go
in the pre-processing step (Step 1). Let Gn be the new graph that has the same
vertices and edges as Go except that the capacities of the vertices in R is reduced
to 0. Let OPT (Go) and OPT (Gn) represent the optimal solutions in Go and Gn
respectively. Then OPT (Go) = OPT (Gn). This implies that the LP solution to
Gn is a lower bound on OPT (Go).

Proof. Let OPT (Go) be an optimal solution to Go that uses a minimum number
of vertices from R. If OPT (Go) ∩ R = ∅ then the claim follows trivially. Now
consider the case when OPT (Go) ∩ R 6= ∅. Let v ∈ OPT (Go) ∩ R. Construct a
directed graph H having the same vertex set as Go. Include an edge (a, b) in H
iff edge (a, b) in Go is covered by a in OPT (Go) and by b in OPT (Gn). H may
contain some cycles. Since v has in-degree zero in H, v cannot be part of any
cycle. Contract every cycle of H. Now consider a maximal path, Q, starting from
v. Let w be the last vertex in the path. Note that w does not have any outgoing
edges, otherwise Q is not maximal. Consider the solution OPT (Go) \ {v} ∪ {w}
in which the edges of Q have the same assignment as in OPT (Gn). We will
now show that this new assignment does not violate capacity constraints of any
of the vertices. The only vertices that are affected are the vertices in Q. The
assignment of edges to all other vertices remain the same as in OPT (Go). In H,
since w has one incoming edge and no outgoing edges, w covers one more edge
in OPT (Gn) than it covers in OPT (Go). Since w /∈ R, the capacity of w is the
same in Go and in Gn. Thus w covers at most kw−1 edges in OPT (Go). Thus in
OPT (Go), w has a spare capacity of at least 1 that it uses to cover its incoming
edge in Q. Every other vertex whose covering is different than in OPT (Go) is
an internal vertex of Q. Each such vertex uncovers one edge (outgoing edge in
Q) and covers a new edge (incoming edge in Q), hence its capacity constraints
are not affected. This cost of this solution is the same as OPT (Go) and it uses
one fewer vertex from R, thus contradicting the assumption that OPT (Go) used
minimum number of vertices from R.

Lemma 2. Every vertex in U has capacity at least 2.
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Proof. If any vertex v has capacity 1 then xv = 1 (Step 1). Hence, all capacity
1 vertices belong to U .

Lemma 3. Let e = (u, v) and v ∈ helper(u). Then y′ev = 1. In other words,
vertex v contributes 1 towards hu.

Proof. Since v ∈ helper(u), y′ev = min{1, kv −
∑
f∈E′(v)\{e} y

′
fv}. To prove our

claim, we must show that kv −
∑
f∈E′(v)\{e} y

′
fv ≥ 1. L.H.S evaluates to kv −∑

f∈E′(v)\{e} yfv ≥ kv−
∑
f∈E′(v) yfv = kv−

∑
f∈E(v) yfv. Using constraint (1),

we get L.H.S ≥ kv − kvxv ≥ kv − kv/2 = kv/2 ≥ 1.

Lemma 4. Each vertex u ∈ P is charged at most dhue by vertices in I ′, i.e.,
|helper(u)| ≤ dhue.

Remark: Observe that if xu = 1/2, we are done since E′(u) = ∅. Hence, when-
ever we need to calculate the expected cost of a vertex u ∈ U , we can assume
0 ≤ εu < 1/2.

Lemma 5. Let u ∈ U . Let Zu be the random variable that denotes the help
received by vertex u in Step 4 of the algorithm, i.e., Zu =

∑
e=(u,v):v∈I yev/xv.

Then µu = E[Zu] ≥ 2hu(1− εu)/(1− 2εu).

Proof. Recall that hu =
∑
e=(u,v)∈E′(u)(yev − εu)/(1− εu) and du = |E′(u)|. By

definition of expectation, we have

µu =
∑

e=(u,v)∈E′(u)

(yev/xv)2xv

= 2
∑

e=(u,v)∈E′(u)

yev (2)

= 2(1− εu)hu + 2duεu

= 2hu + 2εu(du − hu) (3)

Since µu ≤ du, we have du ≥ 2hu+2εu(du−hu). This gives us du−hu ≥ hu/(1−
2εu). Combining this inequality with (3), we get µu ≥ 2hu + 2εuhu/(1− 2εu) =
2hu(1− εu)/(1− 2εu).

Notation: From now on, let exp(x) denote ex.

Lemma 6. If Xu is the random variable denoting the charge on a vertex u ∈
U due to vertices in I ′, then E[Xu] ≤

∑bhuc
i=0

(
exp(−δi)/(1− δi)(1−δi)

)µu , for
some δi ∈ [ 1

2(1−ε) + i(1−2ε)
2hu(1−ε) , 1] and µu = E[Zu]. When δi = 1, we evaluate the

summand in the limit as δi → 1: this limit is exp(−µu).
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Proof. Note that Xu can be any integer between 0 and dhue. By definition of
expectation, we have E[Xu] =

∑dhue
i=1 iPr [Xu = i] =

∑bhuc
i=0 Pr [Xu ≥ i+ 1] ≤∑bhuc

i=0 Pr [Zu ≤ dhue − (i+ 1)]. Thus we get

E[Xu] ≤
bhuc∑
i=0

Pr [Zu ≤ hu − i] (4)

Since Zu is a sum of independent random variables each lying in [0, 1], we get
using the Chernoff-Hoeffding bound that

Pr [Zu ≤ µu(1− δi)] ≤
(

exp(−δi)/(1− δi)(1−δi)
)µu

The value of δi can be obtained as follows.

1− δi =
hu − i
µu

(5)

Combining (5) with Lemma 5, we get δi ≥ 1
2(1−εu) + i(1−2εu)

2hu(1−εu) .

Lemma 7. For 0 ≤ δ < 1, the function f(δ) = 1/(1−δ)(1−δ) attains a maximum
value of exp(1/e) at δ = 1− 1/e.

Lemma 8. For any vertex u ∈ U , if hu ≥ 2 then E[Xu] ≤ 1− 2εu.

Proof. From Lemma 6 and Lemma 7, we get E[Xu] ≤
∑bhuc
i=0 (exp(1/e− δi))µu .

From Lemma 6, we know that ∀i ≥ 0, δi ≥ 1/2. Hence, 1/e − δi is always
negative. Also, µu is always positive. Hence, the summand is maximized when
µu and δi are minimized. Thus, we get

E[Xu] ≤
bhuc∑
i=0

(
exp

(
1
e
− hu + i(1− 2εu)

2hu(1− εu)

)) 2hu(1−εu)
1−2εu

=
bhuc∑
i=0

exp(p− i)
(

where p =
2hu(1− εu)
e(1− 2εu)

− hu
1− 2εu

)
≤ e

e− 1
· exp(p) · (1− exp(−hu − 1)). (6)

We will now show that f(hu) = exp(p)(1−exp(−hu−1) is a decreasing function
of hu. f ′(hu) = exp(p)( 2(1−εu)

e(1−2εu) −
1

1−2εu
)− exp(p−hu−1)( 2(1−εu)

e(1−2εu) −
1

1−2εu
−1).

The expression
(

2(1−εu)
e(1−2εu) −

1
1−2εu

)
is negative since 2(1 − εu)/e < 1. Since the

first term dominates the second term f ′(hu) is negative. Thus f(hu) is decreasing
and is maximized when hu is minimized. When hu = 2,

p =
4(1− εu)
e(1− 2εu)

− 2
1− 2εu

=
2
e
− K1

1− 2εu
,
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where K1 is the positive constant (2e − 2)/e. Thus, from (6), it is sufficient to
show that

∀ε ∈ [0, 1/2), K2 · exp(−K1/(1− 2ε)) ≤ 1− 2ε,

where K2 is the constant e2+e+1
e2 · exp(2/e). Making the substitution ψ = 1

1−2ε
and taking the natural logarithm on both sides, it suffices to show:

∀ψ ≥ 1, − lnψ +K1ψ − lnK2 ≥ 0.

The inequality holds for ψ = 1. Also, for ψ > 1, the function ψ 7→ − lnψ +
K1ψ − lnK2 has derivative K1 − 1/ψ; since K1 = 2− 2/e is greater than 1, the
function increases for ψ > 1, and so we are done.

Lemma 9. For any vertex u ∈ U , if 0 < hu < 1 then E[Xu] ≤ 1− 2εu.

Proof. Recall that du = |E′(u)|. Consider the case when du = 1. Let e = (u, v) ∈
E′(u). Thus, hu ≤ εu ≤ yev ≤ xv. Thus, with a probability of 2xv ≥ 2εu, v ∈ I
and u receives the help hu. Hence, the probability with which u participates in
Step 5, i.e., u ∈ P , is 1 − 2εu. In that case, |helper(u)| ≤ 1. Hence, E[Xu] ≤
1 − 2εu. Now consider when du = 2. Let e1 = (u, v) and e2 = (u,w) be the
edges in E′(u). Since µu = 2(ye1v + ye2w) ≥ 4εu. From (3), we know that
µu ≥ 2hu. Hence, either he1v ≥ hu or he2w ≥ hu. Without loss of generality,
let he1v ≥ hu. Since xv ≥ εu, the probability of u receiving help of hu in the
randomized rounding step (Step 4) is at least 2εu. Hence, u participates in Step
5 (Alteration Step) of the algorithm with a probability of at most 2(1 − εu).
Thus, we get E[Xu] ≤ 1− 2εu. For the remainder of the lemma we assume that
du ≥ 3.

From inequality (4), we know that E[Xu] ≤ Pr [Zu ≤ hu]. Recall that Zu is
the random variable that represents the amount of help that u receives in Step 4
(Randomized Rounding) of the algorithm. Let Zu =

∑
e=(u,v)∈E′(u) Zev, where

Zev is the random variable that denotes the amount of help that v provides to
u in Step 4 of the algorithm. Next suppose X is a random variable with mean
µ and variance σ2; suppose a > 0. Then, the well-known Chebyshev’s inequality
states that Pr [|X − µ| ≥ a] is at most σ2/a2. We will need stronger tail bounds
than this, but only on X’s deviation below its mean. The Chebyshev-Cantelli
inequality shows that

Pr [X ≤ µ− a] ≤ σ2/(σ2 + a2). (7)

Define

yu =

∑
e=(u,v)∈E′(u) yev

du
,

and note that
εu ≤ yu ≤ 1/2. (8)

We will use (7) to bound Pr [Zu ≤ hu]. Thus, setting µu − a = hu and using (2)
we get a = µu−hu = 2

∑
e=(u,v)∈E′(u) yev −

∑
e=(u,v)∈E′(u)(yev − εu)/(1− εu) =
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2duyu − (duyu − duεu)/(1− εu). This gives us

a = du

(
2yu −

yu − εu
1− εu

)
(9)

Let σ2
u and σ2

ev denote the variance of the random variables Zu and Zev respec-
tively. Since Zu is the sum of the independent random variables Zev, we get
σ2
u =

∑
e=(u,v)∈E′(u) σ

2
ev =

∑
e=(u,v)∈E′(u) E[Z2

ev]−E[Zev]2. This gives us

σ2
u =

∑
e=(u,v)∈E′(u)

2y2
ev

xv
− 4y2

ev (10)

For a fixed a, the R.H.S. of (7) is maximized when σ2 is maximized. We know that
εu ≤ yev ≤ xv < 1/2. The R.H.S. of (10) is maximized when xv is minimized.
Also, for a fixed value of

∑
e=u,v∈E′(u) yev,

∑
e=(u,v)∈E′(u) y

2
ev is minimized when

yev = ye′v′ = yu, ∀e = (u, v) ∈ E′(u) and e′ = (u, v′) ∈ E′(u). Note that we
are not changing the value of

∑
e=(u,v)∈E′(u) yev. Substituting yev = yu and

xv = yev = yu in the above inequality, we get σ2
u ≤

∑
e=(u,v)∈E′(u) 2yu(1 −

2yu) ≤ 2duyu(1 − 2yu). Using (7), the value of a from (9), and the value of σ2
u

obtained above, we get E[Xu] ≤ Pr [Zu ≤ hu] ≤ σ2
u/(σ

2
u + a2) ≤ (2duyu(1 −

2yu))/(2duyu(1− 2yu) + d2
u (2yu − (yu − εu)/(1− εu))2). This gives us

E[Xu] ≤ 2yu(1− 2yu)

2yu(1− 2yu) + 3
(

2yu − yu−εu
1−εu

)2 (11)

We will analyze the cost by considering the following two cases.

Case I: ε > 3yu/4.
We would like to upper-bound the value of (yu − εu)/(1− εu) in (11). For εu ≤
yu < 4εu/3, we will calculate a value c ∈ [0, 1] such that (yu−εu)/(1−εu) ≤ cyu.
c ≥ (yu − εu)/(yu(1 − εu)) = 1/(1 − εu) − εu/(yu(1 − εu)) ≥ 1/(1 − εu) −
εu/((4εu/3)(1−εu)) = 1/(1−εu)−3/(4(1−εu)) = 1/(4(1−εu)) ≥ 1/(4(1−1/2)) =
1/2. Thus, substituting the value of (yu − εu)/(1 − εu) as yu/2 in (11), we get
E[Xu] ≤ (2yu(1−2yu))/(2yu(1−2yu)+3 (2yu − yu/2)2) = (2yu(1−2yu))/(2yu−
4y2
u + (27y2

u/4)) ≤ (2yu(1− 2yu))/2yu = 1− 2yu.
Case II: ε ≤ 3yu/4.
We want to show that E[Xu] ≤ 1− 2εu. Thus, it is sufficient to show that R.H.S
of (11) is at most 1− 2εu which means that it is sufficient to show that

2yu(1− 2yu)− 2yu(1− 2yu)(1− 2εu) ≤ 3
(

2yu −
yu − εu
1− εu

)2

(1− 2εu) (12)

We will consider the L.H.S and R.H.S of (12) separately. L.H.S = 2yu(1−2yu)−
2yu(1− 2yu)(1− 2εu) = 2yu(1− 2yu)(2εu) = 4εuyu(1− 2yu). Since εu ≤ 3yu/4,
we get

L.H.S ≤ 3y2
u(1− 2yu) (13)
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R.H.S evaluates to 3 (yu/(1− εu) + εu(1− 2yu)/(1− εu))2 (1− 2εu). Since yu <
1/2, we get

R.H.S ≥ 3y2
u(1− 2εu) (14)

From (13) and (14) we conclude that L.H.S≤ R.H.S and E[Xu] ≤ 1− 2εu.

Lemma 10. For any vertex u ∈ U , if 1 ≤ hu < 2 then E[Xu] ≤ 1− 2εu.

Proof. We will use the notation du, µu, yu, σ2
u etc. as in the proof of Lemma 9. As

in that proof, we have σ2
u ≤ 2duyu(1−2yu). Recall that hu = du(yu−εu)/(1−εu).

Thus, by Chebyshev-Cantelli,

E[Xu] ≤ Pr [Zu ≤ hu − 1] + Pr [Zu ≤ hu]

≤ 2duyu(1− 2yu)
2duyu(1− 2yu) + (µu − hu + 1)2

+
2duyu(1− 2yu)

2duyu(1− 2yu) + (µu − hu)2

=
2duyu(1− 2yu)

2duyu(1− 2yu) + (2duyu − du(yu−εu)
1−εu + 1)2

+

2yu(1− 2yu)
2yu(1− 2yu) + du(2yu − yu−εu

1−εu )2
(15)

Now fix εu and yu arbitrarily (subject to the constraints 0 ≤ εu < yu ≤ 1/2), and
consider an adversary who wishes to maximize (15) subject to the constraint that
du is a real number for which du(yu−εu)/(1−εu) ≥ 1. It is then sufficient to show
that the maximum value (achievable by the adversary) is at most 1−2εu; we will
do so now. It can be shown that (15) is maximized when du(yu−εu)/(1−εu) = 1.
Making the substitution z = 2duyu, we make some observations. Since z =
2yu(1− εu)/(yu − εu) where 0 ≤ εu < yu, we have z ≥ 2; also, εu = yu(z−2)

z−2yu
. So,

to show that (15) is at most 1−2εu, we need to show that 2duyu(1−2yu)
2duyu(1−2yu)+(2duyu)2 +

2duyu(1−2yu)
2duyu(1−2yu)+(2duyu−1)2 ≤ 1−2εu; i.e., 1−2yu

1−2yu+z + z(1−2yu)
z(1−2yu)+(z−1)2 ≤ 1− 2yu(z−2)

z−2yu
.

That is, we want to show that

z

1− 2yu + z
− z(1− 2yu)
z(1− 2yu) + (z − 1)2

≥ 2yu(z − 2)
z − 2yu

. (16)

Substitute p = 1 − 2yu, and note that p ∈ [0, 1]. Simplifying (16), we want to
show that z ·(z+p−1)·((z−1)2−p2) ≥ (1−p)·(z−2)·(z+p)·((z−1)2+pz). Since
z ≥ 2 and 0 ≤ p ≤ 1, all the factors in this last inequality are non-negative; so, it
suffices to show that z ≥ (1−p) ·(z+p), and (z+p−1) ·((z−1)2−p2) ≥ (z−2) ·
((z− 1)2 + pz). The first inequality reduces to zp ≥ p(1− p), which is true since
z ≥ 2 > 1−p. The second inequality reduces to −p3−p2(z−1)+p+(z−1)2 ≥ 0.
For a fixed p, the derivative of the l.h.s. (w.r.t. z) is easily to seen to be non-
negative for z ≥ 2. Thus, it suffices to check that −p3−p2(z−1)+p+(z−1)2 ≥ 0
is non-negative when z = 2, which follows from the fact that p ∈ [0, 1].
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