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INCREASING THE POWER OF ASSOCIATION STUDIES BY

IMPUTATION-BASED SPARSE TAG SNP SELECTION∗

OFIR DAVIDOVICH§† , GAD KIMMEL†‡ , ERAN HALPERIN§‡ , AND RON SHAMIR§

Abstract. In low- and medium-budget association studies, a limited number of tag SNPs are

selected out of a large set of available SNPs previously typed in an initial cohort. These tag SNPs

are then typed in a larger set of control and affected individuals. Current association studies pick

the set of tag SNPs based on the correlation criterion. Here we show that association studies that

use tag SNPs selected according to their imputation accuracy are more powerful than those relying

on tag SNPs selected by the correlation criterion. The advantage is particularly striking when the

set of tag SNPs is sparse; thus, picking tag SNPs to maximize the imputation accuracy will increase

the effectiveness of future association studies without additional cost.

Keywords: correlation structure, Tagger, imputation.

1. Introduction.

1.1. Tag SNP selection and association studies. Over the past few years,

numerous disease association studies, both genome-wide and of candidate genes, have

been undertaken (e.g. Refs [1-7]) and more are expected. The goal of such studies is to

identify the genetic causes of complex diseases, by associating the disease phenotype

with genetic variants such as single nucleotide polymorphisms (SNPs) or copy num-

ber variants (CNVs). The statistical significance and power of a study are directly

affected by the number of individuals tested and by the number of SNPs typed: the

more SNPs typed, the more information obtained, and the greater the chance that a

causal SNP will be among the genotyped SNPs or highly correlated with one of them.

However, typing too many SNPs is a waste of resources because of the strong depen-

dency between SNPs that lie close to each other owing to the phenomenon of linkage

disequilibrium (LD) [8]. Although the cost of genotyping has dropped dramatically

in recent years, the cost of customized genotyping platforms remains high, and bud-

getary constraints prevent many laboratories from genotyping a dense set of SNPs in

the target regions. Ideally, one would like to select and type a given number of SNPs

in a way that maximizes the power of the association study (at a fixed significance

level). This is usually done by choosing a subset of the SNPs, called tag SNPs (or

simply tags), whose number is commonly determined by the resources available.
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Identifying an optimal set of tag SNPs of minimum size with sufficiently high

power is germane to several aspects of genome association studies: candidate gene

studies (for example see Refs. e.g., [1-5]) seek association around a focused number

of genes rather than performing a genome-wide or unbiased search; low-budget asso-

ciation studies search for a limited number of tag SNPs in suspected regions or genes;

and multi-stage studies involve custom chips in the late stages, relying on customized

genotyping technologies that are still widely employed (sold by such companies as

Taqman of ABI, Sequenom, and the Golden Gate platform of Illumina).

Most current studies use the correlation coefficient as a criterion for the choice

of tag SNPs. This approach has certain theoretical justification, but the power of

subsequent association studies that use it has not been systematically investigated.

Here we show that using imputation accuracy in the tag selection stage gives more

power to association studies than the widely used correlation (r2) measure, especially

when sparse tags are sought.

1.2. Tag SNP selection criteria. There are many methods for selecting a

desirable set of tag SNPs, e.g. [9-14]. Generally, these methods use a training dataset

to study the properties of the correlation structure in the genome, and then use that

dataset to choose a set of tag SNPs based on some criterion. Criteria vary between

methods. In 2005 de Bakker et al. [14] described a method called Tagger for tag

SNP selection based on the r2 criterion. r2 is the square of the correlation coefficient

between two SNPs, when the two SNPs are viewed as binary vectors. Formally, for a

pair of SNPs with major allele 0 and minor allele 1, r2 = (p00−p0q0)2

p0(1−p0)q0(1−q0)
, where p00 is

the frequency of the haplotype 00, and p0, q0 are the frequencies of the major alleles in

the two SNPs. Tagger uses a heuristic greedy algorithm (originally suggested by [11])

to select tags that capture all SNPs with an r2 that exceeds a prescribed threshold

(e.g r2 > 0.8). In addition, to improve efficiency, it can perform an aggressive search

aimed at replacing each tag with a specific multi-marker predictor (on the basis of

the remaining tags). Tagger is implemented in the Haploview software [15] developed

as part of the HapMap project (www.hapmap.org).

Although Tagger is widely used and has been shown to considerably increase

the power of the association studies, its superiority over alternative methods with

regard to the power of association tests has not been fully investigated yet. Tagger’s

rationale for picking the set of tag SNPs according to the correlation coefficient rests

on theoretical foundations; specifically, it can be shown that if SNP A is a tag of SNP

B, and B is the single causal SNP, then the power to detect association in B by typing

A in n individuals is equivalent to typing B directly for r2n individuals [8]. Note that

Tagger is not guaranteed to find an optimal set of tags.

A natural alternative criterion for tag SNP selection is the prediction accuracy,

or imputation accuracy, which directly evaluates the average SNP imputation quality,



THE POWER OF IMPUTATION-BASED TAG SNP SELECTION 271

i.e., the average error rate in the imputation of the hidden SNP. This criterion has been

originally suggested by Stram [16]. A variant of the imputation accuracy criterion has

also been suggested by He and Zelikovsky [17], where multiple linear regression is used

to infer the hidden SNPs. Halperin et al. [13] suggested an algorithm called STAMPA,

which optimizes the selection of tag SNPs under the imputation accuracy criterion.

Under the approximate assumption of monotone LD decay (by which the LD between

a pair of SNPs is a monotone function of their physical distance), STAMPA was

shown to find an optimal set of tag SNPs using a dynamic programming algorithm.

The basic idea behind the STAMPA algorithm is that under LD decay, it is enough

to require that each hidden SNP will be imputed by its physically closest tag SNPs

from each side. For each hidden SNP and for each set of potential tag SNPs, we can

use the training dataset to estimate the prediction error rate for that SNP. We can

then use dynamic programming to search for a set of tag SNPs that minimizes the

average prediction error rate.

Although intuitively imputation accuracy is a reasonable optimization criterion,

the power of an association study that uses the tags is a more meaningful optimization

criterion, because it directly measures the chance of success of the study. It is therefore

important to evaluate the relationship between the criterion for tag SNP selection and

the power of the association studies that use the tags. Because the power gauges the

chance of success of an association study, selection of tag SNPs that yield higher power

will increase the effectiveness of future association studies, at no additional expense.

2. Methods. To empirically test the relation between the tag SNP selection

criterion and the power, we directly compared the power of Tagger and STAMPA;

to do so, we conducted extensive simulations similar to de Bakker et al. [14]. The

outline of the procedure is as follows (Figure 1): Starting from real haplotypes, we

generated many case-control panels, each with a known causal SNP. In each panel,

after selecting the tag SNPs, we computed the power of the sub-panel containing

the tags only, to detect association with the hidden causal SNP. This procedure was

repeated for different tag selection methods and for different tagging scenarios.

We evaluated the power obtained by the imputation accuracy criterion for tag

SNP selection used by STAMPA (as implemented in the software package GEVALT

[25]), to the power obtained by the correlation coefficient criterion used by Tagger (as

implemented in Haploview [15]). As a baseline, we compared the power of these two

criteria to a naive algorithm, Rand, which randomly selects tag SNPs. Tagger was

tested in both the standard mode and in its “aggressive mode”, which uses haplotypes

(we call the latter here Tagger-A).

We now describe the procedure in detail.

Generating panels: We extracted from the HapMap resource (release 21)

phased haplotypes of chromosome 1 of the 60 individuals (parents only) of west Eu-
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Fig. 1. Overview of the testing procedure. The procedure for one test panel in one region and

for one tag selection algorithm is shown. (A) We start with a reference panel containing the 120

HapMap haplotypes. (B) Tag SNPs are chosen. (C) A causal SNP is randomly selected and a panel

of 1000 cases and 1000 controls is simulated. (D) The non-tag SNPs are hidden. (E) The panel of

case/control genotypes is tested for association. (F) Steps C-E are repeated 50 times. The whole

procedure is repeated in 100 genomic regions, resulting in a list of 5000 p-values from which the

power of the tag SNP selection algorithm is calculated. (G) Each case/control panel is also tested

for association without hiding the non-tag SNPs. This allows calculation of the relative power of

the algorithm.

ropean ancestry selected by the Centre d’Etude du Polymorphisme Humain (CEPH)

[18]. SNPs with minor allele frequency <5% were removed, and the dataset was parti-

tioned into 100 disjoint regions of 1,000 contiguous SNPs per region (spanning the first

172Mb of chromosome 1). The average distance between adjacent SNPs was 1,364bp.

We selected a causal SNP at random in each region and constructed a panel of 1000

cases and 1000 controls according to a multiplicative model with genotype relative

risk of 1.5, using HAPGEN software [19]. We repeated this process 50 times, gener-

ating 50 panels per region. Similar disease models are widely used in the literature,

and in particular. Tagger was originally evaluated based on a similar disease model.

The choice of the relative risk value is somewhat arbitrary, however, one would expect
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that qualitatively similar results will be obtained when applying the same analysis

with a different value.

Selecting tags: In a separate procedure, we selected tag SNPs in each region

using each method. The same number of tag SNPs was selected by each algorithm.

The 120 HapMap haplotypes were taken as the training set for STAMPA and Tagger.

Testing association: For each panel, for the tag SNPs selected by each algo-

rithm, we computed association with the phenotype and performed permutation tests

to evaluate the significance of association. The permutation tests (sometimes referred

to as MAX (T)) are used to correct for multiple hypotheses, and the p-values reported

in this paper are all given as adjusted values.

To compute association, χ2 allelic tests with one degree of freedom were computed

and the p-values of association were computed using a permutation test (done with

RAT software [26]). For STAMPA, the set of tag SNPs was used to predict the values

of the other SNPs (as described in [13]), and the entire set of SNPs was tested for

association. For Tagger-A, the set of tests was generated as described in [14]. Since

Tagger-A uses haplotypes in the case-control panel to generate the tests, we also tested

a version of STAMPA that uses haplotypes instead of genotypes in the imputation,

for the purposes of comparison. For Tagger and Rand, the χ2 tests were applied only

to the tag SNPs.

In total, 5,000 case-control panels were generated, and 170,000 association tests

were performed.

Computing power: We evaluated the performance of the methods by their rel-

ative power, computed as follows. For a fixed significance level p0, we counted the

number of panels in which the algorithm had a significant (≤ p0) p-value (calculated

as detailed in 4 above). We then divided this number by the number of panels that

were detected as significant when all SNPs (including the hidden SNPs) were avail-

able. Hence, this measure evaluates how well an algorithm performs in comparison

to an algorithm that has full genotype (or haplotype) information. To test whether

the difference in relative power between two algorithms was significant, we used Mc-

Nemar’s test on the 2x2 contingency table obtained by counting the paired outcomes

(success or failure) of the two algorithms on each panel. Significance levels p0 = 0.05,

0.01, 0.005, and 0.001 were used.

3. Results.

3.1. Imputation accuracy confers higher power to association studies.

Several tagging scenarios were explored. The first scenario used Tagger’s default

parameters (r2 ≥ 0.8) to capture the entire set of SNPs. We then used STAMPA

to pick a set of tag SNPs of the same size as the one that was given by Tagger.

On average, 26.4% (standard deviation (SD) 6.3%) of the SNPs were selected as

tags (an average of one tag SNP per 5.4Kb). Results are shown in Supplementary
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Figure 1A. Both STAMPA and Tagger obtained a high relative power (96-98% under

significance levels ranging from P = 0.05 to P = 0.001) with non-significant differences

between the two methods. Random tag selection (Rand) had significantly lower power

than both, but, interestingly, it attained a high relative power of 90.5-95.5%.

We next applied Tagger’s aggressive method (using 2- and 3-marker haplotypes,

and default parameters r2 ≥ 0.8, LOD threshold 3.0) to capture the entire set of

SNPs (see Supplementary Figure 1B). The average fraction of SNPs selected as

tags was 21.2% (SD 5.3%; i.e., an average of one tag SNP per 6.7kb). The high relative

power of both methods remained (95.3-98%). However, STAMPA had a significant

advantage over Tagger for p-value cutoffs 0.001 (97% vs. 95.3%, p-value of 8.9 ×

10−5) and 0.005 (97.4% vs. 96.8%, p-value of 0.04).

The density of tag SNPs needed by Tagger to capture all the SNPs in a region

was quite high, ∼25%. We next explored scenarios where the tag density was lower.

We used Tagger’s ‘best N ’ method, which, for a pre-specified N , seeks the N tags

that capture the maximum number of SNPs with the prescribed r2 threshold. We

set N to be 34, 45, 68, and 136, which corresponds to an average of one tag SNP

per 40, 30, 20, and 10 Kb, respectively. We tested both Tagger and Tagger-A (with

default parameters r2 ≥ 0.8, LOD threshold 3.0). Results are shown in Figure 2.

All algorithms showed a linear decrease in power as the tag density decreased, but

the rate of decrease in STAMPA’s performance was much lower than Tagger’s. In

all tests STAMPA attained a higher power than Tagger but with varied differences.

The advantage in the relative power was 11% at a tag distance of 40Kb. STAMPA’s

advantage is smaller but statistically significant also at tag distances of 20 and 30

Kb under all significance levels (P-values <0.007), but not at 10 Kb. Interestingly,

Tagger-A performed essentially the same as Tagger. When haplotypes instead of

genotypes were used in the imputation, STAMPA’s advantage was greater, and the

differences were statistically significant at all tag distances.

An alternative to Tagger’s ’best N ’ method is to lower the r2 threshold until

the desired number of tags is selected. We applied this method to select tags at

tag distances 10 and 40kb and performed the same simulations as above. The tags

selected by the alternative method gave uniformly less power (results not shown).

Note that STAMPA maintains acceptable power even when the selected tags are

sparse. For example, at significance p ≤ 0.05, STAMPA’s relative power is 86% when

the tag distance is 40kb.

3.2. The advantage in power is due to imputation accuracy. Our ex-

tensive simulations with real haplotypes showed that STAMPA, which optimizes the

imputation accuracy, attained significantly and consistently greater power than Tag-

ger, which optimizes r2, and that this advantage increased at lower densities. This

advantage in the power is explained primarily by the imputation accuracy criterion
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Fig. 2. Relative power at different tag SNPs densities. The relative power is shown for

STAMPA, Tagger, Rand, STAMPA using haplotypes, and Tagger using prediction. The number

of tag SNPs per tested region was limited to 34, 45, 68, and 136, which corresponds to an average

distance between tags of 40, 30, 20, and 10kb, respectively. The power is shown in four different

p-value cutoffs. Tagger+prediction selects tags using Tagger and then predicts the non-tags using

STAMPA’s method. Tagger-A gave virtually identical results to Tagger (not shown).

STAMPA uses to select the tags. An alternative explanation ascribes the advantage

to the performance of the two algorithms: STAMPA’s algorithm selects an optimal

set of tags, according to its criterion, whereas Tagger, being a heuristic, may select

only a suboptimal set according to its criterion. To test this possibility, we calculated

the r2 coverage of tags selected by each method: For each threshold θ, we calculated

the fraction of non-tag SNPs that are captured by some tag with r2 ≥ θ. Fig-

ures 3A,B show that Tagger had a higher r2 coverage. Hence, STAMPA had higher

power although its tags had lower r2 coverage, ruling out the latter explanation.

STAMPA was designed to select tags that optimally predict the non-tags. Unlike

Tagger, the use of the predicted non-tags in association tests is an essential part of

STAMPA. Is STAMPA’s advantage due to the different tags chosen, or is it merely

because STAMPA predicts the values of the non-tag SNPs and Tagger does not?

To answer this question, we selected tags using Tagger and used them to predict

the hidden SNPs based on STAMPA’s imputation method. We then computed the
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A B
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Fig. 3. Average SNP coverage as a function of the r
2 threshold. A,B: For every value x of r

2

the plots show the fraction of non-tag SNPs that have r
2 ≥ x with some tag SNP. C,D: For every

value x of r
2 the plots show the fraction of non-tag SNPs that have r

2 ≥ x with their predicted

values as computed on the HapMap haplotypes. The curves do not reach 100% since some of the

SNPs are predicted to be monoallelic, which makes the r
2 measure undefined. Results are shown for

the datasets with 10kb (A,C) and 40kb (B,D) tag distance. Tagger-A gives almost identical results

to Tagger (not shown).

association for each tag and for each predicted non-tag. The results for the ’best N ’

scenario can be seen in Figure 2. The imputation algorithm does improve Tagger’s

relative power (all P-values <0.05 using McNemar’s test), but only by a modest factor

(average increase of 1.1%), and still well below that of STAMPA.

It is possible that STAMPA’s advantage is not because of the tag selection method,

but because the imputation method and the criterion match, while they do not match

when using Tagger and then STAMPA’s imputation method. To test this, one can

select tags by each method and impute the non-tags by an unrelated imputation

method, such as the widely used method IMPUTE [19]. We applied this procedure
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with STAMPA, Tagger, and Rand and then computed the correlation coefficient be-

tween the imputed SNPs and their real values. As shown in Supplementary Figures

2 A,B, STAMPA’s selected tag SNPs had a clear advantage over Tagger’s when the

tag SNPs were at a distance of 30kb or more (Kolmogorov-Smirnov test p-values. For

example, at an average tag distance of 40kb, 93% of the imputed SNPs had correla-

tion larger than 0.9 with some STAMPA’s tags, and 82% with Tagger’s. For distances

<30kb, STAMPA still had significant advantage, but the difference was small.

3.3. Imputation accuracy predicts the non-tags better. We also compared

the ability of each method to predict the hidden SNPs. For each set of tags, we pre-

dicted the hidden SNPs in the original 120 HapMap haplotypes and calculated the r2

between each real non-tag and its imputation. We note that Tagger is not designed to

optimize the imputation accuracy, and therefore our test is meant as a validation that

STAMPA does achieve higher imputation accuracy in practice. Figure 2 illustrates

the large advantage of STAMPA over Tagger. The large difference was manifested

by the error rates when imputation was applied on the simulated panels. The error

rate is defined as the fraction of wrongly predicted alleles. At tag distances of 10,

20, 30, and 40kb, the average error rates of STAMPA were 3.9, 5.2, 6.2, and 7.1%,

respectively, while Tagger’s error rates were almost twofold higher: 8.9, 9.4, 10.5, and

11.5%, respectively.

3.4. Using haplotypes increases the power. As shown above, using hap-

lotypes instead of genotypes in the imputation increased STAMPA’s advantage in

power over Tagger (see Figure 1). This suggests that in real scenarios, if experimen-

tal information on phasing is not available (e.g. from trios), one might gain power by

performing the association test on haplotypes that have been phased computationally.

We could not test this scenario in our simulations because of the added computational

burden of phasing many thousands of panels. When we performed phasing using fast-

PHASE [21] on a limited number of examples and measured the error rate of the

phasing algorithm, the switch error rate [21] was small at tag distances of ≤10kb (2-

4%) (data not shown). Therefore, the results described above with computationally

derived haplotypes are expected to be only marginally less accurate than were we to

use the true haplotypes. Hence, even at high tag densities, STAMPA probably has

an advantage over Tagger if phasing of the tags is performed before predicting the

hidden SNPs.

4. Discussion. Finding an optimal set of tags remains extremely important for

two reasons: First, certain platforms (such as Illumina’s Golden-Gate, ABI’s TaqMan,

Sequenom, and Affymetrix’s Custom SNP Kits) are designed for customized genotyp-

ing, and require ad-hoc tag selection for each new study. The availability of such a

variety of commercial products attests to their ongoing use. Many focused association

studies cannot use standard arrays and have to select tags for specific genomic areas,
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often at modest density owing to budget constraints (this need is also demonstrated

by the more than 300 studies using Tagger to date). Second, each new generation of

standard high-density chips involves the selection of a new set of tag SNPs, so future

chips produced by these technologies would benefit considerably from more powerful

selection methods. Although average tag densities in such chips will increase, there are

sparse genomic regions showing low LD [27], on which imputation-based tag selection

will have an advantage.

Recently, several studies [19,22-24] used algorithms for imputing untyped SNPs

based on typed tag SNPs. The idea was to use all the imputed SNPs when performing

the association test. This approach has higher power than using the tags without the

predicted SNPs, providing further for the use of tag selection algorithms based on

imputation accuracy. Since an imputation procedure is performed on the tags, and

only then the association is tested, it makes sense to choose the tags that impute the

rest of the SNPs with minimal error rate. As we demonstrated, STAMPA imputes

consistently better than Tagger (Figures 3C,D). Hence, our results indicate that

if imputation accuracy is used instead of r2 to select the tags, methods that use the

imputed SNPs in computing association (e.g., Halperin et al. [13], and Stram [16]) will

achieve higher power. Note that the fact that Tagger has been shown to outperform

other correlation-based tag SNP selection methods strengthens our confidence in the

suggested conclusion; however, since there is no guarantee for the optimality of Tagger,

there is always the possibility that an improved algorithm for the optimization of the

correlation criterion will result in different conclusions.

Because the same haplotypes used to select tag SNPs were also used to create

the case/control data, there is a possible risk of overfitting in our results. Owing to

the scarcity of large-scale published haplotypes, we could not completely separate the

data for the training and the test phases. As a partial remedy to this problem, we

created the test panels with the HAPGEN software [19], which simulates case and con-

trol individuals conditional upon a set of known haplotype data using an estimate of

the fine-scale recombination rate across a region. This approach uses the Li-Stephens

model [20], and is preferable to a direct resampling approach [14] that produces new

haplotypes that are copies of the original HapMap haplotypes. Even if there is a

modest amount of overfitting in the reported power levels, because the same simu-

lated datasets were used by STAMPA and Tagger, the qualitative differences between

the performances of the two methods should remain the same. Every association

study is preceded by selection of the tag SNPs to be typed, whether explicitly by the

researchers or by chip manufacturers. The success of an association study critically

depends on its power. Here, we demonstrated that using the imputation accuracy

in the tag selection stage is preferable to the widely used r2 measure. We assumed

that association is tested on each SNP separately, which is the common practice.

However, different measures for tag SNP selection might give higher power in other
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testing approaches. Although STAMPA might not give optimal power, it outperforms

the standard method currently in use. Therefore, the connection between tag SNP

selection and power deserves further exploration.
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SUPPLEMENTARY FIGURE 1. Relative power of the three methods: STAMPA, Tag-

ger and Rand, for different significance levels. A: using pairwise tagging. B: using aggressive

tagging on haplotypes.
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A

B
SUPPLEMENTARY FIGURE 2. Correlation coefficient between the imputed SNPs and

their real values. The tag SNPs are selected by each method - STAMPA, Tagger, and Rand -

and the imputation of the non-tags is performed by the IMPUTE algorithm. For every value

x of r
2 the plots show the fraction of non-tag SNPs that have r

2
≥ x with their predicted

values as computed on the HapMap haplotypes. A: Average tag distance of 30kb, B: Average

tag distance of 40kb.


