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Abstract

Recent clinical evidence suggests important role of lipid and amino acid metabolism in early pre-autoimmune stages of type
1 diabetes pathogenesis. We study the molecular paths associated with the incidence of insulitis and type 1 diabetes in the
Non-Obese Diabetic (NOD) mouse model using available gene expression data from the pancreatic tissue from young pre-
diabetic mice. We apply a graph-theoretic approach by using a modified color coding algorithm to detect optimal
molecular paths associated with specific phenotypes in an integrated biological network encompassing heterogeneous
interaction data types. In agreement with our recent clinical findings, we identified a path downregulated in early insulitis
involving dihydroxyacetone phosphate acyltransferase (DHAPAT), a key regulator of ether phospholipid synthesis. The
pathway involving serine/threonine-protein phosphatase (PP2A), an upstream regulator of lipid metabolism and insulin
secretion, was found upregulated in early insulitis. Our findings provide further evidence for an important role of lipid
metabolism in early stages of type 1 diabetes pathogenesis, as well as suggest that such dysregulation of lipids and related
increased oxidative stress can be tracked to beta cells.
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Introduction

Type 1 diabetes (T1D) is an autoimmune disease that results in

destruction of insulin-producing beta cells of the pancreas [1]. The

early stages of T1D pathogenesis are characterized by insulitis, an

inflammation of the islets of Langerhans of the pancreas caused by

the lymphocyte infiltration. Although the seroconversion to islet

autoantibody positivity has been the first detectable signal for the

onset of autoimmunity and progression towards diabetes [2], the

initiators of autoimmune response, mechanisms regulating pro-

gress toward beta cell failure and factors determining time of

presentation of clinical diabetes are poorly understood.

We recently investigated changes in the serum metabolome

prospectively in a unique cohort of children at genetic risk for

T1D. Intriguingly, we detected multiple changes related to

dysregulation of lipid and amino acid metabolism preceding the

autoimmunity and overt T1D [3]. In order to better understand

the early diabetes pathogenesis, it would have been therefore of

great importance to study the molecular mechanisms behind the

early metabolic dysregulation as related to the autoimmune

response, an area so far neglected in T1D research.

Motivated by our clinical findings, here we study molecular paths

associated with the incidence of type 1 diabetes (T1D) and insulitis in

the Non-Obese Diabetic (NOD) mouse model using the available

gene expression data from young pre-diabetic mice [4]. The NOD

mouse is a strain whose immune system shares many similarities with

human’s immune system as well as the autoimmune response [5]. It

is therefore widely used in studies aiming to elucidate T1D, although

it is also clear that this experimental model may only in part reflect

the the immune system and T1D pathogenesis in human [6]. We

introduce a method EMPath (Enriched Molecular Path detection) for

detection of molecular paths of physical interactions in an integrated

network of protein-protein interactions, signal transduction maps

and metabolic pathways by applying a modified version of the color

coding algorithm [7]. The color coding algorithm was applied

previously to detect signaling pathways derived from protein

interaction networks [8]. In our approach the phenotype context is

achieved by the introduction of path weights based on the network

structure combined with the mRNA expression data. Our aim is to

detect paths in an integrated network such that up- or down-

regulated protein nodes, as estimated by the gene expression data,

are significantly over-represented on the path in comparison with the

rest of the network (Figure 1).

Results and Discussion

Detection of molecular paths associated with insulitis
and type 1 diabetes incidence

We applied the EMPath method to an integrated network of

protein-protein interactions, signal transduction maps and meta-

bolic pathways where the nodes are proteins or metabolites and

the edges are interactions or reactions. In order to study the

network in the biological context, we used gene expression

information to weight the corresponding protein nodes.

Since our primary aim as related to T1D was to study tissue-

specific changes of molecular paths during the early disease
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pathogenesis, the appropriate study design should include young

pre-diabetic mice with selected controls. We searched the

T1DBase [9] which hosts T1D related genetic and expression

data and identified the study by Vukkadapu et al. [4] as the only

suitable for our analysis. In addition to that study, there were two

other studies available in T1DBase; Chaparro et al. [10] and

Stanford RoadMap of NOD Type 1 Diabetes (http://fathmanlab.

stanford.edu/roadmap_study_design.html). However, we found

that Vukkadapu et al is more suitable for our analysis than these

studies. Chaparro et al. contains data from 6-, 9- and 15 week old

mice, whereas Vukkadapu et al. investigated 3 week old mice. The

young mice are more informative for the goals of our study since

insulitis is known to occur until 3 or 4 week of age [5]. Standford

RoadMap has not yet been published in any journal as of August

2009. However, once available this data will include young mice

and will probably provide relevant data in the context of early

disease pathogenesis in NOD mice.

In the study by Vukkadapu et al. [4], the pancreatic tissue gene

expression data is available for four NOD mouse strains from 3

week old animals: BDC2.5/NOD, NOD, BDC2.5/NOD.scid,

and NOD.scid. The data analysis in the primary publication was

focusing primarily on known T1D-related genes associated with

the autoimmune response and inflammation [4]. The four

experimental models studied by Vukkadapu et al. have differences

in the incidence of insulitis and T1D. The BDC2.5/NOD and

NOD mice have accelerated and slow insulitis development,

respectively. Therefore, comparison of these mouse models may

provide information about the pathways associated with early

insulitis although as a limitation one should also keep in mind that

this not an ideal comparison since genetic factors associated with

e.g. age and growth are not controlled for. The BDC2.5/NOD.scid

model has extremely high diabetes incidence, which develops

already at 3–4 weeks of age, whereas the NOD.scid does not

develop diabetes. The pathways associated with differences

between these two mouse models may thus provide information

about mechanisms specific to late insulitis and T1D.

We performed path detection for the two comparisons: (1)

BDC2.5/NOD vs. NOD (early insulitis) and (2) BDC2.5/NOD.vs.

NOD.scid (late insulitis and early T1D). We detected multiple

optimal paths at p,0.025 threshold in both case-control

combinations (Figures S2–S5). Selected high scoring paths are

shown in Figure 2. Two serine/threonine-protein phosphatases,

2A (PP2A) and 5 (PP5) were members of the most upregulated

paths in early insulitis (Figure S2). PP2A and PP5 are known to

interact [11], and PP2A is associated with the autoimmune

response in systemic lupus erythematosus [12]. Interestingly, PP2A

is also a regulator of insulin secretion in pancreatic beta cells [13]

and its activation is required for repression of PPARa, a key

regulator of genes involved in beta cell fatty acid oxidation [14].

Several paths including lipid metabolism enzymes were found

downregulated in early insulitis (Figure S3, Table S1). Lipid

phosphate phosphohydrolase 3 (LPP3) hydrolizes specific phos-

pholipids in the lipid membrane, leading to production of e.g.

diacylglycerols and ceramides [15]. Two of the enzymes of

carnitine metabolism, carnitine O-palmitoyltransferase I (CPT1)

and 4-trimethyl aminobutyraldehyde dehydrogenase (TMA-

BADH), were also downregulated in the BDC2.5/NOD mice.

Interestingly, the dihydroxyacetone phosphate acyltransferase

(DHAPAT; Uniprot ID P98192), a key regulator of ether

phospholipid synthesis [16], was found in a downregulated path

in close proximity of CPT1 (Figure S3).

Two interacting members of the cytochrome P450 family,

CYP1B1 and CYP1A1, were found upregulated and present in

multiple paths associated with late insulitis and T1D (Figure S4),

while basigin (CD147 antigen, also named extracellular matrix

metalloproteinase inducer) was found in several downregulated

paths (Figure S5). CD147 is a receptor of cyclophilins and is an

important messenger of intercellular communication involved also

in recruitment of leukocytes from the periphery into tissues during

inflammatory responses [17].

As a potential limitation of our approach, in the path detection

method presented here we assign weights to nodes based on

mRNA expression data and not on protein concentration or direct

interaction data. The protein-level data would be ideal for our

approach, but such data is generally not available at the global

scale such as in transcriptomics studies. We thus use the protein

encoding mRNA expression as an approximation, although it is

well known that mRNA and corresponding protein level do not

always correlate [18]. Although approximate, we believe that use

of mRNA expression when protein-level data is unavailable or too

sparse is justified and can still provide useful hints about the

molecular paths associated with the investigated phenotypes.

Functional characterization of molecular paths
To better understand the paths detected by EMPath in the

context of known pathways, we assessed the functional enrichment

of detected paths similarly as previously described [8]. We cross-

classified the proteins from a molecular path according to whether

or not their encoding genes belong to gene sets obtained from the

Molecular Signature Database (MSigDB) [19] and tested if the

number of those genes associated with the path is larger than

expected by chance using the hypergeometric test. We corrected

the p-values for multiple comparisons using the False Discovery

Rate (FDR) q-values. By setting the statistical significance level at

FDR q,0.05, we identified multiple gene sets over-represented

among the detected molecular paths (Table S2). As a summary,

the top ten enriched pathways in each of the case-control settings

are shown in Table 1.

It is evident from Table 1 that early insulitis (i.e. BDC2.5/NOD

strain, as compared to NOD) is associated with altered cell

signaling since multiple (de)phosphorilation pathways are affected.

In contrast, the lipid metabolism is diminished. The paths

associated with late insulitis and T1D in BDC2.5/NOD.scid

strain are related to cell communication and related processes,

Figure 1. Enriched molecular path detection concept. Illustrative
example of path detection in a complex network of interacting entities.
An enriched path of 6 entities is highlighted.
doi:10.1371/journal.pone.0007323.g001

Pathways en Route to Type 1
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Figure 2. Selected paths significant in different case-control settings. Upregulated (A) and downregulated (B) paths related to insulitis.
Upregulated (C) and downregulated (D) paths related to late insulitis and T1D.
doi:10.1371/journal.pone.0007323.g002

Pathways en Route to Type 1
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while the nucleotide and nucleoside metabolism, i.e., likely related

to cell cycle and DNA repair, is impaired.

Comparison of path detection with pathway analysis
We performed Gene Set Enrichment Analysis (GSEA) [19] for

both case-control comparisons. Table 2 contains the top scored

pathways for each strain at FDR q,0.05, while a full list of affected

pathways at recommended q,0.25 is shown in Tables S3–S6. In

agreement with earlier analyses [4], both EMPath (Table 1) and

GSEA analyses confirmed multiple inflammatory and T cell

activation pathways in pancreatic tissue in late insulitis and early

T1D. The cell proliferation, division, as well as nucleotide synthesis

pathways were found diminished, confirming increasing cell death

and DNA damage at this late stage of disease pathogenesis.

In accordance with path detection results, lipid metabolism

related pathways (fatty acid metabolism and bile acid synthesis) are

downregulated in insulitis, while the cell cycle related pathways are

downregulated in T1D (Table 2). The CPT1 and TMABADH

Table 1. Top enriched pathways in insulitis and type 1 diabetes as derived from detected paths.

Gene set Source n(P & G) n(G) Nominalp-value FDR q-value

Enriched in upregulated paths (BDC2.5/NOD vs. NOD)

PTDINSPATHWAY BioCarta 3 19 0.000004 0.000103

HSA00051_FRUCTOSE_AND_MANNOSE_METABOLISM KEGG 3 27 0.000012 0.000155

HSA00530_AMINOSUGARS_METABOLISM KEGG 2 16 0.000025 0.000280

GALACTOSE_METABOLISM GenMAPP 2 20 0.000596 0.003099

HSA00052_GALACTOSE_METABOLISM KEGG 2 24 0.000863 0.003738

GLUCONEOGENESIS GenMAPP 2 39 0.002286 0.006604

GLYCOLYSIS GenMAPP 2 39 0.002286 0.006604

HSA04630_JAK_STAT_SIGNALING_PATHWAY KEGG 4 100 0.000118 0.008023

HSA04664_FC_EPSILON_RI_SIGNALING_PATHWAY KEGG 3 62 0.000150 0.008426

GHPATHWAY BioCarta 2 24 0.000863 0.016104

Enriched in downregulated paths (BDC2.5/NOD vs. NOD)

GLYCEROLIPID_METABOLISM GenMAPP 3 24 ,1026 0.000011

STATIN_PATHWAY_PHARMGKB GenMAPP 2 16 0.000152 0.000557

HSA00565_ETHER_LIPID_METABOLISM KEGG 2 21 0.000441 0.002093

HSA00071_FATTY_ACID_METABOLISM KEGG 2 29 0.000847 0.002311

HSA00120_BILE_ACID_BIOSYNTHESIS KEGG 2 20 0.000399 0.002311

HSA00220_UREA_CYCLE_AND_METABOLISM_OF_AMINO_GROUPS KEGG 2 21 0.000441 0.002311

HSA00310_LYSINE_DEGRADATION KEGG 2 29 0.000847 0.002311

HSA00340_HISTIDINE_METABOLISM KEGG 2 19 0.000359 0.002311

HSA00410_BETA_ALANINE_METABOLISM KEGG 2 17 0.000286 0.002311

HSA00620_PYRUVATE_METABOLISM KEGG 2 28 0.000789 0.002311

Enriched in upregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

EGFPATHWAY BioCarta 4 25 ,1026 0.000040

HSA04630_JAK_STAT_SIGNALING_PATHWAY KEGG 5 100 0.000002 0.000102

HSA05213_ENDOMETRIAL_CANCER KEGG 4 42 0.000004 0.000128

HSA05223_NON_SMALL_CELL_LUNG_CANCER KEGG 4 43 0.000004 0.000128

CTLA4PATHWAY BioCarta 3 15 0.000008 0.000131

ERK5PATHWAY BioCarta 3 16 0.000010 0.000131

HSA05214_GLIOMA KEGG 4 50 0.000007 0.000131

PTENPATHWAY BioCarta 3 16 0.000010 0.000131

NGFPATHWAY BioCarta 3 17 0.000012 0.000140

IGF1PATHWAY BioCarta 3 18 0.000014 0.000149

Enriched in downregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

PYRIMIDINE_METABOLISM GenMAPP 3 43 0.000010 0.000061

HSA00230_PURINE_METABOLISM KEGG 3 90 0.000096 0.000334

NDKDYNAMINPATHWAY BioCarta 2 16 0.000898 0.006367

HSA05110_CHOLERA_INFECTION KEGG 1 31 0.039815 0.046451

Top ten enriched gene sets at FDR q,0.05 defined in the Molecular Signature Database [19], using the gene lists derived from the detected paths (Figures S2–S5). The
p-value is obtained from the hypergeometric test. Column legend: n(P&G), number of common genes in the detected path and the gene set; n(G), number of genes in
the gene set.
doi:10.1371/journal.pone.0007323.t001
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found in downregulated paths associated with early insulitis (Table

S1) were both among the leading edge genes in the fatty acid

metabolism gene set, while TMABADH was also the leading edge

in the bile acid synthesis module.

Meta analysis of findings using T1DBase
To investigate how genes detected by EmPath change in gene

expression analyses seen in several other studies, we used the Meta

Analysis tool of the T1DBase (http://www.t1dbase.org/page/Meta-

Home) [9]. As a result, we selected the genes found in the significant

molecular paths (Figure 2) and visualized their differential expression

across multiple studies available in T1Dbase (Figures S6–S9).

We can see some interesting observations regarding the genes

that were involved in our detected paths. DHAPAT (often

abbreviated as GNPAT), a gene that was found in paths

downregulated in early insulitis in paths detected by EmPath, was

also down-regulated in mice deficient for transcriptional regulators

FoxA2 and Sox4 [20,21]. PP2 (also abbreviated as PPP2CA), a gene

that was upregulated in early insulitis and type 1 diabetes in paths

detected by EmPath, was also upregulated in FoxA2 deficient

mouse [20]. Another interesting observation is that the up-/down-

regulation of molecular paths in early insulitis in our study matches

particularly well with the data from the FoxA2 deficient mouse

(Figures S6–S7 and reference [20]). FoxA2 is a transcription factor

involved in the regulation of insulin sensitivity [22].

Ether lipids and oxidative stress in beta cells
As a most surprising finding from our study, multiple lipid

pathways were downregulated in early insulitis (BDC2.5/NOD vs.

NOD comparison), including the ether lipid metabolism (Table 1).

Ether phospholipid synthesis, including synthesis of plasmalogens,

starts in peroxisomes and involves esterification of dihydroxyace-

tone phosphate (DHAP) with a long-chain acyl-CoA ester [16,23]

(Figure 3). This first reaction is catalyzed by dihydroxyacetone

phosphate acyltransferase (DHAPAT, EC 2.3.1.42). This reaction

appears to be affected in early insulitis, since the path involving

DHAPAT is diminished (Tables 1 and S1, Figure S3). The

plasmalogens are the most abundant ether phospholipids and may

protect cellular functions from oxidative damage [24,25]. The ether

lipids were also found consistently diminished in serum of children

who later progressed to type 1 diabetes [3]. Diminished protection

against the reactive oxygen species is relevant for T1D since

pancreatic beta cells are particularly susceptible to oxidative

damage [26,27]. Further supporting the role of lipids in early

Table 2. Top scored pathways in GSEA.

Gene set Size Enrichment Score Nominal p-value FDR q-value Source

Downregulated paths (BDC2.5/NOD vs. NOD)

HSA03010_RIBOSOME 44 20.61 0.000466 0.0027 KEGG

WNTPATHWAY 22 20.63 0.002375 0.0252 BioCarta

HSA00071_FATTY_ACID_METABOLISM 29 20.58 0.001845 0.0291 KEGG

CALCINEURINPATHWAY 17 20.64 0.007370 0.0392 BioCarta

PROTEASOMEPATHWAY 21 20.61 0.004710 0.0418 BioCarta

BILE_ACID_BIOSYNTHESIS 15 20.65 0.007466 0.0425 GenMAPP

Upregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

HSA04610_COMPLEMENT_AND_COAGULATION_CASCADES 52 0.62 ,10–5 0.0022 KEGG

HSA04612_ANTIGEN_PROCESSING_AND_PRESENTATION 33 0.66 ,10–5 0.0038 KEGG

HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 74 0.54 ,10–5 0.0107 KEGG

HSA04060_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 169 0.47 ,10–5 0.0183 KEGG

NKCELLSPATHWAY 15 0.71 0.002838 0.0310 BioCarta

HSA04940_TYPE_I_DIABETES_MELLITUS 20 0.66 0.002753 0.0353 KEGG

Downregulated paths (BDC2.5/NOD.scid vs. NOD.scid)

CELL_CYCLE_KEGG 58 20.57 ,10–5 0.0031 GenMAPP

CELL_CYCLE 53 20.56 ,10–5 0.0073 GO

UBIQUITIN_MEDIATED_PROTEOLYSIS 20 20.67 0.000937 0.0096 GenMAPP

G1_TO_S_CELL_CYCLE_REACTOME 54 20.53 ,10–5 0.0112 GenMAPP

HSA00190_OXIDATIVE_PHOSPHORYLATION 86 20.49 ,10–5 0.0113 KEGG

P53PATHWAY 16 20.70 0.001388 0.0144 BioCarta

PROTEASOMEPATHWAY 21 20.64 ,10–5 0.0174 BioCarta

HSA04120_UBIQUITIN_MEDIATED_PROTEOLYSIS 25 20.62 0.000473 0.0177 KEGG

HSA04110_CELL_CYCLE 82 20.47 0.000553 0.0211 KEGG

CARM_ERPATHWAY 19 20.63 0.004144 0.0279 BioCarta

MRNA_PROCESSING_REACTOME 83 20.46 ,10–5 0.0312 GenMAPP

HSA00510_N_GLYCAN_BIOSYNTHESIS 24 20.59 0.003738 0.0356 KEGG

G2PATHWAY 18 20.62 0.004585 0.0475 BioCarta

This table contains top scored gene sets in GSEA for each strain (FDR q,0.05). The gene sets studies are the same as in the analysis for Table 1. None of the pathways
were significantly upregulated in the BDC2.5/NOD vs. NOD comparison using the FDR q,0.05 threshold.
doi:10.1371/journal.pone.0007323.t002
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insulitis, the enzymes of carnitine metabolism and fatty acid

transport to mitochondria (CPT1 and TMABADH) were found in

downregulated paths as well.

Previous genetic studies have shown that defective plasmalogen

synthesis associates with impaired membrane trafficking [28]

although the implications for type 1 diabetes remain to be

established [29]. Plasmalogen synthesis-related genes such as

DHAPAT clearly need to be evaluated as potential type 1 diabetes

susceptibility genes. The complete depletion of ether lipids via a

genetic DHAPAT knock-out model leads to a severe phenotype,

including arrest of spermatogenesis, development of cataract and

defects in central nervous system myelination [30]. In order to

study the physiological consequences of altered ether lipid levels as

observed in pre-diabetes, one would therefore need to establish

experimental models with partial depletion of ether lipids.

Conclusions
We demonstrated that graph-theoretic approaches such as

EMPath are a useful tool for detecting pathways of physical

interactions associated with specific disease phenotypes. Our

findings from the study of paths associated with early insulitis and

T1D are consistent with recent findings from a large scale clinical

metabolomics study, suggesting an important role of lipid

metabolism in the early stages of T1D pathogenesis. We provide

evidence that such dysregulation of lipid metabolism and related

oxidative stress may be tracked to beta cells and may thus explain

the beta cell loss due to increased oxidative stress. The genes

identified as important in early insulitis such as DHAPAT or PP2A

clearly need to be investigated further in the context of early T1D

pathogenesis as well as for their therapeutic potential.

Materials and Methods

Construction of integrated network
We constructed an integrated interaction network by combining

protein-protein interactions, signal transduction maps and meta-

bolic pathways in mouse as described previously [31,32]. The

integrated network nodes stand for proteins or metabolites, and

edges stand for interactions between nodes. We retrieved protein-

protein interactions from BIND [33], MINT [34] and DIP [35],

signal transduction interactions from TransPath [36] and biochem-

ical reactions from KEGG [37]. We excluded highly connected

cofactors from the network since they do not participate in the

actual metabolic conversions as substrates or products. Therefore,

their inclusion would connect many metabolically distant enzymes.

The excluded cofactors are listed in the Supplementary Table S7.

Gene expression data
We obtained normalized gene expression data from the T1D

dataset [4] from NCBI Gene Expression Omnibus (GEO)

database [38] series accession number: GSE1623. We used the

samples GSM27446 (BDC2.5/NOD1), GSM27451 (BDC2.5/

NOD.scid_1), GSM27453 (NOD.scid1) and GSM27456 (NOD1)

in all the analyses presented in this paper. In the source mouse

model experiments [4], RNA hybridization was done on

Affymetrix gene chip platform MGU74AV2.

Edge and node weights
The color coding algorithm used in [8] was not suitable for

detecting paths in phenotypic context, since they did not have any

phenotypic weights. Their weights were solely based on reliabilities

of interactions. We modified the color coding algorithm so that it

works in phenotypic manner by assigning weights to nodes. We

did the weight assignment for each mouse model comparison

separately. In order to find the up-regulated paths, we assigned

case-control ratios. And to find down-regulated paths, we assigned

control-case ratios as weights to nodes. We can thus use the color

coding algorithm to find maximum paths in both cases.

We assigned equal weights of 1.0 to all edges from MINT, DIP,

KEGG and TransPath, while the edges from BIND were set to

0.33, reflecting large database size of BIND and its reliability of

interactions [39].

Path scoring
The path score is computed as follows. In order to give high penalty

for a cascade of unreliable edges, we first multiply all edge weights. In

order to reward inclusion of high weight nodes, we sum up all node

weights. In the end, we multiply the edge product and the node sum.

More precisely, the path scoring scheme is presented in Figure S10 and

Formulas (1)–(3) below. We thus move forward on a path by selecting a

node and edge so that the total weight is maximized. However, we are

not allowed to move forward to a node if its color is inside the sliding

window (read more in the next paragraph).

w edgeProdð Þ~w E12ð Þ�w E23ð Þ�w E23ð Þ� ::: �w E n{1ð Þnð Þ ð1Þ

w nodeSumð Þ~ w N1ð Þzw N2ð Þzw N3ð Þz:::zw Nnð Þ ð2Þ

w totð Þ~ w edgeProdð Þ � w nodeSumð Þ ð3Þ

We used a color coding algorithm for detecting optimal paths

[7]. The basic idea of this algorithm is to assign colors (i.e., integers)

Figure 3. Schematic representation of the steps involved in the
biosynthesis of ether phospholipids, including plasmalogens. The
lipids found consistently downregulated in serum of children who later
developed type 1 diabetes [3] are shown in green box. DHAPAT enzyme is
found in the downregulated paths in early insulitis in the present study
(green arrow). The first three reactions in the pathway take place in
peroxisomes, while the others are catalyzed by microsomal enzyme systems.
Other routes for the formation of ether phospholipids may exist [16].
doi:10.1371/journal.pone.0007323.g003

Pathways en Route to Type 1
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to nodes randomly and detect paths which do not contain same color

twice. The restriction on colors guarantees that the detected path is a

simple path. When the network is very large, the applicability of this

algorithm is challenged by the large computer memory requirements.

To address this limitation, we extended the algorithm by using a sliding

window so that the distinct color requirement applies only to nodes that

are inside the window (Figure S1). That is, unlike the original algorithm

which allows no two nodes in a path to have the same color, our

algorithm allows no two nodes within the length of the sliding window

to have the same color. We first tried to detect a path by using a

window length that is equal to the length of detected path. If we did not

find a path, we decreased the window length by 1 until we found a path

or the window length became 1. This modification improves the

performance because it avoids storing of the whole path in computer

memory. The algorithm is thus faster and it is capable of detecting

longer paths. It is thus more applicable to integrated networks that are

usually very large. However, in principle the original version could be

used in integrated networks, but it is more probable that there appear

memory problems.

Statistical significance of a path
In order to test for the null hypothesis that the detected path is

obtained by chance, we calculated the p-values. In order to

calculate one p-value, we shuffled node and edge weights 10,000

times. For the purpose of computational efficiency, we first tested

how promising the p-value looks after each shuffle based on the

pre-specified cutoff criterion (p-value ,0.025), then jumped into

the next path if the criterion was not met. The full algorithm for

the p-value calculation is described in the Supplementary Text S1.

Network harvesting
A network is considered harvested if all optimal paths in the

network are detected. However, there is not any rigorous way to

define when the network is harvested, so we took a heuristic

approach by assuming that the network is harvested if we come up

with 50 consecutive iterations in which the detected path is

previously detected. However, since the p-value calculation for an

optimal path is computationally expensive, we also limited

ourselves to finding at most two optimal paths of the same length

in each network (i.e., in each mouse model comparison). It is easy

to increase this number of paths if required. The algorithm is

described in the Supplementary Text S2.

Characterization of paths
We used a hypergeometric test to identify gene sets from the

MSigDB [19] that are over-represented in the molecular paths

detected by the EMPath method. First, as a quality control criterion,

we restricted the searches to gene sets compiled from pathway

databases KEGG, BioCarta, GenMAPP, and GO. Next, we defined

the Gene Symbol Universe by taking the union of all genes in the selected

gene sets. Next, we translated the Swissprot accession numbers of

protein nodes of the molecular paths to the Gene Symbols of their

encoding genes. These translations are done using Affymetrix

annotations of the mouse gene chip platform MGU74Av2, the

platform used for NOD mice gene expression experiments. Finally, by

using the function phyper of the R stats package [40] we tested for

enrichment of each gene set in each molecular path. In order to

account for multiple comparisons, the Benjamini and Hochberg’s

method for controlling the false discovery rate was applied [41].

Gene Set Enrichment Analysis
We performed Gene Set Enrichment Analysis (GSEA) of the

T1D gene expression data [4] using Java desktop version of the

software (February 2006 release). We performed GSEA separately

for the two selected phenotype comparisons. Since there was only

one sample per phenotype, giving one gene expression value per

gene per phenotype, we used the ratio of classes statistic of the GSEA

for ranking genes. We accessed the gene sets defined in the

MSigDB [19] and annotations for the Affymetrix gene chip

platform MGU74AV2 via ftp pages of GSEA from within the

software interface. The GSEA statistics were computed using

5,000 gene set permutations.

T1DBase Meta Analysis
First, we selected proteins from the paths detected by EmPath

(Figures S2–S5). They were annotated by Uniprot identifiers. We

then used EMBL database to find EMBL identifiers for

corresponding genes. The NCBI Entrez gene database (http://

www.ncbi.nlm.nih.gov/sites/entrez?db=gene) was then searched

to find Entrez gene identifiers for those genes. We used these

identifiers on the web user interface of the T1DBase Meta analysis

tool (http://www.t1dbase.org/page/MetaHome). We performed

the expression comparison by using all studies that were available

in the Beta Cell Biology Consortium.

Supporting Information

Text S1 The algorithm for calculating significance of optimal

paths detected by EMPath method (p-value calculation).

Found at: doi:10.1371/journal.pone.0007323.s001 (0.04 MB

DOC)

Text S2 Network harvesting algorithm.

Found at: doi:10.1371/journal.pone.0007323.s002 (0.03 MB

DOC)

Table S1 Genes found in downregulated paths in insulitis.

Found at: doi:10.1371/journal.pone.0007323.s003 (0.04 MB

DOC)

Table S2 Significantly enriched pathways in insulitis and type 1

diabetes as derived from detected paths.

Found at: doi:10.1371/journal.pone.0007323.s004 (1.06 MB

DOC)

Table S3 Enriched upregulated pathways in insulitis.

Found at: doi:10.1371/journal.pone.0007323.s005 (0.03 MB

DOC)

Table S4 Enriched downregulated pathways in insulitis.

Found at: doi:10.1371/journal.pone.0007323.s006 (0.09 MB

DOC)

Table S5 Enriched upregulated pathways in type 1 diabetes.

Found at: doi:10.1371/journal.pone.0007323.s007 (0.05 MB

DOC)

Table S6 Enriched downregulated pathways in type 1 diabetes.

Found at: doi:10.1371/journal.pone.0007323.s008 (0.08 MB

DOC)

Table S7 Excluded cofactors.

Found at: doi:10.1371/journal.pone.0007323.s009 (0.08 MB

DOC)

Figure S1 Use of a sliding window to optimize the path

detection. The distinct color requirement applies only inside the

window. We therefore do not need store the whole path in

memory, which makes the detection process faster. In this figure

we have an example in which our window size is 2. Our path

detection is at a stage in which we have traversed from A- to B to
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C. And we have {2,3} in denied colors. We can thus continue to

either D or E.

Found at: doi:10.1371/journal.pone.0007323.s010 (1.00 MB

DOC)

Figure S2 Upregulated paths in BDC2.5/NOD vs. NOD

comparison. The nodes are colored using the same color code as

in Figure 2. Edge annotations related to the source database: K,

KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s011 (1.30 MB

DOC)

Figure S3 Downregulated paths in BDC2.5/NOD vs. NOD

comparison. The nodes are colored using the same color code as in

Figure 2. Edge annotations related to the source database: K,

KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s012 (1.30 MB

DOC)

Figure S4 Upregulated paths in BDC2.5/NOD.scid vs. NOD.s-

cid comparison. The nodes are colored using the same color code

as in Figure 2. Edge annotations related to the source database: K,

KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s013 (1.30 MB EPS)

Figure S5 Downregulated paths in BDC2.5/NOD.scid vs.

NOD.scid comparison. The nodes are colored using the same

color code as in Figure 2. Edge annotations related to the source

database: K, KEGG; M, MINT.

Found at: doi:10.1371/journal.pone.0007323.s014 (1.26 MB EPS)

Figure S6 Meta-analysis for upregulated genes in BDC2.5/

NOD vs. NOD comparison. Genes are presented as rows and

study group comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s015 (1.87 MB EPS)

Figure S7 Meta-analysis for downregulated genes in BDC2.5/

NOD vs. NOD comparison. Genes are presented as rows and

study group comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s016 (1.86 MB EPS)

Figure S8 Meta-analysis for upregulated genes in BDC2.5/

NOD.scid vs. NOD.scid comparison. Genes are presented as rows

and study group comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s017 (2.25 MB EPS)

Figure S9 Meta-analysis for downregulated genes in BDC2.5/

NOD.scid vs. NOD.scid comparison. Genes are presented as rows

and study comparisons as columns.

Found at: doi:10.1371/journal.pone.0007323.s018 (1.67 MB EPS)

Figure S10 Path scoring method. In order to calculate the score

for the path, the edge weights are multiplied. All node weights are

then summed up. In the end, the edge product and the node sum

are multiplied. The total path score is thus (w(E12)* w(E23)*..*

w((n-1)N)))*(W(N1)+ W(N2)+..+ W(Nn)).

Found at: doi:10.1371/journal.pone.0007323.s019 (1.00 MB EPS)
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