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Abstract—Many renewable energy resources like wind-
turbines or solar collectors are volatile and unstable. Distributed
energy producing entities are clustered to virtual power plants
that – from a black-box perspective – should act like conventional
stable power plants. It is the task of intelligent control strategies
to compensate fluctuations and to exploit renewable recourses to
a maximal extend. In this paper we present a simple simulation
model of a virtual power plant that is based on real-world power
consumption and wind production data. A power storage system
allows to save overcapacities and to supply energy in case of
demand bursts. A reserve power plant allows additional energy
production to compensate shortcomings. The simulated power
plant can easily be extended by parameterizable modules. We
use a learning classifier system to evolve rules that control the
energy storage system and the reserve plant to compensate energy
fluctuations. A study of evolutionary parameters as well as a
discussion of the evolved rules complement the experimental ana-
lysis. A simple demand side management example demonstrates
the influence of pricing on the virtual power plant.

I. INTRODUCTION

Renewable electric energy systems like wind mills, biomass
or solar energy have an important part to play in modern
energy grids. Renewable electric energy production moves
today’s energy grids from a centralized single supply system
towards a decentralized bidirectional grid of suppliers and
consumers. But renewable resources are often volatile and
temporally unsteady. Their determining factors cannot be con-
trolled, and are difficult to predict. To compensate instabilities
and fluctuations in energy production, modules are clustered
to virtual power plants. The movement towards renewable
plants with higher degrees of efficiency, e.g., based on fuel
cells, and towards large energy storage systems, increase the
chances of successful virtual power plants that may be able to
replace conventional producers. Energy management systems
of the future will have the task to predict power demand and
production of fluctuating producers like wind turbines or solar
collectors, and to develop control strategies to balance power
consumption and production under uncertainty.

In this paper we describe a virtual power plant simulator
that models power consumption based on real-world data on
the demand side, and various types of power producers based
on parameterized entities. The simulation model can be used
to learn energy system management strategies that compensate
fluctuations, and to analyze the interplay between various types
of controllers. Methods from computational intelligence (CI)
turn out to be well appropriate to solve these problems. In

Section II we summarize related work in the field of virtual
power plant models and optimization. Section III concentrates
on a description of the virtual parameterizable energy con-
sumers and producers. We will learn controller strategies for
energy storage systems and compensating power producers,
as well as pricing for simple demand side management with a
learning classifier system (LCS). The LCS will be described
in Section IV, while the experimental results will be presented
in Section V. The last Section VI summarizes the results and
provides an outlook to future research directions.

II. RELATED WORK

Distributed energy supply by renewable resources becomes
more and more important. Willis and Scott [10] describe
planning and evaluation of distributed power systems in detail.
Davis [6] compares existing central station generation and
distributed resources with regard to various aspects like lia-
bility, power quality, infrastructure requirements or electrical
environmental effects. Based on this discussion he shows
the significant advantages of distributed power systems such
as micro-grids. The idea to cluster distributed generators to
virtual power plants is discussed by Stothert et al. [16] or by
Dondi et al. [7].

Some examples show that evolutionary algorithms (EAs)
and other CI techniques can be successfully applied to prob-
lems in the field of renewable energy and smart grids. Mosetti
et al. [15] optimized the wind turbine distribution of a wind
farm in order to extract maximum energy for minimal in-
stallation cost. The optimization process is based on a wind
farm simulation model subdividing an area into 100 square
cells of possible turbine locations. Caldon et al. [5] have
introduced a virtual power plant simulation model taking into
account electric and heat production. They use a stochastic
optimization algorithm and concentrate on objectives like
minimization of short term variable production. Wang and
Singh [2] address the problem to integrate different power
sources like wind turbines, solar panels and storage batteries
with regard to the objectives cost, reliability and pollutant
emissions. To solve this multi-objective optimization problem,
they introduce a multi-objective particle swarm optimization
algorithm. Recently, Kramer et al. [13] introduced a memetic
approach of evolutionary optimization and a local variant of
kernel regression to forecast power consumption in smart
grids.



III. THE VIRTUAL POWER PLANT MODEL

In the following, we describe the virtual power plant model.
It is based on various entities modeling typical components,
e.g., renewable power resources, an energy storage system,
and an additional energy production entity that is able to
compensate consumption bursts or a lack of renewable energy.
Figure 1 illustrates the participating modules of the virtual
plant. Consumers have to be supplied with energy. For this
sake various energy resources are available. Wind mills play
the role of the renewable volatile energy sources in our virtual
plant. A storage system1 stores overcapacities and is able to
deliver stored energy with regard to an energy loss factor.
A reserve plant can produce additional energy, and has the
capacity to cover the whole energy demand. The total power
of the system taking into account all consumers and producers
at time t is denoted by η(t) =

∑
i ei(t), and is the sum of all

producers with ep(t) ≥ 0 and consumers with ec(t) ≤ 0.

Reserve plant

Wind farm
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Fig. 1. Illustration of the virtual power plant model consisting of consumers
that get their energy from a wind farm, a reserve plant, and an energy storage
system.

A. Consumer Model

Consumers are modeled as follows. We assume that each
entity c ∈ C in the set of energy consumers C consumes a
certain amount of energy ec(t) at time t. To reflect a realistic
consumption scenario, the basis of the energy consumption
is real energy data eEG(t) measured and published by the
Irish energy company EIRGRID [1]. Each day consists of 96
values measured in mega-watt (MW), i.e., one value every
15 minutes. Figure 2 shows the power consumption on two
Sundays in February 20102. To simulate fluctuations that
may occur depending on consumer behavior and number of
modules on the demand side, and to avoid an overadaptation,

1or battery
2We have chosen February 7, and February 28, because of characteristic

wind production on these days.

we model noise that may be added to the original data as
follows:

ec(t) = −eEG(t) · (1 + γ1 · N (0, 1)). (1)

The noise strength can be controlled by parameter γ1.
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Fig. 2. Examples for energy consumption and wind data from the EIRGRID
data source for the two Sundays Feb 7, and Feb 28 that will be subject to the
experimental analysis in Section V. To allow interesting interactions between
storage systems and reserve plant, the wind production is scaled into the range
of the power consumption, see Section V-A.

B. Wind Energy

In our current virtual power plant model, wind is the
renewable ”fluctuating” resource we plan to concentrate on.
The data for the produced wind energy is also taken from the
EIRGRID data resources, i.e., from an EIRGRID wind farm.
Figure 2 shows the wind production on Feb 7, and Feb 28,
scaled by factors ϕ = 5.0, and ϕ = 15.0 to reach levels
that allow interesting interactions between renewable energy
production and consumption. We assume that module w ∈ P
in the set of energy producers P generates a certain amount
of energy ew(t) at time t. Again, we allow to add noise with
strength γ2 to the original data:

ew(t) = eWIND(t) · (1 + γ2 · N (0, 1)). (2)

Wind energy is volatile and its prediction is no easy underta-
king. Wind power prediction can help to improve turbine con-
trol and the integration of wind power into the grid [8]. Various
approaches have been introduced to predict the production of
wind energy based on weather forecasts [14], [12]. According
to Focken et al. [19] the prediction of energy produced by
wind has sufficiently been solved. A recent discussion about
the integration of wind energy has been published by Grant
et al. [9]. Forecasting is a rather important aspect. To model
uncertainty in wind prediction, we recommend two variants.
First, the future time steps can be subject to an increased
magnitude of noise γ̂2. Second, besides the actual energy that
has been produced, EIRGRID has published an estimation of
produced energy that can alternatively be used for prediction,



while the actual production can be used to determine the total
energy η(t) in the virtual power plant.

C. Energy Storage System

An energy storage system s ∈ S that is able to store
overcapacities is an important part of smart virtual power
plants. With an energy storage system overcapacities, e.g.,
in case of active wind, do not have to be wasted, but en-
ergy can be stored and retrieved to reduce additional power
production, if the renewable resources are not able to cover
the demand. We assume a storage system s with capacity
cs(t) stored at time t and a maximum capacity of (cs)max.
We assume the actions load, and deliver with regard to
parameter ∆s. In case of action load, and η(t) > 0, the
storage system is loaded by volume min(∆s, η(t)) with the
constraint cs(t) ≤ (cs)max, while η(t) is decreased by the
same amount. In case of η(t) ≤ 0, no energy is stored. In
case of cs(t) > 0, and action deliver, the storage system
delivers cs(t) = min(∆s, cs(t)). Furthermore, we assume that
energy is lost over time with factor 0 < γ3 < 1. To model
the energy loss, we assume that in each time step the stored
energy is reduced by cs(t) = cs(t − 1) · γ3. Table I shows a
survey of all commands of the virtual power plant, also for
the modules described in the following. Furthermore, the table
shows typical parameterization that will be used in Section V.

TABLE I
SURVEY OF COMMANDS AND TYPICAL PARAMETERS THAT WILL BE USED

IN SECTION V

Entity commands parameters
Storage load deliver - (cs)max = 2, 000

+ 200 -200 - γ3 = 0.9
Reserve increase decrease hold (er)max

+ 300 -300 0 = 10, 000
Price increase decrease hold

+0.1 -0.1 0 0.8 ≤ p ≤ 1.2

D. Reserve Plant

To cover energy demand in case of energy shortcomings and
empty energy storages, we assume that an additional energy
source can be activated, e.g., a CHP generation plant or a
biogas plant. Such a device belongs to the set P of producers.
We assume that reserve plant r can deliver energy er(t) > 0
at time t. In each step the plant can increase and decrease its
energy production by ∆r. Also here, we assume a maximum
production capacity of (er)max. Usually, it is one goal to
minimize the reserve energy production in order to reduce
additional costs and CO2 emissions.

E. Aggregation of Consumers and Producers

At each time step t the status of all components of the
virtual power plant is updated. Then, the total energy η(t) of
the plant is computed by aggregating the energy of each entity,
i.e., summing up the energy of all consumers C, producers P ,
and storage systems S:

η(t) =
∑

i∈C,P,S
ei(t). (3)

In the scenario of compensating fluctuating energy, it is of
interest to supply all consumers, while at the same time
minimizing η(t), i.e., to maintain η(t) > ε for a safety
threshold ε that guarantees the supply of all consumers. In
the following, we will evolve rules to achieve this goal using
an LCS.

IV. THE LEARNING CLASSIFIER SYSTEM

The first LCS has been introduced by John Holland in
the 1970s [11]. Learning classifiers are strongly connected to
EAs. They are rule based systems, automatically building a
rule set for classification, regression, reinforcement learning,
and general prediction problems. Their scope is to build and
manipulate a compact set of rules or classifiers with general-
ization abilities. LCS can be divided into Michigan-style and
Pittsburgh-style classifiers. Michigan-style LCS encode one
complete problem solution in a large population with many
local rules. An individual represents a single rule. This rule is
evolved by genetic operators and evaluated competitively and
individually. Usually, a Michigan-style LCS learns iteratively
from single problem instances. In a Pittsburgh-style LCS a
single individual encodes an entire problem solution with a
whole set of rules. It evolves the whole rule sets by means
of genetic operators. In contrast to the Michigan-style LCS,
a Pittsburgh-style LCS learns offline from sets of problem
instances. We will use a Pittsburgh-style LCS in the following.

1) LCS architecture: Our LCS consists of a set R =
{r1, . . . , rN} of rules rn, 1 ≤ n ≤ N . Each rule rn consists
of a conditional part χn describing the state of the system, and
an action part αn determining the commands for the power
plant’s future activities. Rule rn = (χn, αn) is interpreted as:

rn : IF χn THEN αn. (4)

Let st be the actual state of the power plant. It consists of T
parts, corresponding to the discretization of the current total
power of the system s1 = η(t) and the predicted power for the
next i = 1, . . . T −1 time steps si = η(t+ i). The rule rj ∈ R
with the most similar conditional part χj is chosen, i.e., for
a minimal d(χj , st). For measure d(·) we use the Manhattan
distance. If A is the number of controllable entities, we assume
that each command αn consists of T ·A actions, i.e., for each
future time step t+i each controllable entity j performs action
aij .

2) Population Scheme and Mutation: At the beginning, all
rules are randomly initialized. We apply a (µ+ λ)-population
scheme, oriented to evolution strategies [3]. In each generation
λ solutions are produced by randomly selecting one of the µ
parent solutions, and applying the mutation operator. In the
experiments in Section V we will use µ = 10 parents, and
λ = 50 offspring solutions. Mutation works as follows. In
the course of the stochastic optimization process, a rule is
selected randomly with probability σ1, and each component is
mutated with probability σ2. On the component level, mutation
means that each component is randomly chosen from the set
of possible values, e.g. actions A = {−1, 0,+1}. In each



TABLE II
STUDY OF MUTATION STRENGTHS. THE FIGURES SHOW THE FITNESS VALUES (SEE EQUATION 5) ACHIEVED AFTER tmax = 50 GENERATIONS OF THE

LCS WITH VARIOUS COMBINATIONS OF MUTATION STRENGTHS, I.E., FOUR COMBINATIONS FOR σi = 0.1, 0.01, AND FOUR WITH σi = 0.1, 0.2.

σ1 =0.01 σ1 =0.1
best median worst mean dev best median worst mean dev

σ2 =0.01 23,066 28,902 33,535 28,858 3,019.9 19,523 24,551 27,961 24,093 2,608.9
σ2 =0.1 18,235 24,741 31,585 24,730 3,883.1 14,599 18,612 21,922 18,827 2,085.2

σ1 =0.1 σ1 =0.2
σ2 =0.1 14,599 18,612 21,922 18,827 2,085.2 15,098 17,672 20,338 17,770 1,555.5
σ2 =0.2 15,956 18,469 21,312 18,297 1,400.5 15,396 18,006 19,552 17,724 1,401.6

iteration of the LCS a population of λ rule bases, each con-
sisting of N rules are generated with regard to the described
stochastic modifications. Each rule set is tested independently
and causes a whole run of the virtual power plant. Each rule
set is assigned to a user-defined quality measure f . In the
experiments presented in the next section, the goal will be to
minimize η. In the following generation, the µ-best rule bases
are selected and are the basis for generation of the next λ
solutions. The optimization process is repeated until a user-
defined termination condition is reached.

V. EXPERIMENTAL ANALYSIS

In this section we present experimental results of our LCS.
First, we concentrate on a parameter study, then we illustrate
the activities of an evolved rule set. We conduct experiments
that analyze the ability to generalize, i.e., to show satisfying
results in unknown situations. Last, we extend the system by
a simple demand side management mechanism.

A. Parameter Study
At the beginning, the question arises how to choose the

parameters for the LCS. To answer this question, we have
conducted a series of experiments that are presented in the
following. The experiments are focused on training the rules
for one particular day. Basis of our parameter analysis is the
power consumption and wind energy production on February
7, 2010. For the experiments, we scale the wind energy
production into the range of the power consumption. The wind
energy of Feb 7 is multiplied with factor ϕ = 5.0, while
the produced wind energy of Feb 28 is scaled by ϕ = 15.0
to make the situation more dynamic. Without scaling the
energy production, no overcapacities that are very interesting
for interactions with the storage system will occur. The noise
parameter for consumers is set to γ1 = 0.01, the noise for
producers is set to γ2 = 0.01. We choose the energy storage
loss factor γ3 = 0.9

The optimization goal is to minimize the absolute sum of
energy in each time step, i.e., the sum of energy produced by
the producers minus the energy demand of all consumers in
all times steps:

f =
T∑
t=1

|ηt| → min . (5)

In practice, a safety margin ε of energy overcapacity will be
necessary to guarantee that the energy demand never exceeds
the sum of energy in the system. But for our toy example we
assume that the condition of Equation 5 is sufficient.

All experiments of the parameter studies use a (10+50)-
EA, and terminate after tmax = 50 generations. At first, we
concentrate on the influence of mutation strengths σ1 and σ2.
We use 15 states to describe each power situation, and 20 rules.
Table II shows the corresponding experiments. Each trial has
been repeated 15 times. The figures show the best, median,
worst, and mean result as well as the corresponding standard
deviation of the achieved fitness until the termination condition
has been reached. The results show a clear tendency towards
higher mutation strengths. The overall best fitness has been
achieved for σ1 = 0.1, and σ2 = 0.1, while the best mean
value has been achieved for σ1 = 0.2, and σ2 = 0.2. The
best median has been achieved with settings σ1 = 0.2, and
σ2 = 0.1. We have to point out that a non-parametric Wilcoxon
test has not shown significant superiority for the latter variants.
But any setting with σi = 0.2 is significantly better than any
setting with σi = 0.01. For the following experiments, we use
the setting σ1 = 0.1, and σ2 = 0.1 that has also shown stable
results in further experiments.

An important parameter of LCS is the size of rule set R.
In the next experiment, we vary the rule set size and test the
settings N = 10, 20, 30, 40. Table III shows the outcome of
this series of experiments. The results show an increase of
variance with a decrease of R. On the one hand, for N = 10
the worst median and mean can be reported, but on the other
hand, the same setting achieved the best overall result. The
high standard deviation of dev = 3, 336.8 confirms this result,
in comparison to dev = 1, 777.7 in case of N = 40. As no
statistical significance can be observed, when increasing the
rule set size to values higher than N = 20, we apply this
rule set size in the following experiments, and it confirms the
choice for the previous mutation strengths analysis.

TABLE III
STUDY OF THE NUMBER OF RULES

best median worst mean dev
10 14,059 19,426 29,159 19,911 3,336.8
20 14,599 18,612 21,922 18,827 2,085.2
30 14,785 18,361 22,014 18,419 1,838.4
40 15,609 18,887 21,722 18,808 1,777.7

B. Illustration of Activities

To illustrate the behavior of the virtual power plant evolved
by the LCS, we discuss the behavior of typical trained rule
sets. Figure 3, upper part, shows the activities of the power
plant’s modules after training on the data sets of Feb 7 (left
upper part), and Feb 28 (right upper part). First, we can
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Fig. 3. Activities of the simulated virtual power plant after tmax = 200 generations of learning on Feb 7 (left upper part), and on Feb 28 (right upper part).
The lower part shows the behavior of the rule sets on both days, but each evolved on the other day.

observe that the overall energy in the system (green line) is
fluctuating around the zero-point, i.e., the objective has been
reached to avoid overcapacities while maintaining supply of
the energy consumers. If we have a closer look at how this
objective has been reached, we can observe that the reserve
plant, which is starting with zero energy at the first time step,
is increasing its production at the beginning to compensate the
energy deficit at the start3. On Feb 7, the wind is blowing more
and more. Hence, the reserve plant can close down. Later,
when the demand is decreasing, overcapacities are produced
that are saved by the storage system. The energy storage is
loaded to approximately 1, 500 MW and afterwards, when the
demand is increasing, it is delivering energy to the system.
The reserve plant does not have to be run up in this situation.
As soon as the storage is empty, the reserve plant has to help
to cover the demand again. At the end, overcapacities can be
stored again by the energy storage system.

On Feb 28, the power consumption is similar, but the wind
is more dynamic. As a consequence, it is more difficult for

3Of course, in real-world systems a deficit at the beginning of each day
can be avoided in a close-loop day-to-day model.

the virtual plant to compensate the overall energy fluctuations
in the system. Again, the reserve plant has to compensate the
energy deficit at the beginning. When the wind energy reaches
a peak, the reserve plant has learned to power down. Only little
overcapacities are produced, but are stored by the battery at
once. When the energy demand is increasing in the second
quarter, the reserve plant has learned to increase its production,
as the wind level does not allow to cover the demand side.
Then, the wind is increasing, but also the power demand. In
the last third the wind is decreasing, and the reserve plant
increases its production.

To summarize, the LCS was able to evolve rules that manage
the storage systems and the reserve plant. Although the latter
is equipped with a comparatively high production capacity, it
can be observed that the solely objective to minimize overca-
pacities while covering the demand is sufficient to minimize
the reserve energy production at the same time. Figure 4 shows
the corresponding fitness development of Feb 7 (red line) and
Feb 28 (blue dots) that have led to the discussed rule bases.
The fitness developments show that most of the evolutionary
process, i.e., the highest fitness achievements, takes place



within the first 120 generations. This observation confirms
the choice of the termination condition, i.e., terminating after
tmax = 200 generations.

C. Testing Rule Sets in Unknown Situations

In the previous parts of the experimental analysis we con-
centrated on the behavior of the system with regard to the
training set. Now, we will analyze the ability of the evolved
rule sets to control the virtual plant in unknown situations.
For this sake we try two settings. We let the rule set, evolved
on Feb 28, control the situation in Feb 7, and in turn, test
the rule set of Feb 7 to control day Feb 28. Figure 3, lower
part, shows the corresponding experimental results. The rule
set evolved on Feb 28 shows excellent results in controlling
the virtual power plant on Feb 7. Reserve plant and storage
system are controlled in the same way like in Figure 3, upper
part. The rule set evolved on Feb 7 shows worse results on Feb
28. The power fluctuations are higher within the whole control
process. In particular in the last third of Feb 28 the rule base
is not able to compensate the power shortcomings caused by
an increasing demand and a decreasing wind generation. The
reason for this is obvious: the situation that the wind decreases
while the demand is high does not occur on Feb 7. Hence, no
rule has been evolved that is able to handle this situation.
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Fig. 4. Fitness development of the (10,50)-LCS for 200 generations during
the optimization of the rule sets for the two days shown in Figure 3.

D. Demand Side Management

Besides the prediction of power consumption, demand side
management has an important part to play in virtual power
plants, i.e., the influence of consumption to avoid bursts and
make consumption in case of energy overcapacities more
attractive [4], [17]. We have implemented a simple demand
side management model considering two aspects. We assume
that the power consumption depends on pricing, and on
urgency. To model this, we extend Equation 1 by price- and
urgency-dependent variables, i.e., we assume price p(t) with

0.8 ≤ p(t) ≤ 1.2 and express urgency u(t):

êc(t) =
∏

x=ec(t),p(t),u(t)

x. (6)

The urgency u(t) is modeled by the fraction of the sum of
energy that would usually have been consumed determined by
Equation 1 and the sum of consumed energy in the past:

u(t) =

(∑t−1
q=1 ec(q)∑t−1
q=1 êc(q)

)γ4
. (7)

Parameter γ4 ≥ 0 allows to adjust the magnitude of influence
of the urgency in Equation 6. Our first tests have revealed
interesting effects. On Feb 7 this demand side modeling
leads to a decrease of consumed energy (with γ4 = 2.0) by
increasing the price to a maximum of p(t) = 1.2. The total
energy consumption deficit over the whole day was 21, 330.5
MW, but the achieved fitness was f = 13, 319.5. For higher
settings, e.g. γ4 = 5.0, no significant deviation of the demand
curve could be observed. On Feb 28 the demand curve was
changed (using γ4 = 2.0), leading to a demand burst by
decreasing the price to a minimum p(t) = 0.8 in the middle
of the day, i.e., when the wind production has reached a
maximum. The total consumption even increased by 561.5
MW. The other parts of the demand curve have been flattened.
A detailed analysis of the interactions between pricing and the
modeled entities will be subject to future work.

VI. SUMMARY AND OUTLOOK

Virtual power plants have an important part to play in the
development towards smart energy grids. We have presented
a simple toy simulation model that allows to model important
entities like energy storage systems, reserve power plants, and
demand side management. Furthermore, we have shown, how
an LCS is able to evolve rules with the goal of compensating
fluctuations while maintaining energy supply to cover the total
energy demand. The introduced power plant model may look
like a toy problem, and – in the form used for our first
experimental analysis – be also analytically solvable. But the
experiments of Section V have only been a first attempt to
show the potentials of the model, and to demonstrate how an
LCS is able to solve it. By introducing multiple modules with
different parameterization, it is scalable to a complex model
that is not analytically solvable anymore. For these situations
the rules evolved for simpler models can be used as the basis
for learning and optimization.

In the future we are going to concentrate on various di-
rections. First, we plan to improve the simulator by adapting
its components to observed real-world data. The usage of the
EIRGRID data sources have only been a first attempt into
this direction. We will integrate various new renewable energy
modules like solar energy, water power or biomass that can
arbitrarily be aggregated to virtual plants. Furthermore, we
will concentrate on demand side management and pricing
strategies, and analyze their interactions with other entities of
the virtual power plant in detail.



It turns out that virtual power plants are an excellent
testbed for CI methods. We are going to implement and
compare further CI methods, in particular concentrating on the
LCS variant XCS by Wilson [18] and various reinforcement
learning variants like Q-learning or TD(λ) that allow online-
adaptation to feedback. Furthermore, we will compare our
results to analytical methods, and elaborate the boundary
where analytical models may fail and heuristics have to be
used instead.
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