
A Novel Constraint Satisfaction Problem Solver for Self-Configuring

Distributed Systems with Highly Dynamic Behavior

Benjamin Satzger, Faruk Bagci, and Theo Ungerer

Abstract- The increasing complexity of distributed computer
systems requires new control mechanisms. The behavior of
future systems should be defined by high-level goals, with
the system itself being responsible to maintain them. This
paper proposes to use the constraint satisfaction problem (CSP)
paradigm to realize such self-configuring systems. This allows to
specify the desired system behavior as constraints and generic
domain independent algorithms can be used to enforce these
constraints. We present a novel algorithm called System-Driven
Search (SDS) for maintaining constraints in highly dynamic
distributed environments, like wireless sensor networks. It is not
susceptible to message loss and piggybacking may be used for
information dissemination instead of sending explicit messages.
These features make SDS suitable especially for decision making
tasks like self-configuration in battery-operated wireless sensor
networks. Partitioning into coordinating cliques and channel
allocation, two typical problems in that area, are used to
evaluate the proposed algorithm.

I. INTRODUCTION

Constraint satisfaction problems (CSPs) [5] are subject to

research in the areas of artificial intelligence and operations

research. They are defined as a set of objects that must

satisfy a number of constraints. CSPs conform to a simple

standardized representation and allow the application of

generic, domain-independent solution algorithms.

Distributed constraint satisfaction problems (DCSPs, also

DisCSPs) represent a formalism for describing a problem

that involves multiple participants, called agents. DCSPs

were first investigated by Yokoo et al. [9]. They can be

used to model many real-world problems with distributed

nature, such as meeting scheduling problems [7] and self­

configuration in networks [3]. DCSPs allow to formulate

distributed problems, like configuration problems in wireless

sensor networks (WSNs), in a standardized comprehensible

way. Off-the-shelf algorithms can be used to solve them. This

helps to focus on the problem itself and avoids developing

single purpose algorithms for every particular problem.

Current modern DCSP solvers have difficulty in coping

with highly dynamic environments and message loss. In this

paper we present a new algorithm, which tries to maintain

a best-effort solution in constantly changing environments

with lossy communication like WSNs. For evaluation pur­

poses we apply SDS to typical configuration problems in

WSNs: Partitioning into coordinating cliques, which arises

Benjamin Satzger is with the International Computer Science Institute,
1947 Center Street, Berkeley, CA 94704, USA (phone: +1 510 666 2900;
email: satzger@icsi.berkeley.edu).

Faruk Bagci and Theo Ungerer are with the Department of Computer Sci­
ence, University of Augsburg, UniversitiitsstraBe 6a, 86159 Augsburg, Ger­
many (phone: +49 821 598 2351; email: {bagci,ungerer}@informatik.uni­
augsburg.de).

978-1-4244-8126-2/101$26.00 ©201 0 IEEE

�Tasmania

Fig. 1. Principal states and territories of Australia

if collections of sensor nodes are responsible for the joint

execution of tasks, and channel allocation for conflict free

distribution of channels.

The paper is organized in six sections. Section II gives a

short overview of classical constraint satisfaction problems,

while Section III introduces distributed constraint satisfaction

problems and related algorithms to solve them. Then, Section

IV describes the proposed algorithm and Section V presents

evaluation results. Finally, Section VI concludes the paper.

II. CONSTRAINT SATISFACTION PROBLEMS

A CSP is defined by a set of variables, V = {Xl, X2, ... ,
Xn}, and a set of constraints, G = {GI, G2, • • • , Gm}. Each

variable Xi has a nonempty domain Di of possible values.

Each constraint Gi involves some subset of the variables and

specifies the allowable combinations of values for that subset.

A state of the problem is defined by an assignment of values

to some or all of the variables, {Xi = Vi,Xj = Vj, ... }.
An assignment that does not violate any constraint is called

consistent or legal. A complete assignment is one in which

every variable is mentioned; a solution to a CSP is a complete

and consistent assignment. The following example of a CSP

has been taken from [5]. Figure 1 shows a map of the states

and territories of Australia. The task, which is to be modeled

by a CSP, is coloring each region either red, green, or blue, in

such a way that no neighboring regions have the same color.

To model this example as a CSP, the variables are set to

the regions {W A,NT, QLD, NSW, VIG, SA,TAS}. The

domain of each variable is {red, green, blue}. Based on

these definitions, the coloring problem can be expressed

by the following set of constraints: {W A -I- NT, W A -I-

Fig. 2. Map-coloring as constraint graph. One possible solution to the CSP
is indicated by the nodes' colors.

SA, NT =1= SA, NT =1= QLD, QLD =1= SA, QLD =1=
NSW,NSW =1= VIC,SA =1= VIC,SA =1= NSW}. As

shown in Figure 2, a CSP can be visualized as a constraint

graph. The vertices of such a graph correspond to vari­

ables and the edges correspond to constraints. A possible

solution to this problem would be: {W A = red, NT
green, Q LD = red, N SW = green, VIC = red, SA =
blue, TAS = green}.

III. DISTRIBUTED CONSTRAINT SATISFACTION

PROBLEMS

A DCSP is a generalization of a CSP that distributes

variables among agents A = {AI, ... , At}, i.e., each agent

owns some variables. Constraints based on variables of a

single agent are called intra-agent constraints, inter-agent
constraints involve variables of different agents. DCSPs have

been first discussed in [6], [9], as a formalization of a

generic way for distributed problem solving. Solving a DCSP

requires agents to communicate, interact, and negotiate via

message passing.

The most trivial approach to solve a DCSP is to select a

leader agent, which is responsible to collect all information

about variables, their domains, and all constraints. In this

case the leader is able to use a standard centralized CSP

algorithm to solve the DCSP. This approach, however, suffers

from two major issues [1 0]. Firstly, it can be very costly to

collect all information about the DCSP and secondly, it may

be undesirable for security and privacy reasons to allow one

agent to gather all information.

Synchronous backtracking adapts the standard backtrack­

ing algorithm for CSPs to a distributed setting. In the run-up,

all agents must agree on an order on the variables. When an

agent owning the variable Xi receives information about the

instantiation of the variables X I, ... , Xi-I, it searches for a

consistent value for Xi. If such a value is found, the agent

forwards the variables X I, ... , Xi and their current values

to the owner of variable Xi+I' If no consistent value can be

found, a backtracking message is sent to the previous agent.

The major drawback of this approach lies in its sequential

nature. Only one agent is active at a particular point in time

while all others are waiting. The establishment of an order

on the variables introduces additional overhead.

The probably most well known algorithm for solving

DCSPs was introduced by Yokoo et al. [9]. The authors

introduce the asynchronous backtracking (ABT) algorithm,

an asynchronous implementation of a backtracking search.

Without loss of generality, for the sake of simplicity, they as­

sume that each agent has exactly one variable, all constraints

are binary, and each agent knows all constraints relevant to

its variable. In an initial phase, ABT establishes an order on

all agents. Each agent assigns a random value to its variable

and broadcasts it to all neighbors with lower priority. The

receiving agents store this information in a container called

agentview. If its own assignment is not consistent with the

agentview, the agent tries to change it to make it consistent.

If this is impossible, a backtracking is initiated by sending

a nogood message to a higher priority agent. This roughly

described algorithm is considered to be one of the most

efficient approaches to solve DCSPs. Several improvements

of the original ABT have been proposed, e.g., [2], [8], [1 1].

Mailler and Lesser [4] devise a new algorithm for solving

DCSPs, called Asynchronous Partial Overlay (APO). This

algorithm uses a mediator to resolve conflicts and hence

centralizes small portions of the DCSP. Compared to ABT,

APO agents broadcast value assignments to all neighbors,

not only to lower priority neighbors. Agents update their

agentview similarly to ABT. If an agent finds a conflict with

one or more of its neighbors and has not been told by a higher

priority agent that it wants to mediate, it assumes the role

of the mediator. The mediator conducts a centralized search

within the scope of participants of the mediation process.

If no satisfying assignments can be found, the mediator

announces that the problem is unsatisfiable.

IV. SYSTEM-DRIVEN SEARCH

Classical DCSP solvers are designed to find a solution to a

problem in a static setting. However, in dynamic distributed

environments, agents may join and leave the system and

change their spatial position. A solution fulfilling all con­

straints at one time may become invalid instantly. In such

a scenario it is necessary to constantly adapt the system

to the current conditions. A solver must rather "chase" a

permanently changing goal than compute a solution once.

The DCSP algorithms presented above and all solvers known

to the authors are not designed to perform in such a way.

Furthermore, the loss of a single message could cause these

algorithms to fail.

The algorithm proposed in this section represents a best­

effort approach to keep a dynamic system close to user­

defined constraints in a robust way. As mentioned above, a

DCSP consists of a set of agents, A = {A I, ... , AI}, a set of

variables, V = {XI,X2, ... ,Xn}, and a set of constraints,

C = {CI,C2, ... ,Cm}. Each variable Xi has a non-empty

domain Di of possible values and is owned by a single

agent. The functionality of SDS is presented as pseudo code

in Algorithm I. The basic idea is that agents, upon certain

events, simply communicate their variable assignments to the

agents they share constraints with, i.e., the direct neighbors of

the constraint graph. This implies the requirement of having

a communication channel between any two agents sharing

constraints. The sending of variable assignment information

is triggered periodically. For faster adaptation that event

may be triggered after updating variable assignments, too.

Periodical triggering makes the approach less susceptible

to message loss and accounts for environment dynamics,

such as nodes entering the network. When an agent receives

a message it analyzes the sender's status and adapts its

variable assignments in order to satisfy all constraints based

on knowledge gathered by all messages received so far. Every

agent needs to know its variables V and their corresponding

domains, its constraints G, and the current values assigned to

its variables V A. The agentview container serves as store

for information received from other agents and is initially

empty. There are three events, on which the algorithm reacts.

On start-up, agents assign random values to their variables

that are consistent with its intra-agent constraints Gintra.
The symbol ::- stands for a random assignment, cwo is

an abbreviation for "consistent with". After expiration of a

certain time-out, an event is triggered, upon which a message

is sent to all agents sharing inter-agent constraints. This

message contains the assignments of variables relevant to the

respective constraints. Upon receipt of a message the agent

updates its agentview with the appended data. If it receives

a message from another agent for the first time, a new entry

(V, G, V A) is inserted into agentview. Next time only the

variable assignments are updated. After that, the agent checks

whether the current assignments V A are consistent with all

values in agentview and its own constraints. Nothing needs

to be done if that is the case. If the current assignment is

inconsistent, the agent searches for a random consistent as­

signment. After finding a solution, the assignment is adjusted

and the procedure terminates. If agentview does not allow a

consistent variable assignment, agentview is cleared except

for the latest entry and the agent tries to find a solution

which at least conforms to the latest entry. Thus, SDS favors

recent information over assignments received sooner. In the

worst case, the latest entry of agentview is also deleted

and a random assignment is applied which is only consistent

with the intra-agent constraints. Note that finding solutions

consistent with agentview involves a search comparable to

solving classical CSPs. However, agentview only contains

local constraints, i.e., constraints concerning the agent itself

and the agents it is sharing constraints with. In order to derive

a random solution consistent with agentview, a random

search strategy may be applied.

In order to explain the basic functionality of SDS, it is

applied to the simple scenario illustrated in Figure 3. All

three examples consist of four agents, Al , . . . ,A4, and each

agent has one variable Xi with the domain {O, 1, 2}. Agents

connected by an edge share the constraint that their variables

have to be distinct from each other. Additionally, A4 has the

(intra-agent) constraint that its variable must be greater than

one. Initially, the system is consisting only of Al, A2, and

Algorithm 1 System-Driven Search (SDS)

1: V I> Variables with domain information

2: G = Gintra U Ginter
3: VA
4:

5: agentview f--- 0
6:

7: procedure ONINIT

I> Constraints

I> Variable assignments

I> Information about other agents

8: V A ::- consistent with (cw.) Gintra
9: end procedure

10:

11: procedure ONEvENT

12: send respective subsets of V, G, and V A to direct

neighbors of constraint graph

13: end procedure
14:

15: procedure oNMESSAGERECEIVE(m)

16: update agentview with information from m

17:

18: if V A cwo agentview and G then
19: return
20: end if
21:

22: if consistent assignment exists then
23: V A ::- cwo agentview and G
24: return
25: end if
26:

27: clear agentview, except latest entry

28:

29: if consistent assignment exists then
30: V A ::- cwo agentview and G
31: return
32: end if
33:

34: clear agentview
35: V A ::- cwo agentview and G
36:

37: end procedure

A3, which are being in a consistent configuration. When A4

is joining, the configuration is becoming invalid, as shown in

the top part of the figure. After A4 has sent its configuration,

A2 is looking for a variable assignment that satisfies the

constraints shared with Al and A3, as stored in agentview.
As a result, A2 sets X2 to 0 (see middle part of figure).

The bottom part assumes that all variables Xi are based on

the domain {1,2}. In that case, A2 is not able to find a

solution consistent with all entries in agentview and sets

X2 to a value just consistent with X4, which is one. The

next message of A2 to Al and A3 results in a consistent

configuration as shown in the bottom part.

In wireless domains, under the assumption that (1) con­

straints involve only agents which are within each others

transmission radius and (2) that every message sent may be

2

o

2 2

Fig. 3. Simple distributed problem to explain the functionality of SDS.
Each agent At to A4 owns one variable with possible values in {O, 1, 2}.
Constramts forbId connected agents having equal settings for their variables.
Agent A4 has an additional constraint, which states that its variable needs
to be greater than one. The top part shows the situation of A4 joining the
network, which results in the violation of the inter-agent constraint between
A2 and A4. The middle part shows the system configuration after A4 sends
its status to A2. At the bottom, the resulting configuration can be seen,
assuming that the variables' domain is {I, 2} instead of {O, 1, 2}.

received by all devices within the sender's reach, the algo­

rithm can be optimized in order to avoid sending messages.

Wireless networks like WSNs typically have strict energy

constraints and have to deal with limited battery capacity.

Communication amongst nodes consumes the largest part of

energy [1]. Under assumptions (1) and (2), it is sufficient

for each agent to send a single message containing the

variable assignments instead of sending a message to all

direct neighbors of the constraint graph, i.e., all agents with

shared constraints (see Algorithm 1 , Line 12). Under the

assumption that the wireless nodes send application messages

frequently, it may be sufficient to simply append the variable

assignments to these messages and completely avoid active

sending of messages. Thus, communication introduced by

solving DCSPs is avoided, which results in less energy

consumption and improved network lifetime. Furthermore,

radio traffic is minimized, which in turn minimizes transmis­

sion collisions. In this case, the functionality of the system

itself is used as infrastructure to solve DCSPs. This property

originally led to the name System-Driven Search (SDS).

Algorithm 2 shows how the procedure ONEvENT (lines 1 1 -

13) can be replaced by oNMESSAGESEND, which appends

the current variable assignments to application messages,

instead of sending messages actively.

Algorithm 2 SDS with piggybacking

procedure oNMESSAGESEND(m)

append V,C, and V A to m

end procedure

V. EVALUATION

For evaluation purposes, we apply SDS to specific configu­

ration problems typically arising in wireless sensor networks.

In this paper we focus on the usage of application messages

as a vehicle for information dissemination. The problems

considered are partitioning into subgroups of completely

interconnected nodes and channel assignment for shared

medium access. The former problem, which is NP-hard in

its general form, arises for instance if collections of sensor

nodes are responsible for the joint execution of certain

tasks, like tracking an object [3]. The latter is basically an

instance of a graph coloring problem. For both problems,

constraints involve only agents which are within each others

transmission radius. We assume that every message may

be received by every node within the sender's reach and

that the wireless nodes send application messages frequently.

Therefore, we use the modification of SDS, as presented in

Algorithm 2, for our experiments.

For our measurements concerning network partitioning, we

restrict the problem to the formation of cliques of size three.

More formally this means, given n = q . 3 wireless nodes

with communication radius R, partition the network into q
cliques of size 3. Within a clique each node must be able

to communicate with all others. As mentioned in [3], this

problem can be formulated as a DCSP as follows: Each node

is represented as an agent i E A = {I, . . . ,n} and each agent

has a set of two variables Xi,l and Xi,2, which can take on

values within {I, . . . , n}. The variables represent the other

two members of the three-clique. The constraints state that

the other members have to be distinct from each other and

cannot be the agent itself, i.e., Xi,l #- Xi,2, Xi,l #- i, and

Xi,2 #- i. Further constraints are that agent i considers j1

and j2 to be in its clique if and only if j1 has its variables

set to i and j2 and j2 to i and j1' Furthermore, a variable can

only point to an agent if it is a direct neighbor. Two values

representing clique members are appended to messages in

this scenario.

Figure 4(a) shows a solvable instance of the partitioning

problem into coordinating cliques of size three, Figure 4(b)

illustrates an unsolvable instance. The latter is obviously

unsolvable because node 9 (lower left corner) has only one

neighbor.

(a) Solvable (b) Unsolvable

Fig. 4. Instances of the problem of partitioning the network into coordi­
nating cliques of size three.

Q)
:0
'"
>

5i
c
::J

1e+006 r------r------r---------:l

100000

10000

1000

100

10

9_
15 ---e---
24 --- * - -

-----._-------

1 L-_____ L-_____ L-____ �

300 400 500 600

R

Fig. 5. Unsolvable instances of clique partitioning problems. Each scenario,
illustrated by a point in the graph, is tested on 1000 solvable instances. The
figure shows the number of unsolvable instances generated during evaluation
for different settings. The nodes' transmission radius R is shown on the
horizontal axis. The red line represents networks of size 9, the green line of
size 15, and the blue line of size 24. The number of unsolvable instances
decreases with higher transmission radius and bigger networks.

For measurements we consider arbitrarily positioned nodes

within a plane of size 1000 x 1000. Hereby we vary the

number n of nodes (9, 15, 24) and their transmission radius

R (300, 400, 500, 600). Each single scenario is repeated

1000 times using the same setting to obtain representative

averaged results. SDS uses application messages for infor­

mation dissemination. The simulation is conducted in rounds

and in each round the probability of a node to send an

application message is 10%. Note that SDS does not rely

on a round based system nor takes advantage of that fact.

Every experiment starts with the random placement of nodes.

Then, a centralized algorithm checks whether the generated

problem instance is solvable or not. SDS is only applied

to solvable problem instances. The simulation environment

counts the number of sent application messages until a valid

solution is found using SDS. Figure 5 shows the number of

unsolvabe problem instances until 1000 solvable problems

are generated that can be used as an input for SDS. The

number of unsolvable problems decreases with increasing

transmission radius R and a higher number of nodes n. Every

solvable problem instance is successfully solved by SDS.

Figure 6 shows the number of randomly sent application

messages until SDS finds a solution to the DCSP.

The second problem used to evaluate SDS is channel

allocation. A channel may be a time or frequency channel

and the goal is to ensure that direct neighbors do not share the

same channel. This problem corresponds to a graph coloring

problem. The formulation of this problem as CSP is quite

straightforward. Each node owns one variable holding the

value of its allocated channel. The domain is determined by

the available channels. The inter-agent constraints state that

the allocated channel must be distinct from the values direct

neighbors have allocated. In this case, SDS needs to append

<J)
Q)
C)
'"
<J)
<J)
Q)
�

1000 r------,-------,------,

100
� ---­

.. �--..... ..- --

- - - --* - - - - - - -- -

------.-------------------.----------- --------

400 500

R

9_
15 ---e---
24 - - - * - -

600

Fig. 6. Number of randomly sent application messages until finding a
valid solution to the respective clique partitioning problem. The transmission
radius R ranges from 300 to 600 and networks of size 9, 15, and 24 are
considered.

only one value to outgoing messages. The experiments

for channels allocation are conducted in a similar way as

described above, i.e., arbitrarily positioned nodes within a

plane of size 1000 x 1000, varying numbers of nodes n
(10, 25, 50, 100), and values for transmission radius R
(100, 200, 300, 400, 500). Additionally, the availability of

channels varies (3, 5, 10). Each scenario is repeated 1000
times with communication probability of a node again being

10%. As in the former experiments, unsolvable problems

are skipped. Unlike clique partitioning, channel assignment

problems are more likely to be unsolvable with increased

number of nodes and transmission radius. Figure 7(a) (for

3 channels), Figure 7(b) (for 5 channels), and Figure 7(c)

(for 10 channels) show the number of messages until a

valid solution is found. Missing data points indicate that the

experiment is not feasible because corresponding problem

instances are very likely unsolvable. Again, SDS is able to

find a solution to every solvable problem instance generated

by the simulation environment.

The fact that every solvable partitioning and channel allo­

cation is solved by SDS is the main result of the conducted

experiments. It is quite astonishing that the simple local

working principle of SDS is suitable for finding global solu­

tions in all investigated settings. The piggybacking scheme

used for information dissemination with 10% communication

probability is comparable to actively sent messages with a

message loss probability of 90%.

The evaluation results demonstrate that SDS is indeed able

to solve interesting DCSPs, but does not really quantify

its ability to keep a constantly changing system "close"

to specified constraints. While we think the functionality

of SDS suggests that is able to cope with such scenarios,

concrete measurements will be provided in the future.

<n
Q)
�
<n
<n
Q) ::;;

<n
Q)
Ol
'"
<n
<n
Q) ::;;

<n
Q)
Ol
'"
<n
<n
Q) ::;;

10000

1000

100 •

10

10_
25 • 50 - - - * - -

100 ...

1 L-______ � ________ _L ________ � ______ �

100

10000

1000

100

10

1 100

10000

1000

100

200 300
R

(a) 3 Channels

-*

200 300
R

(b) 5 Channels

*

(c) 10 Channels

400

10_
25 • 50 -- - *--

100 ...

500

400 500

10_
25 • 50 - - - * - -

100 ...

500

Fig. 7. Number of randomly sent application messages for solving channel
allocation problems with 3 available channels (a). 5 available channels (b).
and 10 available channels (c). The variable R on the horizontal axis stands
for the nodes' transmission radius. Colors represent different network sizes
of 10. 25. 50. and 100. Missing points indicate. that the corresponding
setting is infeasible. i.e .• randomly created problem instances are very likely
unsolvable. A large radius and many nodes increase the complexity of the
problem and thus the number of sent messages.

VI. CONCLUSION

In this paper, we present a robust algorithm called SDS,

for solving DCSPs especially in dynamic environments, in

which constant adaptation and control is necessary. Due to

its nature, SDS is very robust against message losses, in

contrast to traditional DCSP solvers, which may fail if one

single message gets lost. For evaluation purposes network

partitioning and channel assignment problems are formulated

as DCSP. In the investigated settings, SDS is able to solve all

solvable problem instances. We plan to apply SDS to further

problem instances to evaluate its performance especially in

more dynamic scenarios.

ACKNOWLEDGEMENT

This work was partially supported by the German Aca­

demic Exchange Service (DAAD).

REFERENCES

[I] S. G. Akojwar and R. M. Patrikar. Improving Life Time of Wire­
less Sensor Networks Using Neural Network Based Classification
Techniques With Cooperative Routing. International Journal of
Communications. 2(1). 2008.

[2] c. Bessiere. A. Maestre. I. Brito. and P. Meseguer. Asynchronous
backtracking without adding links: a new member in the ABT family.
Artif. lntell .• 161(1-2):7-24. 2005.

[3] B. Krishnamachari. R. Bejar. and S. Wicker. Distributed problem
solving and the boundaries of self-configuration in multi-hop wireless
networks. Hawaii International Conference on System Sciences.
9:297b. 2002.

[4] R. T. Mailler and V. Lesser. Using cooperative mediation to solve
distributed constraint satisfaction problems. In Proceedings of the
Third International Joint Conference on Autonomous Agents and
MultiAgent Systems. pages 446--453. ACM. 2004.

[5] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall. 2nd edition. 2002.

[6] K. Sycara. S. F. Roth. N. Sadeh-Koniecpol. and M. S. Fox. Distributed
Constrained Heuristic Search. 21(1):1446-1461. December 1991.

[7] R. J. Wallace and E. C. Freuder. Constraint-based reasoning and
privacy/efficiency tradeoffs in multi-agent problem solving. Artif.
Intel!.. 161(1-2):209-227. 2005.

[8] M. Yokoo. Asynchronous weak-commitment search for solving
distributed constraint satisfaction problems. In CP '95: Proceedings
of the First International Conference on Principles and Practice of
Constraint Programming, pages 88-102, London, UK, 1995. Springer­
Verlag.

[9] M. Yokoo. E. H. Durfee. T. Ishida. and K. Kuwabara. Distributed
Constraint Satisfaction for Formalizing Distributed Problem Solving.
In ICDCS. pages 614-621. 1992.

[10] M. Yokoo. E. H. Durfee. T. Ishida. and K. Kuwabara. The Distributed
Constraint Satisfaction Problem: Formalization and Algorithms. IEEE
Transactions on Knowledge and Data Engineering. 10:673-685. 1998.

[II] R. Zivan and A. Meisels. Dynamic Ordering for Asynchronous
Backtracking on DisCSPs. Constraints. 11(2-3):179-197. 2006.

