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Abstract- The increasing complexity of distributed computer 
systems requires new control mechanisms. The behavior of 
future systems should be defined by high-level goals, with 
the system itself being responsible to maintain them. This 
paper proposes to use the constraint satisfaction problem (CSP) 
paradigm to realize such self-configuring systems. This allows to 
specify the desired system behavior as constraints and generic 
domain independent algorithms can be used to enforce these 
constraints. We present a novel algorithm called System-Driven 
Search (SDS) for maintaining constraints in highly dynamic 
distributed environments, like wireless sensor networks. It is not 
susceptible to message loss and piggybacking may be used for 
information dissemination instead of sending explicit messages. 
These features make SDS suitable especially for decision making 
tasks like self-configuration in battery-operated wireless sensor 
networks. Partitioning into coordinating cliques and channel 
allocation, two typical problems in that area, are used to 
evaluate the proposed algorithm. 

I. INTRODUCTION 

Constraint satisfaction problems (CSPs) [5] are subject to 

research in the areas of artificial intelligence and operations 

research. They are defined as a set of objects that must 

satisfy a number of constraints. CSPs conform to a simple 

standardized representation and allow the application of 

generic, domain-independent solution algorithms. 

Distributed constraint satisfaction problems (DCSPs, also 

DisCSPs) represent a formalism for describing a problem 

that involves multiple participants, called agents. DCSPs 

were first investigated by Yokoo et al. [9]. They can be 

used to model many real-world problems with distributed 

nature, such as meeting scheduling problems [7] and self­

configuration in networks [3]. DCSPs allow to formulate 

distributed problems, like configuration problems in wireless 

sensor networks (WSNs), in a standardized comprehensible 

way. Off-the-shelf algorithms can be used to solve them. This 

helps to focus on the problem itself and avoids developing 

single purpose algorithms for every particular problem. 

Current modern DCSP solvers have difficulty in coping 

with highly dynamic environments and message loss. In this 

paper we present a new algorithm, which tries to maintain 

a best-effort solution in constantly changing environments 

with lossy communication like WSNs. For evaluation pur­

poses we apply SDS to typical configuration problems in 

WSNs: Partitioning into coordinating cliques, which arises 
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Fig. 1. Principal states and territories of Australia 

if collections of sensor nodes are responsible for the joint 

execution of tasks, and channel allocation for conflict free 

distribution of channels. 

The paper is organized in six sections. Section II gives a 

short overview of classical constraint satisfaction problems, 

while Section III introduces distributed constraint satisfaction 

problems and related algorithms to solve them. Then, Section 

IV describes the proposed algorithm and Section V presents 

evaluation results. Finally, Section VI concludes the paper. 

II. CONSTRAINT SATISFACTION PROBLEMS 

A CSP is defined by a set of variables, V = {Xl, X2, ... , 
Xn}, and a set of constraints, G = {GI, G2, • • •  , Gm}. Each 

variable Xi has a nonempty domain Di of possible values. 

Each constraint Gi involves some subset of the variables and 

specifies the allowable combinations of values for that subset. 

A state of the problem is defined by an assignment of values 

to some or all of the variables, {Xi = Vi,Xj = Vj, ... }. 
An assignment that does not violate any constraint is called 

consistent or legal. A complete assignment is one in which 

every variable is mentioned; a solution to a CSP is a complete 

and consistent assignment. The following example of a CSP 

has been taken from [5]. Figure 1 shows a map of the states 

and territories of Australia. The task, which is to be modeled 

by a CSP, is coloring each region either red, green, or blue, in 

such a way that no neighboring regions have the same color. 

To model this example as a CSP, the variables are set to 

the regions {W A,NT, QLD, NSW, VIG, SA,TAS}. The 

domain of each variable is {red, green, blue}. Based on 

these definitions, the coloring problem can be expressed 

by the following set of constraints: {W A -I- NT, W A -I-



Fig. 2. Map-coloring as constraint graph. One possible solution to the CSP 
is indicated by the nodes' colors. 

SA, NT =1= SA, NT =1= QLD, QLD =1= SA, QLD =1= 
NSW,NSW =1= VIC,SA =1= VIC,SA =1= NSW}. As 

shown in Figure 2, a CSP can be visualized as a constraint 

graph. The vertices of such a graph correspond to vari­

ables and the edges correspond to constraints. A possible 

solution to this problem would be: {W A = red, NT 
green, Q LD = red, N SW = green, VIC = red, SA = 
blue, TAS = green}. 

III. DISTRIBUTED CONSTRAINT SATISFACTION 

PROBLEMS 

A DCSP is a generalization of a CSP that distributes 

variables among agents A = {AI, ... , At}, i.e., each agent 

owns some variables. Constraints based on variables of a 

single agent are called intra-agent constraints, inter-agent 
constraints involve variables of different agents. DCSPs have 

been first discussed in [6], [9], as a formalization of a 

generic way for distributed problem solving. Solving a DCSP 

requires agents to communicate, interact, and negotiate via 

message passing. 

The most trivial approach to solve a DCSP is to select a 

leader agent, which is responsible to collect all information 

about variables, their domains, and all constraints. In this 

case the leader is able to use a standard centralized CSP 

algorithm to solve the DCSP. This approach, however, suffers 

from two major issues [ 1 0]. Firstly, it can be very costly to 

collect all information about the DCSP and secondly, it may 

be undesirable for security and privacy reasons to allow one 

agent to gather all information. 

Synchronous backtracking adapts the standard backtrack­

ing algorithm for CSPs to a distributed setting. In the run-up, 

all agents must agree on an order on the variables. When an 

agent owning the variable Xi receives information about the 

instantiation of the variables X I, ... , Xi-I, it searches for a 

consistent value for Xi. If such a value is found, the agent 

forwards the variables X I, ... , Xi and their current values 

to the owner of variable Xi+I' If no consistent value can be 

found, a backtracking message is sent to the previous agent. 

The major drawback of this approach lies in its sequential 

nature. Only one agent is active at a particular point in time 

while all others are waiting. The establishment of an order 

on the variables introduces additional overhead. 

The probably most well known algorithm for solving 

DCSPs was introduced by Yokoo et al. [9]. The authors 

introduce the asynchronous backtracking (ABT) algorithm, 

an asynchronous implementation of a backtracking search. 

Without loss of generality, for the sake of simplicity, they as­

sume that each agent has exactly one variable, all constraints 

are binary, and each agent knows all constraints relevant to 

its variable. In an initial phase, ABT establishes an order on 

all agents. Each agent assigns a random value to its variable 

and broadcasts it to all neighbors with lower priority. The 

receiving agents store this information in a container called 

agentview. If its own assignment is not consistent with the 

agentview, the agent tries to change it to make it consistent. 

If this is impossible, a backtracking is initiated by sending 

a nogood message to a higher priority agent. This roughly 

described algorithm is considered to be one of the most 

efficient approaches to solve DCSPs. Several improvements 

of the original ABT have been proposed, e.g., [2], [8], [ 1 1 ]. 

Mailler and Lesser [4] devise a new algorithm for solving 

DCSPs, called Asynchronous Partial Overlay (APO). This 

algorithm uses a mediator to resolve conflicts and hence 

centralizes small portions of the DCSP. Compared to ABT, 

APO agents broadcast value assignments to all neighbors, 

not only to lower priority neighbors. Agents update their 

agentview similarly to ABT. If an agent finds a conflict with 

one or more of its neighbors and has not been told by a higher 

priority agent that it wants to mediate, it assumes the role 

of the mediator. The mediator conducts a centralized search 

within the scope of participants of the mediation process. 

If no satisfying assignments can be found, the mediator 

announces that the problem is unsatisfiable. 

IV. SYSTEM-DRIVEN SEARCH 

Classical DCSP solvers are designed to find a solution to a 

problem in a static setting. However, in dynamic distributed 

environments, agents may join and leave the system and 

change their spatial position. A solution fulfilling all con­

straints at one time may become invalid instantly. In such 

a scenario it is necessary to constantly adapt the system 

to the current conditions. A solver must rather "chase" a 

permanently changing goal than compute a solution once. 

The DCSP algorithms presented above and all solvers known 

to the authors are not designed to perform in such a way. 

Furthermore, the loss of a single message could cause these 

algorithms to fail. 

The algorithm proposed in this section represents a best­

effort approach to keep a dynamic system close to user­

defined constraints in a robust way. As mentioned above, a 

DCSP consists of a set of agents, A = {A I, ... , AI}, a set of 

variables, V = {XI,X2, ... ,Xn}, and a set of constraints, 

C = {CI,C2, ... ,Cm}. Each variable Xi has a non-empty 

domain Di of possible values and is owned by a single 

agent. The functionality of SDS is presented as pseudo code 

in Algorithm I. The basic idea is that agents, upon certain 

events, simply communicate their variable assignments to the 



agents they share constraints with, i.e., the direct neighbors of 

the constraint graph. This implies the requirement of having 

a communication channel between any two agents sharing 

constraints. The sending of variable assignment information 

is triggered periodically. For faster adaptation that event 

may be triggered after updating variable assignments, too. 

Periodical triggering makes the approach less susceptible 

to message loss and accounts for environment dynamics, 

such as nodes entering the network. When an agent receives 

a message it analyzes the sender's status and adapts its 

variable assignments in order to satisfy all constraints based 

on knowledge gathered by all messages received so far. Every 

agent needs to know its variables V and their corresponding 

domains, its constraints G, and the current values assigned to 

its variables V A. The agentview container serves as store 

for information received from other agents and is initially 

empty. There are three events, on which the algorithm reacts. 

On start-up, agents assign random values to their variables 

that are consistent with its intra-agent constraints Gintra. 
The symbol ::- stands for a random assignment, cwo is 

an abbreviation for "consistent with". After expiration of a 

certain time-out, an event is triggered, upon which a message 

is sent to all agents sharing inter-agent constraints. This 

message contains the assignments of variables relevant to the 

respective constraints. Upon receipt of a message the agent 

updates its agentview with the appended data. If it receives 

a message from another agent for the first time, a new entry 

(V, G, V A) is inserted into agentview. Next time only the 

variable assignments are updated. After that, the agent checks 

whether the current assignments V A are consistent with all 

values in agentview and its own constraints. Nothing needs 

to be done if that is the case. If the current assignment is 

inconsistent, the agent searches for a random consistent as­

signment. After finding a solution, the assignment is adjusted 

and the procedure terminates. If agentview does not allow a 

consistent variable assignment, agentview is cleared except 

for the latest entry and the agent tries to find a solution 

which at least conforms to the latest entry. Thus, SDS favors 

recent information over assignments received sooner. In the 

worst case, the latest entry of agentview is also deleted 

and a random assignment is applied which is only consistent 

with the intra-agent constraints. Note that finding solutions 

consistent with agentview involves a search comparable to 

solving classical CSPs. However, agentview only contains 

local constraints, i.e., constraints concerning the agent itself 

and the agents it is sharing constraints with. In order to derive 

a random solution consistent with agentview, a random 

search strategy may be applied. 

In order to explain the basic functionality of SDS, it is 

applied to the simple scenario illustrated in Figure 3. All 

three examples consist of four agents, Al , . . .  ,A4, and each 

agent has one variable Xi with the domain {O, 1, 2}. Agents 

connected by an edge share the constraint that their variables 

have to be distinct from each other. Additionally, A4 has the 

(intra-agent) constraint that its variable must be greater than 

one. Initially, the system is consisting only of Al, A2, and 

Algorithm 1 System-Driven Search (SDS) 

1: V I> Variables with domain information 

2: G = Gintra U Ginter 
3: VA 
4: 

5: agentview f--- 0 
6: 

7: procedure ONINIT 

I> Constraints 

I> Variable assignments 

I> Information about other agents 

8: V A ::- consistent with (cw.) Gintra 
9: end procedure 

10: 

11: procedure ONEvENT 

12: send respective subsets of V, G, and V A to direct 

neighbors of constraint graph 

13: end procedure 
14: 

15: procedure oNMESSAGERECEIVE(m) 

16: update agentview with information from m 

17: 

18: if V A cwo agentview and G then 
19: return 
20: end if 
21: 

22: if consistent assignment exists then 
23: V A ::- cwo agentview and G 
24: return 
25: end if 
26: 

27: clear agentview, except latest entry 

28: 

29: if consistent assignment exists then 
30: V A ::- cwo agentview and G 
31: return 
32: end if 
33: 

34: clear agentview 
35: V A ::- cwo agentview and G 
36: 

37: end procedure 

A3, which are being in a consistent configuration. When A4 

is joining, the configuration is becoming invalid, as shown in 

the top part of the figure. After A4 has sent its configuration, 

A2 is looking for a variable assignment that satisfies the 

constraints shared with Al and A3, as stored in agentview. 
As a result, A2 sets X2 to 0 (see middle part of figure). 

The bottom part assumes that all variables Xi are based on 

the domain {1,2}. In that case, A2 is not able to find a 

solution consistent with all entries in agentview and sets 

X2 to a value just consistent with X4, which is one. The 

next message of A2 to Al and A3 results in a consistent 

configuration as shown in the bottom part. 

In wireless domains, under the assumption that ( 1 )  con­

straints involve only agents which are within each others 

transmission radius and (2) that every message sent may be 
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Fig. 3. Simple distributed problem to explain the functionality of SDS. 
Each agent At to A4 owns one variable with possible values in {O, 1, 2}. 
Constramts forbId connected agents having equal settings for their variables. 
Agent A4 has an additional constraint, which states that its variable needs 
to be greater than one. The top part shows the situation of A4 joining the 
network, which results in the violation of the inter-agent constraint between 
A2 and A4. The middle part shows the system configuration after A4 sends 
its status to A2. At the bottom, the resulting configuration can be seen, 
assuming that the variables' domain is {I, 2} instead of {O, 1, 2}. 

received by all devices within the sender's reach, the algo­

rithm can be optimized in order to avoid sending messages. 

Wireless networks like WSNs typically have strict energy 

constraints and have to deal with limited battery capacity. 

Communication amongst nodes consumes the largest part of 

energy [ 1 ]. Under assumptions ( 1 )  and (2), it is sufficient 

for each agent to send a single message containing the 

variable assignments instead of sending a message to all 

direct neighbors of the constraint graph, i.e., all agents with 

shared constraints (see Algorithm 1 ,  Line 12). Under the 

assumption that the wireless nodes send application messages 

frequently, it may be sufficient to simply append the variable 

assignments to these messages and completely avoid active 

sending of messages. Thus, communication introduced by 

solving DCSPs is avoided, which results in less energy 

consumption and improved network lifetime. Furthermore, 

radio traffic is minimized, which in turn minimizes transmis­

sion collisions. In this case, the functionality of the system 

itself is used as infrastructure to solve DCSPs. This property 

originally led to the name System-Driven Search (SDS). 

Algorithm 2 shows how the procedure ONEvENT (lines 1 1 -

13) can be replaced by oNMESSAGESEND, which appends 

the current variable assignments to application messages, 

instead of sending messages actively. 

Algorithm 2 SDS with piggybacking 

procedure oNMESSAGESEND(m) 

append V,C, and V A to m 

end procedure 

V. EVALUATION 

For evaluation purposes, we apply SDS to specific configu­

ration problems typically arising in wireless sensor networks. 

In this paper we focus on the usage of application messages 

as a vehicle for information dissemination. The problems 

considered are partitioning into subgroups of completely 

interconnected nodes and channel assignment for shared 

medium access. The former problem, which is NP-hard in 

its general form, arises for instance if collections of sensor 

nodes are responsible for the joint execution of certain 

tasks, like tracking an object [3]. The latter is basically an 

instance of a graph coloring problem. For both problems, 

constraints involve only agents which are within each others 

transmission radius. We assume that every message may 

be received by every node within the sender's reach and 

that the wireless nodes send application messages frequently. 

Therefore, we use the modification of SDS, as presented in 

Algorithm 2, for our experiments. 

For our measurements concerning network partitioning, we 

restrict the problem to the formation of cliques of size three. 

More formally this means, given n = q . 3 wireless nodes 

with communication radius R, partition the network into q 
cliques of size 3. Within a clique each node must be able 

to communicate with all others. As mentioned in [3], this 

problem can be formulated as a DCSP as follows: Each node 

is represented as an agent i E A = {I, . . .  ,n} and each agent 

has a set of two variables Xi,l and Xi,2, which can take on 

values within {I, . . .  , n}. The variables represent the other 

two members of the three-clique. The constraints state that 

the other members have to be distinct from each other and 

cannot be the agent itself, i.e., Xi,l #- Xi,2, Xi,l #- i, and 

Xi,2 #- i. Further constraints are that agent i considers j1 

and j2 to be in its clique if and only if j1 has its variables 

set to i and j2 and j2 to i and j1' Furthermore, a variable can 

only point to an agent if it is a direct neighbor. Two values 

representing clique members are appended to messages in 

this scenario. 

Figure 4(a) shows a solvable instance of the partitioning 

problem into coordinating cliques of size three, Figure 4(b) 

illustrates an unsolvable instance. The latter is obviously 

unsolvable because node 9 (lower left corner) has only one 

neighbor. 

(a) Solvable (b) Unsolvable 

Fig. 4. Instances of the problem of partitioning the network into coordi­
nating cliques of size three. 
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Fig. 5. Unsolvable instances of clique partitioning problems. Each scenario, 
illustrated by a point in the graph, is tested on 1000 solvable instances. The 
figure shows the number of unsolvable instances generated during evaluation 
for different settings. The nodes' transmission radius R is shown on the 
horizontal axis. The red line represents networks of size 9, the green line of 
size 15, and the blue line of size 24. The number of unsolvable instances 
decreases with higher transmission radius and bigger networks. 

For measurements we consider arbitrarily positioned nodes 

within a plane of size 1000 x 1000. Hereby we vary the 

number n of nodes (9, 15, 24) and their transmission radius 

R (300, 400, 500, 600). Each single scenario is repeated 

1000 times using the same setting to obtain representative 

averaged results. SDS uses application messages for infor­

mation dissemination. The simulation is conducted in rounds 

and in each round the probability of a node to send an 

application message is 10%. Note that SDS does not rely 

on a round based system nor takes advantage of that fact. 

Every experiment starts with the random placement of nodes. 

Then, a centralized algorithm checks whether the generated 

problem instance is solvable or not. SDS is only applied 

to solvable problem instances. The simulation environment 

counts the number of sent application messages until a valid 

solution is found using SDS. Figure 5 shows the number of 

unsolvabe problem instances until 1000 solvable problems 

are generated that can be used as an input for SDS. The 

number of unsolvable problems decreases with increasing 

transmission radius R and a higher number of nodes n. Every 

solvable problem instance is successfully solved by SDS. 

Figure 6 shows the number of randomly sent application 

messages until SDS finds a solution to the DCSP. 

The second problem used to evaluate SDS is channel 

allocation. A channel may be a time or frequency channel 

and the goal is to ensure that direct neighbors do not share the 

same channel. This problem corresponds to a graph coloring 

problem. The formulation of this problem as CSP is quite 

straightforward. Each node owns one variable holding the 

value of its allocated channel. The domain is determined by 

the available channels. The inter-agent constraints state that 

the allocated channel must be distinct from the values direct 

neighbors have allocated. In this case, SDS needs to append 
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Fig. 6. Number of randomly sent application messages until finding a 
valid solution to the respective clique partitioning problem. The transmission 
radius R ranges from 300 to 600 and networks of size 9, 15, and 24 are 
considered. 

only one value to outgoing messages. The experiments 

for channels allocation are conducted in a similar way as 

described above, i.e., arbitrarily positioned nodes within a 

plane of size 1000 x 1000, varying numbers of nodes n 
(10, 25, 50, 100), and values for transmission radius R 
(100, 200, 300, 400, 500). Additionally, the availability of 

channels varies (3, 5, 10). Each scenario is repeated 1000 
times with communication probability of a node again being 

10%. As in the former experiments, unsolvable problems 

are skipped. Unlike clique partitioning, channel assignment 

problems are more likely to be unsolvable with increased 

number of nodes and transmission radius. Figure 7(a) (for 

3 channels), Figure 7(b) (for 5 channels), and Figure 7(c) 

(for 10 channels) show the number of messages until a 

valid solution is found. Missing data points indicate that the 

experiment is not feasible because corresponding problem 

instances are very likely unsolvable. Again, SDS is able to 

find a solution to every solvable problem instance generated 

by the simulation environment. 

The fact that every solvable partitioning and channel allo­

cation is solved by SDS is the main result of the conducted 

experiments. It is quite astonishing that the simple local 

working principle of SDS is suitable for finding global solu­

tions in all investigated settings. The piggybacking scheme 

used for information dissemination with 10% communication 

probability is comparable to actively sent messages with a 

message loss probability of 90%. 

The evaluation results demonstrate that SDS is indeed able 

to solve interesting DCSPs, but does not really quantify 

its ability to keep a constantly changing system "close" 

to specified constraints. While we think the functionality 

of SDS suggests that is able to cope with such scenarios, 

concrete measurements will be provided in the future. 
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Fig. 7. Number of randomly sent application messages for solving channel 
allocation problems with 3 available channels (a). 5 available channels (b). 
and 10 available channels (c). The variable R on the horizontal axis stands 
for the nodes' transmission radius. Colors represent different network sizes 
of 10. 25. 50. and 100. Missing points indicate. that the corresponding 
setting is infeasible. i.e .• randomly created problem instances are very likely 
unsolvable. A large radius and many nodes increase the complexity of the 
problem and thus the number of sent messages. 

VI. CONCLUSION 

In this paper, we present a robust algorithm called SDS, 

for solving DCSPs especially in dynamic environments, in 

which constant adaptation and control is necessary. Due to 

its nature, SDS is very robust against message losses, in 

contrast to traditional DCSP solvers, which may fail if one 

single message gets lost. For evaluation purposes network 

partitioning and channel assignment problems are formulated 

as DCSP. In the investigated settings, SDS is able to solve all 

solvable problem instances. We plan to apply SDS to further 

problem instances to evaluate its performance especially in 

more dynamic scenarios. 
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