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Abstract. Accurate inference of local ancestry from whole-genome ge-
netic variation data is critical for understanding the history of admixed
human populations and detecting SNPs associated with disease via ad-
mixture mapping. Although several existing methods achieve high ac-
curacy when inferring local ancestry for individuals resulting from the
admixture of genetically distant ancestral populations (e.g., African-
Americans), ancestry inference in the case when ancestral populations
are closely related remains challenging. Surprisingly, methods based on
the analysis of allele frequencies at unlinked SNP loci currently outper-
form methods based on haplotype analysis, despite the latter methods
seemingly receiving more detailed information about the genetic makeup
of ancestral populations.
In this paper we propose a novel method for imputation-based local an-
cestry inference that exploits ancestral haplotype information more ef-
fectively than previous haplotype-based methods. Our method uses the
ancestral haplotypes to impute genotypes at all typed SNP loci (tem-
porarily marking each SNP genotype as missing) under each possible lo-
cal ancestry. We then assign to each locus the local ancestry that yields
the highest imputation accuracy, as estimated within a neighborhood of
the locus. Experiments on simulated data show that imputation-based
ancestry assignment is competitive with best existing methods in the
case of distant ancestral populations, and yields a significant improve-
ment for closely related ancestral populations. Further demonstrating
the synergy between imputation and ancestry inference, we also give
results showing that the accuracy of untyped SNP genotype imputa-
tion in admixed individuals improves significantly when using estimates
of local ancestry. The open source C++ code of our method, released
under the GNU General Public Licence, is available for download at
http://dna.engr.uconn.edu/software/GEDI-ADMX/.

1 Introduction

Rapid advances in SNP genotyping technologies have enabled the collection
of large amounts of population genotype data, accelerating the discovery of
genes associated with common human diseases. Admixture mapping has recently



emerged as a powerful method for detecting risk factors for diseases that differ
in prevalence across populations [12]. This type of mapping relies on genotyping
hundreds of thousands of single nucleotide polymorphisms (SNPs) across the
genome in a population of recently admixed individuals and is based on the as-
sumption that near a disease-associated locus there will be an enhanced ancestry
content from the population with higher disease prevalence. Therefore, a criti-
cal step in admixture mapping is to obtain accurate estimates of local ancestry
around each genomic locus.

Several methods have been developed for addressing the local ancestry in-
ference problem. Most of these methods use a detailed model of the data in the
form of a hidden Markov model, e.g. SABER [19], SWITCH [13], HAPAA [18]
but differ in the exact structure of the model and the procedures used for es-
timating model parameters. A second class of methods estimate the ancestry
structure using a window-based framework and aggregate the results for each
SNP using a majority vote: LAMP [14] uses an assumption of no recent recombi-
nation events within each window to estimate the ancestries, while WINPOP [9]
employs a more refined model of recombination events coupled with an adaptive
window size computation to achieve increased accuracy. Local ancestry infer-
ence methods also differ in the type of information used to make local ancestry
inferences. Surprisingly, methods that do not model the linkage disequilibrium
(LD) structure between SNPs currently outperform methods that model the LD
information extracted from ancestral population haplotypes.

The main contribution of this paper is a novel method for imputation-
based local ancestry inference that more effectively exploits LD information.
Our method uses a factorial HMMs trained on ancestral haplotypes to impute
genotypes at all typed SNP loci (temporarily marking each SNP genotype as
missing) under each possible local ancestry. We then assign to each locus the
local ancestry that yields the highest imputation accuracy, as assessed using a
weighted-voting scheme based on multiple SNP windows centered on the locus of
interest. Preliminary experiments on simulated admixed populations generated
starting from the four HapMap panels [22] show that imputation-based ancestry
inference has accuracy competitive with best existing methods in the case of dis-
tant ancestral populations, and is significantly more accurate for closely related
ancestral populations. We also give results showing that the accuracy of untyped
SNP genotype imputation in admixed individuals improves significantly when
taking into account estimates of local ancestry.

2 Methods

In this work we consider the inference of locus-specific ancestry in recently ad-
mixed populations. We assume that for each admixed individual we are given
the genotypes at a dense set of autosomal SNP loci, and seek to infer the two
ancestral populations of origin at each genotyped locus. For simplicity we con-
sider only bi-alelic SNPs. For every SNP locus, we denote the major and minor
alleles by 0 and 1. A SNP genotype is encoded as the number of minor alleles
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Fig. 1. Factorial HMM model for a multilocus SNP genotype (G1, . . . , Gn) over an
n-locus window within which one haplotype is inherited from ancestral population Pk

and the other from ancestral population P l. For every locus i, F k
i and Hk

i denote the
founder haplotype, respectively the allele observed on the haplotype originating from
population Pk; similarly, F l

i and H l
i denote the founder haplotype and observed allele

for the haplotype originating from population P l.

at the corresponding locus, i.e., 0 and 2 encode homozygous major and minor
genotypes, while 1 denotes a heterozygous genotype.

2.1 Genotype imputation within windows with known local

ancestry

Various forms of left-to-right HMM models of haplotype diversity in a homoge-
neous population have been successfully used for numerous genetic data analysis
problems including SNP genotype error detection [4], genotype phasing [11,15],
testing for disease association [6, 16], and imputation of untyped SNP geno-
types [5, 7, 8, 15]. In this section we extend the imputation model in [5] to the
case of individuals with known mixed local ancestry. Specifically, we assume that,
over the set of SNPs considered, the individual has one haplotype inherited from
ancestral population Pk and the other inherited from ancestral population P l,
where Pk and Pl are known (not necessarily distinct) populations.

Multilocus SNP genotypes of individuals with such mixed ancestry are mod-
eled statistically using a factorial HMM (F-HMM) [3] referred to as Mkl and
graphically represented in Figure 1. At the core of the model are two left-to-right
HMMs representing haplotype frequencies for the two ancestral populations (dot-
ted boxes in Figure 1). Under these models, a haplotype from population P j ,
j ∈ {k, l} is viewed as a mosaic formed as a result of historical recombination
among a set of Kj founder haplotypes, where Kj is a population specific param-
eter (unless specified otherwise, we used Kj = 7 in our experiments).

Formally, for each SNP locus i ∈ {1, . . . , n}, we let Gi ∈ {0, 1, 2} be a ran-
dom variable representing the genotype at locus i, H

j
i ∈ {0, 1} be a random

variable representing the allele inherited from population Pj at locus i, and

F
j
i ∈ {1, . . . , Kj} be a random variable denoting the founder haplotype from



which H
j
i originates. Values taken by these random variables are denoted by

the corresponding lowercase letters (e.g., gi, h
j
i , f

j
i ). The model postulates that

for each j ∈ {k, l}, F
j
i , i = 1, . . . , n, form the states of a first order HMM with

emissions H
j
i . We set P (gi|h

k
i , hl

i) to be 1 if gi = hk
i +hl

i and 0 otherwise. Model

training is completed by separately estimating probabilities P (f j
1 ), P (f j

i+1
|f j

i ),

and P (hj
i |f

j
i ) using the classical Baum-Welch algorithm [1] based on haplotypes

inferred from a panel representing each ancestral population P j , j ∈ {k, l}. The
parameters of the two left-to-right HMMs can alternatively be estimated directly
from unphased genotype data using an EM algorithm similar to those in [6,11].

Let g = (g1, . . . , gn) be the multilocus genotype of a mixed ancestry individ-
ual and let g−i = (g1, . . . , gi−1, gi+1, . . . , gn). If the individual’s SNP genotype
at locus i is unknown, it can be imputed based on the modelMkl by maximizing
over g ∈ {0, 1, 2}

PMkl

(Gi = g|g−i) ∝ PMkl

(g[gi ← g]) (1)

where g[gi ← g] = (g1, . . . , gi−1, g, gi+1, . . . , gn). The ancestry inference method
described in Section 2.2 temporarily marks as missing and imputes each SNP
genotype, and thus requires computing probabilities (1) for all n SNP loci. This
computation can be done efficiently using a forward-backward algorithm, as
described below.

For every i ∈ {1, . . . , n}, fk
i ∈ {1, . . . , Kk}, and f l

i ∈ {1, . . . , Kl}, we let
F i

fk

i
,f l

i

= PMkl

(g1, . . . , gi−1, f
k
i , f l

i ), which we refer to as the forward probability

associated with the partial multilocus genotype (g1, . . . , gi−1) and the pair of
founder states (fk

i , f l
i ) at locus i. The forward probabilities can be computed

using the recurrence:
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The innermost sum in (3) is independent of fk
i , and so its repeated computation

can be avoided by replacing (3) with:
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By using recurrences (2), (5), and (6), all forward probabilities can be computed
in O(nK3) time, where n is the number of SNP loci and K = max{Kk, Kl}.

Backward probabilities Bi
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i
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i

= PMkl
(fk

i , f l
i , gi+1, . . . , gn) can be computed

in O(nK3) time using similar recurrences:
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After computing forward and backward probabilities, posterior SNP genotype
probabilities (1) can be evaluated in O(K2) time per SNP locus by observing
that:
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(g[gi ← g]) =

Kk∑

fk

i
=1

Kl∑

f l

i
=1

F i
fk

i
,f l

i

E i
fk

i
,f l

i

(g)Bi
fk

i
,f l

i

(7)

Thus, the total time for computing all posterior SNP genotype probabilities is
O(nK3).

2.2 Local ancestry inference

Consider an individual coming from an admixture of (a subset of) of N ancestral
populations P1, . . . ,PN . As in previous works [9,13,14,18,19], we view the local
ancestry at a locus as an unordered pair of (not necessarily distinct) ancestral
populations. The set of possible local ancestries is denoted by A = {kl | 1 ≤ k ≤
l ≤ N}.

Our local ancestry inference method is based on two observations: (1) for
individuals from recently admixed populations the local ancestry of a SNP lo-
cus is typically shared with a large number of neighboring loci, and (2) the
accuracy of SNP genotype imputation within such a neighborhood is typically
higher when using the factorial HMM model Mkl corresponding to the correct
local ancestry compared to a mis-specified model. These observations suggest
using the algorithm in Figure 2 for inferring local ancestry based on imputation
accuracy within windows centered at each SNP locus. More precisely, the algo-
rithm assigns to each SNP locus i the local ancestry that maximizes the average
posterior probability for the true SNP genotypes over a window of up to 2w + 1
SNPs centered at i (w SNPs downstream and w SNPs upstream of i).

Step 1 of the algorithm requires training N left-to-right HMMs based on hap-
lotype data using the Baum-Welch algorithm, which takes O(nK2) per iteration



Input: multilocus genotype g = (g1, . . . , gn), window half-size w, and reference haplo-
types for ancestral populations P1, . . . ,PN

Output: inferred local ancestries âi ∈ A for each i = 1, . . . , n

1. Train HMM models for each ancestral population and combine them to form fac-
torial HMM models Mkl for every kl ∈ A

2. For each locus i, compute posterior SNP genotype probabilities (Equation 1) under
each local ancestry model Mkl

3. For each locus i = 1, . . . , n,

âi ← argmax
kl∈A

1

|Wi|

∑

j∈Wi

PMkl

(Gi = gi|g−i) (8)

where Wi = {max{1, i− w}, . . . , min{n, i + w}}

Fig. 2. Single-window imputation-based ancestry inference algorithm.

and typically converges in a small number of iterations. As described in Section
2.1, Step 2 of the algorithm is implemented in O(nK3) time for each local ances-
try modelMkl. Once posterior SNP genotype probabilities are computed in Step
2, the window average probabilities required in Step 3 for each local ancestry
model Mkl can be computed in O(1) per window after precomputing in O(n)
time the sums of posterior probabilities for all prefix sets {1, . . . , i}. Thus, since
the number of possible ancestry models is |A| = O(N 2), the algorithm requires
O(nK3N2) time overall.

As previously observed for other window-based methods of local ancestry
inference [9, 14], optimal window size selection plays a significant role in the
overall estimation accuracy. Window-based methods must balance two conflict-
ing requirements: on one hand, small window sizes may not provide enough
information to accurately differentiate between the |A| possible local ancestries
(particularly when ancestral populations are closely related) and on the other
hand, large window sizes lead to more frequent violations of the assumption
that local ancestry is uniform within each window. In the case of imputation-
based ancestry inference we obtained good results by using a multi-window
approach: for each SNP genotype gi we run the algorithm of Figure 2 for all
w ∈ {100, 200, . . . , 1500} and aggregate the results over all windows using a
simple weighted voting scheme. Specifically, within each window we assign to
each ancestry model Mkl a weight obtained by dividing the average posterior
probability of the true genotypes, 1

|Wi|

∑
j∈Wi

PMkl

(Gi = gi|g−i) by the sum of

the averages achieved by all local ancestry models, and select for each locus the
model with maximum sum of weights over all windows. Preliminary experiments
(see Figure 4 and Table 1) suggest that the multi-window strategy yields an av-
erage accuracy that is very close to (and, for some admixed populations, better
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Fig. 3. Percentage of imputation errors (solid line) and unimputed genotypes (dashed
line) at varying cutoff thresholds on posterior imputation probability for the WTCCC
1958 birth cohort dataset.

than) the maximum average accuracy achieved by running the single-window
algorithm with any window size from the above set.

3 Experimental results

In this section we present preliminary results comparing our approach to sev-
eral state-of-the-art methods for local ancestry inference. We begin with results
demonstrating the accuracy of imputation based on the factorial HMM model.
In a second set of experiments, we compare our imputation-based algorithm
to existing methods for local ancestry inference on admixture datasets simu-
lated starting from the four populations represented in HapMap [22]. Finally, we
present results demonstrating the benefit of incorporating accurate local ances-
try estimates when performing genotype imputation for admixed individuals.

3.1 SNP genotype imputation in homogeneous populations

To assess the accuracy achieved when imputing missing SNP genotypes based
on the factorial HMM model described in Section 2.1, we used the 1,444 individ-
uals of the 1958 birth cohort of the Wellcome Trust Case Control Consortium
(WTCCC) [2]. For this homogeneous population imputation was performed us-
ing the GEDI package [5], based on a factorial model consisting of two identical
left-to-right HMMs trained on CEU panel haplotypes from HapMap. SNP geno-
type imputation for admixed populations is further discussed in Section 3.3.

The individuals in the 1958 birth cohort were genotyped using the Affymetrix
500K GeneChip Assay. We masked as un-typed and then imputed 1% of the



SNPs on chromosome 22. We measured the error rate as the percentage of erro-
neously recovered genotypes from the total number of masked genotypes. Since
the model provides the posterior probability for each imputed SNP genotype, one
can get different tradeoffs between the error rate and the percentage of imputed
genotypes by varying the cutoff threshold on posterior imputation probability.
Figure 3 plots the achievable tradeoffs. For example, using a cutoff threshold
of 0.95, HMM-based imputation has an error rate of 1.7%, with 24% of the
genotypes left un-imputed.

3.2 Inference of local ancestry in admixed populations

The method described in Section 2.2 was implemented in an extension of the
GEDI software package [5], referred to as GEDI-ADMX. We compared GEDI-
ADMX to several local ancestry inference methods capable of handling genome-
wide data. Three of the competing methods (SABER [19], SWITCH [13], and
HAPAA [18]) are HMM based, while the other two (LAMP [14] and WIN-
POP [9]) perform window-based estimation based on genotype data at a set
of unlinked SNPs. When comparing various methods for ancestry inference one
needs to take into account the fact that different methods use different types of
information to make ancestry predictions. LAMP, WINPOP and SWITCH only
require information about ancestral allele frequencies, while the other methods
require the ancestral genotypes. In addition, HAPAA and GEDI-ADMX use
additional information about ancestral haplotypes. Some of the methods also
require the number of generations since the admixture process started. In gen-
eral, we provided each method the maximum amount of information about the
admixture process (e.g. number of generations g or the admixture ratio α) that
it could take into account. Although these parameters can be estimated from
genotype data when needed [20], we note that GEDI-ADMX does not require
any additional parameters besides the ancestral haplotypes.

Experiments were performed on simulated admixtures using as ancestral pop-
ulations the four HapMap [22] panels: Yoruba people from Ibadan Nigeria (YRI),
Japanese from the Tokyo area (JPT), Han Chinese from Beijing (CHB) and Utah
residents with northern European ancestry (CEU). We simulated admixtures for
each of the YRI-CEU, CEU-JPT, and JPT-CHB pairs of populations as follows:
we started the simulation by joining a random set of α × n individuals from
the first population and (1 − α) × n individuals from the second population.
Within the merged panel we simulated g generations of random mating with a
mutation and recombination rate of 10−8 per base pair per generation. We used
only the 38,864 SNPs located on Chromosome 1 found on the Affymetrix 500K
GeneChip Assay. For these simulations we used n = 2000, g = 7 and α = 0.2 as
it roughly corresponds to the admixture history of the African American popu-
lation [10, 17, 21]. Our simulations result in an admixed population with known
local ancestry. Each of the evaluated methods infers an ancestry estimate for
every SNP genotype; we measure the accuracy as the fraction of SNP genotypes
for which the correct ancestry is inferred.
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Effect of window size on the local ancestry estimates. Figure 4 plots the
accuracy of the local ancestry prediction of GEDI-ADMX on the HapMap ad-
mixtures for different window sizes. As expected, the accuracy initially increases
with window size for all three datasets, since more information is available to
differentiate between ancestry models. However, very large window sizes lead
to more violations in the assumption of uniform ancestry within each window,
overshadowing these initial benefits. As previously reported in other window-
based methods [9,14] we also notice that the best window size employed by our
method for the three datasets is correlated with the genetic distance between
ancestral populations as closer ancestral populations require longer window size
for accurate predictions. Finally, we notice that the combined multi-window ap-
proach described in Section 2.2 achieves accuracy close to the best window size
for the YRI-CEU and CEU-JPT admixtures and better than any window size
for the JPT-CHB admixture (see Table 1). All remaining results were obtained
using the multi-window approach.

Effect of number of founders on local ancestry inference accuracy and

runtime scalability. An important parameter of the HMM models used to
represent the LD in ancestral populations is the number of founder haplotypes K.
As discussed in Section 2.2, the runtime of the algorithms grows asymptotically
with the cube of K, which renders the use of very large values of K impractical.
Using very large values of K may also be problematic when the number of
training haplotypes is limited, due to model overfitting. On the other hand,
HMMs with very few founder haplotypes have a limited ability of capturing LD
patterns in the ancestral populations, and is expected to lead to poor accuracy.

To assess these potentially complex tradeoffs between runtime and accuracy
we run GEDI-ADMX on the CEU-JPT dataset using for both ancestral popula-



70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1 2 3 4 5 6 7 8 9 10

Number of founders K

A
cc

u
ra

cy

0

5

10

15

20

25

30

35

40

45

50

C
P

U
 s

ec
. p

er
 s

am
p

le

Fig. 5. GEDI-ADMX accuracy (solid line) and runtime (dashed line) for varying values
of the number K of HMM founder haplotypes on the CEU-JPT dataset, consisting of
n = 38, 864 SNPs on Chromosome 1.

tions a number of founder haplotypes K varied between 1 and 10. The accuracy
and runtime achieved by GEDI-ADMX for each value of K are plotted in Figure
5. Since for K = 1 our HMM model degenerates into a simple multinomial i.i.d.
model that captures allele frequency at each SNP but completely ignores LD, it
is not surprising that ancestry inference accuracy is relatively poor (about 78%).
For K = 2 accuracy improves significantly (to 93.5%), as the model is now able
to represent pairwise LD between adjacent SNPs. As K is further increased, the
model can capture more of the longer range LD, leading to further accuracy im-
provements. However, improvements in accuracy are quickly diminishing, with
only 1% accuracy improvement achieved when increasing K from 3 to 10.

Although for small values of K lower order terms make the runtime growth
in Figure 5 appear sub-cubic, the asymptotic cubic growth is already apparent
for the largest tested values of K. For remaining experiments we used K = 7
since this setting achieves a good tradeoff between runtime and accuracy.

Comparison with other methods. Table 1 presents accuracies achieved by
the six compared methods on the three simulated HapMap admixtures. We note
that GEDI-ADMX achieves similar accuracy to the best performing methods on
the YRI-CEU and CEU-JPT admixture, while yielding a significant improve-
ment in accuracy for the JPT-CHB dataset. Indeed, on the JPT-CHB admixture
our method achieves an accuracy of 94.0%, which is an increase of more than
11% over the second best performing method WINPOP. Table 1 also reports an
upper-bound on the maximum accuracy that can be obtained by methods that
do not model the linkage disequilibrium (LD) between SNPs, computed as de-
scribed in [9]. Notably, GEDI-ADMX accuracy on the JPT-CHB dataset exceeds
the upper-bound for methods that do not model the LD. This underscores the



Method YRI-CEU CEU-JPT JPT-CHB

SABER 89.4 85.2 68.2
HAPAA 93.7 88.2 72.0
SWITCH 97.8 94.8 74.8

LAMP 94.8 93.0 65.8
WINPOP 98.0 95.9 82.8
Upper Bound(no LD) 99.9 99.6 91.9

GEDI-ADMX 97.5 96.5 94.0

Table 1. Percentage of correctly recovered SNP ancestries on three HapMap admix-
tures with α = 0.2.

Method YRI-CEU CEU-JPT JPT-CHB

GEDI-1-Pop Avg. 12.79 6.67 3.81
GEDI-2-Pop 7.31 3.90 3.02
GEDI-ADMX 4.34 2.81 2.74

Table 2. Imputation error rate, in percents, on three HapMap simulated admixtures
with α = 0.5.

importance of exploiting ancestral haplotypes when performing local ancestry
inference for admixtures of closely related populations.

3.3 SNP genotype imputation in admixed populations

In this section we present results that further demonstrate the synergy between
SNP genotype imputation and local ancestry inference in admixed population.
More specifically, we focus on assessing the utility of inferring locus-specific an-
cestries when performing imputation of genotypes for untyped SNPs.

For this experiment we generated three admixtures, corresponding to the
YRI-CEU, CEU-JPT and JPT-CHB pairs of HapMap populations, using the
same simulation procedure as described in Section 3.2 with parameters of n =
2000, α = 0.5 and g = 10. We randomly chose 10% of the SNPs as untyped and
we masked them from all the individuals in the admixture. We first ran GEDI-
ADMX using unmasked SNP genotypes to infer local ancestries as described in
Section 2.2. We then imputed masked genotypes using the model in Section 2.1
based on the ancestry inferred for the adjacent unmasked SNPs. We measured
the error rate of the imputation procedure as the percentage of genotypes inferred
erroneously (using no cutoff threshold on posterior imputation probability). To
establish a baseline for the comparison, we also performed imputation using the
GEDI package [5], based on a factorial model similar to that in Section 2.2 except
that it consists of two identical left-to-right HMMs trained on either (1) panel
haplotypes for only one of the ancestral populations (GEDI-1-Pop), respectively
on (2) a haplotype list obtained by merging the panel haplotypes of the two
ancestral populations (GEDI-2-Pop).



Table 2 shows the imputation accuracy achieved by the three compared meth-
ods. As expected, there is a large decrease in error rate when switching from using
only one panel of ancestral haplotypes to using the combined panel consisting
of haplotypes from both populations. Performing imputation based on the local
ancestry inferred by GEDI-ADMX yields further improvements in accuracy. Ac-
curacy gains are largest when admixed populations are distant (e.g. YRI-CEU).

4 Discussion

In this paper we propose a novel algorithm for imputation-based local ancestry
inference. Experiments on simulated data show that our method exploits an-
cestral haplotype information more effectively than previous methods, yielding
consistently accurate estimates of local ancestry for a variety of admixed popula-
tions. Indeed, our method is competitive with best existing methods in the case
of admixtures of two distant ancestral populations, and is significantly more ac-
curate than previous methods for admixtures of closely related populations such
as the JPT and CHB populations from HapMap. We also show that accurate
local ancestry estimates lead to improved accuracy of untyped SNP genotype
imputation for admixed individuals.

In ongoing work we are exploring methods that iteratively alternate between
rounds of imputation-based ancestry inference and ancestry-based imputation
for further improvements in accuracy. We are also conducting experiments to
characterize the accuracy of our imputation-based local ancestry inference meth-
ods in the case of admixtures of more than two ancestral populations.
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