Optimal Flow Distribution among
Multiple Channels with Unknown Capacities

Richard Karp Till Nierhoff Till Tantau*

International Computer Science Institute
1947 Center St Suite 600
Berkeley, CA 94704
{karp,nierhoff,tantau}@icsi.berkeley.edu

2nd July 2004

Abstract

Consider a simple network flow problem in which there maighannels directed from a source to a
sink. The channel capacities are unknown and we wish to determine a feasible network flow @.value
Flow problems with unknown capacities arise naturally in numerous applications, including inter-domain
traffic routing in the Internet, bandwidth allocation for sending files in peer-to-peer networks, but also the
distribution of physical goods like newspapers among different points of sale. We study protocols that
probe the network by attempting to send a flow of at nibanits through the network. If the flow is not
feasible, the protocol is told on which channels the capacity was exceeded (binary feedback) and possibly
also how many units of flow were successfully send on these channels (throughput feedback). For the
latter, more informative type of feedback we present optimal protocols for minimizing the number rounds
needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback,
we show that one can exploit the fact that network capacities are often larger than the demaed
present a protocol for this situation that is optimal under certain assumptions and finds solution more
quickly than the generalized binary search protocol previously proposed in the literature. For the special
case of two channels we present a protocol that is optimal without any extra assumptions and outperforms
binary search.

1 Introduction

Problem Statement. We study the network flow problem in which there arehannels directed from a
source to a sink, and we wish to determine a feasible flow of vBld®m the source to the sink. Each
channeli has a capacity;. Initially, these capacities are unknown, but we know that they are nonnegative,
integral, and sum up to son@@> D. We also assume that the capacities do not change over time, that is,
we only consider the static case in the present paper. To determine a feasible flow we proceed in rounds
t=1,2,3,...,T. Inroundt we choose a honnegatigeery vector ¢¢) = (qz,d, . - -, 0n), and simultaneously

for all i, attempt to send; units of flow through channél The queries are nonnegative, rational, and sum

up to at mostD. We then receive feedback about the success of our attempts in the forfeedtzack

vector f(t) = (fy,..., fy). In the case obinary feedbackve learn, for each channglwhether all of our

*The authors were supported through DAAD (German academic exchange service) postdoc fellowships.

flow reached the sink; that i$, = successvheng; < ¢; and f; = failure otherwise. In the case tiroughput
feedbackwe learn how much flow was delivered through each channel; thitismin{q;, ¢ }.

We study the efficient choice of the successive query vectors. We may be interested in minimizing the
number of rounds required to determine a feasible flow, or in finding a feasible flow with minimum total
waste. In the latter case, thieroughput Pt) = 3, min{q;, ¢} of roundt is the total amount of flow that
reaches the sink, theaste Wt) in roundt is D minus the throughput, and thetal wasteas the sum of the
waste over all rounds.

Our aim is to find optimal protocols, for each type of feedback, that output a feasible solution in a
minimal number of rounds or cause a minimal amount of total waste. We introduce functions that describe
how well such optimal protocols perform: LebuNDS-BF(n,D,C) denote the minimal number of rounds
for binary feedback needed by any protocol to find a feasible solution fivannels, a demand, and
a network capacit. Similarly, we defineROUNDS-TF(n,D,C) for throughput feedback. The functions
WASTE-BF(n,D,C) andwWASTE-TF(n,D,C) tell us how much total waste any protocol must cause before
it finds a solution. Finally, we also introduce four sibling functions that miss the third para@eigiin
ROUNDS-BF(n,D). For these functions the total capadlyis not known to the protocol and the protocol
must find a solution or infer th& < D.

Motivation. The original motivation for this problem was a scenario in which the channels correspond
to Internet service providers, and the goal is to distribute a given amount of traffic among the providers,
without advance knowledge of the maximum rate at which each provider is willing and able to transmit
our traffic [1]. On a smaller scale, a user of a peer-to-peer network who tries to service parallel download
requests from different peers also faces the problem of distributing her fixed, often small, bandwidth among
the peers.

In addition to the network flow interpretation, there is an interpretation of our problem as a product
distribution problem. For example, suppose a publisher can producegapies of a newspaper each
day, and must distribute the copiesrtaities, where the demargl at each cityi is initially unknown. Our
problem models the process of efficient probing for the distribution that maximizes sales.

Our Contribution. Our main results can be summarized by the inequalities shown below. In all cases, the
lower bounds are established through adversary strategies. The upper bounds are established by analyzing
the performance of concrete protocols. In the equations, and in the follooifhgalways refers to the
parameten.

Function Lower Bound Upper Bound
ROUNDS-TF(n,D) > (1-0(1)) o < (1+0(1)) 0
WASTE-TF(n, D) > (1-0(1))D; M0 < (1+0o(1))Dsnn
WASTE-BF(n,D,C) | > (1—o0(1)
> (1-o0(1)
=1

Inlnn Inlnn
1-0(1)) (log, =51 D+1 —log,n) | <109, =51 D+l +3 3log,n
log; D] = [log; D]

) Ininn Inlnn
) Inn (2—!—0(1))D Inn
ROUNDS-BF(N,D,C))
ROUNDS-BF(2,D,D)

Organization of this Paper. In Section 2 we introduce notions that are common to the analysis of all
variants of the problem. Section 3 treats throughput feedback, and we establish matching upper and lower
bounds, simultaneously for the minimal number of rounds and the minimal waste. In Section 4 we study
binary feedback. There, we treat waste and rounds separately and give special attention to the case of two
channels. We conclude with a list of open problems.

2 Basic Protocol Analysis Tools

In this section we introduce basic ideas and terminology that will be used in all of our analyses.

2.1 Maintaining the Pinning Box

For any protocol, at any point during a run of the protocol we will have gathered certain information about the
(unknown) capacities of the channels. For each chanfreim the answers to the previouigueries we will
have deduced anpper bound f{t) and dower boundil(t) for the channel capacity. Thusc; € [li(t),hi(t)],
called thepinning interval The cross product of the pinning intervals will be called pirening box The
sumy i, (hi(t) —1i(t)) will be called thesizeof the pinning box. If, at any point;(t) = hj(t), we obviously
know ¢;. At the beginning of a run, we know the trivial bounigl€0) = 0 andh;(0) = . A better upper
bound is given byn;(0) = C, but we may not knovC. The sum of thé;(t) at timet will be denoted_(t).
Similarly, the sum of thdy; (t) will be denotedH (t).

We query a vectoqg(t) = (01,...,qn) at time stept. The feedbackf (t) = (f1,..., fn) may allow us
to improve some or perhaps even all of our pinning intervals. For binary feedback, we can perform the
following updating: iff; = failure, seth;(t) = min{h;(t — 1), [qi] — 1}; if fi = successsetl;(t) = max{l;(t—
1),]qi]}. It may seem strange that we allow for the possibility of trying to transmit less on a channel than
the lower bound or more than the upper bound. Indeed, transmitting more than the upper bound makes little
sense, but transmitting less than the lower bound can be useful: The demand “saved” by not transmitting it
on a certain channel might be used to probe the capacity of other channels more quickly. For throughput
feedback, we can always dgt) = max{li(t — 1), fi}; and if fi < q;, we even know; (t) = h;(t) = fi =c;.

2.2 Effects of Increasing the Capacity

In certain situations an increase in the total capaCigffects the number of rounds or the waste needed
to find a solution. Intuitively, a bigger capacif/should make it easier to find a solution—or at least not
harder. However, a protocol that works fine for a capacity of, Bay,D might try to exploit this fact to its
advantage. For example foe= 2 andC =D, if we knowl; = %D, then we can conclude that the capacity on
the second channel can be at mbg#, but we cannot conclude this if we only know@D. Nevertheless,
the following theorem shows that our first intuition is correct.

Theorem 2.1.LetD<C < C'. Then

ROUNDS-BF(N,D,C) > ROUNDS-BF(n,D,C'),
WASTE-BF(n,D,C) > WASTE-BF(n,D,C’).

Proof. Let P be a protocol that minimizes the number of roundsrfeghannels, a demarid, and a guaran-
teed capacity of. We give a protocoP’ that will need at most as many roundsrRaand will work for any
capacityC' > C. It does not even need to knaw.

Protocol P'.
1 inroundt+—1,2,3,... do
2 let q(t) be the query protocol P would pose in round t
if it had seen the same results to our previous queries as we have seen
3 queryq(t)
4 letB:= {(c,...,cn) |li<ci <h, 3, =C}
5 let (My,...,My) := (MiNgegC1, . .., MiNcc Cn)

6 if S, m >D then
7 outputsome(ds,...,dy) with 3L, di =D and | < d; < m; stop

In essence, for an unknown capacity veato« (cj,...,c,) summing up taC’, ProtocolP’ runs Pro-
tocol P, “pretending” that the capacity i8. It interrupts the simulation once it has found a veatos
(my,...,my) that sums up to at leaft and that, in a certain sense, lies “beneath” all vectors summing up
to C inside the pinning box.

Our first claim is that the output of the protocol is, indeed, a solution. There exists a gec®that is
componentwise below the real capacity vecfoilt can be obtained, for example, by successively dropping
the components af to their established lower bounds until we can drop some components exactly as much
as is needed to make the resulting veat@um up toC. Thenc € B. Sincec € B, the vectorm will be
componentwise below. Since the output is componentwise belown turn, we conclude that the output
is componentwise below the capacity veatoand is hence a solution.

Our second claim is that ProtocB! runs for at mosf := ROUNDS-BF(n,D,C) rounds. Consider the
situation the protocol faces at roufild The crucial observation at this point is that all elements of the
setB produce the exact same answers to all the queries the Pr&¥otid hence alsB) has posed until
now. Since ProtocdP always finishes withifT rounds, it must be able to output a solution that satisfies
all elements oB. But such a solution must necessarily lie benaathvhich must thus sum up . Thus

yiigm >D.

For the claimwasTE-BF(n,D,C) < WASTE-BF(n,D,C’), just note that Protocd? also wastes at most
as much as Protocél does. O]
Corollary 2.2.

ROUNDS-BF(n,D,D) = ROUNDS-BF(n,D),
WASTE-BF(n,D,D) = WASTE-BF(n,D).

The inequalityROUNDS-BF(n,D,C) < ROUNDS-BF(n,D,C’) is a proper inequality in many cases. For
example, we will see thatouNDs-BF(n,D,D) = O(logD) butROUNDS-BF(N,D,2D) = ©(1) for fixed n.
For throughput feedback, the situation is simpler.

Theorem 2.3. For all C > D we have

ROUNDSTF(n,D,C) = ROUNDS-TF(n, D),
WASTE-TF(n,D,C) = WASTE-TF(n,D).

Proof. As in the previous proof, we take a protoébthat minimizes the number of rounds or the waste and
construct a protocd? that simulates this protocol. Only this time, we stop the simulation when the sum of
the lower bounds excee@s Observe that until this happens, there always exists a capacity vector summing
up toD that produces the exact same feedback as the one we saw. Furthermore, for this capacity vector, at
least one channel will not yet have been upper-bounded. Thus we can also find a vector summing up to any
valueC > D that produces the exact same feedback as the one we saw. O

3 Throughput Feedback

In this section we establish matching upper and lower bounds on the number of rounds and the waste needed
to find a solution when we get throughput feedback. The upper bound is established by explicitly describing

and analyzing a concrete protocol, the lower bound is shown using an adversary argument. The results of
this section can be summed up by the following equations:

Inn Inn
1—-0(1)) ——— < ROUNDSTF(N,D) < (1+0(1
(())Inlnn— (n,)—(+of))Inlnn’
Inn Inn
1-0(1))D——— <WASTE-TF(n,D) < (1+0(1))D .
(()) Inlnn — (n,)—(+of >) Ininn

3.1 Upper Bounds on Rounds and Waste

For throughput feedback, the capacity of a channel is determined as soon as a query excegds it (“
shoot$). We propose the following protocol that seeks to overshoot as many channels as possible as quickly
as possible.

Protocol 3.1 (Upper Bound Protocol).

1 go«<n

2 inroundt«+—1,23,... do

3 qu=-=04,=D/g1

4 queryq(t) = (d1,...,0g_4,0,...,0)

5 ot < the number of channels with capacity at leagigD 1
6 reorderthe channels such that exactly the firstbannels

have capacity at least [_1
7 if gg =0o0rH(t) =D or L(t) = D then stop

Observe that the protocol, during its course, only uses channels whose capacity has not been determined
yet, and distributes the flow evenly among them. It stops when it has determined all channel capacities and
also when it has found a flow distribution that is compatible with them. We next give a bound on the number
of rounds the protocol needs to finish.

Theorem 3.2. ROUNDS-TF(n,D) < (1+0(1)) .

Proof. We show that Protocol 3.1 will find solutions in no more tHan-o(1)) |r']r|‘n”n rounds. The main idea
of the proof is that the longer it takes to overshoot the channels, the quicker the known capacity increases.
Consider a run of the protocol and [Etbe the number of queries issued. In the following, the incdexl
be understood to range from 1To- 1, unless stated otherwise.
Let o; := gi/g—1. After the first round,g; channels are known to have capacity at ldagty, so
L(1) = aiD. Similarly, after round > 2, the known capacity on thg channels that are not overshot

increases frond/g;_»> to D/gi—1. Thus,

L(t) —L(t—1) > g(D/g-1—D/g-2) = ar(1—a-1)D. 1
Let maxe {1,...,T — 1} be an index such thatyax > a; for all t. Telescoping (1), we get
L(T-1)/D>a;+ ;at(l— Ot—1) 2
=
max—1 T-1
= Omax+ Zl Gt(1—0t+1)+ Z Gt(l—at_l) (3)
t= t=max+1
> Omax+ (1 — Omax) Z Ot. (4)
t£max

Since the protocol does not stop after quéry- 1, we knowL(T — 1) < D. Thus, by (3),0max <
L(T —1)/D < 1. We may therefore divide by-1amax and from (4) we get

; o < 1. (5)
t#max

Another consequence of the fact that the protocol does not stop afterfjuetys thatgr 1 > 1, where

Or-1= N[l o Thus,
T-1
ar > [1ag>1/n. (6)
tJ:‘lIax tl:l

Applying the inequality of the arithmetic and geometric means, from (5) and (6) we get

Ztyémaxat T2
n< [o= () <(T-277, (7
t£max T-2
and consequentlyT —2)T~2 < n. ThereforeT < (1+0(1)) 1" and the claim follows. O

Our upper bound on the number of rounds has the following immediate corollary, which is proved by
observing that in any round one can waste at rbost

Corollary 3.3. WASTE-TF(n,D) < (1+0(1))Dgnn

Inlnn*

3.2 Lower Bounds on Rounds and Waste

We give lower bounds that match the upper bounds above, first on the waste.

Theorem 3.4. WASTE-TF(n,D) > (1—0(1))D IrllTr?n'

Proof. Consider a optimal protocol. We describe an adversary strategy that causes it to waste at least the
amount stated in the theorem.

The Capacity Distribution. Leto :=1/InnandT := [[10.].

After each query, as long as there is at least one channel left, the adversary fixes the capacity of all but
ana-fraction of the channels. More precisely, after tHest queries the capacity @ := [a'n] channels
has not yet been fixed. Observe thdt*n > 1, buta™n < 1, so the number of queries handled that way
isT — 1. After T queries, only one channel is left and its capacity is chosen as the difference bEtaeen
the total capacity already assigned. The feedback is always given consistently with all capacity assignments
that extend the fixed capacities.

If the capacity of two channels is fixed after the same query, the capacities shall be the same. Thus, there
areT different capacity values to be chosen. We denote them, abusing notatiop,.by, cr, whereg; is
the capacity of the channels fixed after quier$pecifically, let; := 0 andc; := (1_@% for2<t<T-1.

For convenience, we denote the number of channels fixed after ghery

1
. t—1 t t—1
=g 1—-<a n+l-an< (1+at1n>a (1—oa)n,

whence the newly assigned capacity after quesy

r-¢ < <1+ at1n> aD < 2aD. (8)

An immediate consequence of (8) is
T-1
L(T-1) = Zl rc < 2a(T —1)D =o(D),

t=
so that the protocol has not located enough capacity after any of thd firdt queries. Moreover, there
is always at least one unbounded channel left. Therefore the protocol continues uf th thesry. Note
that before that query there is only one unbounded channel left, and that that channel is given the remaining
capacity value — 3 ric; > (1—0(1))D.

Assignment of the Capacities. Since the capacity distribution is not dependent on the protocol, it is
convenient to describe the information state of the protocol before ¢jasrgn assignment of the capacities
C1,...,CG_1toaselectionoh—g,_1 =r1+---+r¢_1 channels. As an invariant we shall maintain that none
of the channels whose capacity has not yet been fixed has been queried with an anspantuadre.

The invariant holds before the first query. Given ttrequeryq(t) = (qi, . ..,0n), using the invariant we
may assume without loss of generality that - -- < qg,_,. The adversary assigns the capacityo channels
g+1,0+2,...,0-1. We need to verify that the invariant still holds. Sirige> qg +---+0gn > (rt +1)0g,,
where

n+l=g 1-g+1>a"h—a'n=(1-a)a"In,
we havegy < g < WDat,lnchlforlgt’ggt.

The information state of the protocol before quelg not morethan stated in the invariant. Although
the protocol might gather less information in the firgueries, we can just assume that the adversary gives
away the difference in information.

The Total Waste. Let P(t) denote the throughput in quetryBy the definition of throughput,

Ot
P(t) < qu + G+ 41161 < g/%-1-D+2(t —1)ab.
=

The second inequality follows from the order on tfjeand inequality (8).
Sinceg /g1 < (1+ (Tln)a < 2a, we getP(t) < 2taD, and thus a total waste of

T-1

Z(D—Pt) > (T—l)D—2<T>0(D =TD(1-Ta),

A 2

which proves the theorem. O]

Once more, by observing that in any round we can waste atihose get a corollary.

Corollary 3.5. ROUNDS-TF(n,D) > (1—o0(1)) .

4 Binary Feedback

In this section we study upper and lower bounds for flow distribution when we get binary feedback. We
first study the waste functiowAsTe-BF(n,D,C) and show that it behaves similarly to the correspond-
ing waste function for throughput feedback. Next, we review results from the literature on the function
ROUNDS-BF(Nn,D,D) and then extend these resultsRouNDS-BF(n,D,C). Unlike ROUNDS-TF(n,D,C),

for binary feedback the number of rounds does not only depemdamiaiD, but also orC. While the upper

and lower bounds that we establish fanunDs-BF(n,D,C) do not quite match for genera) we solve the
special case of two channels completely: interestirgityw)NDS-BF(2,D,D) = [log; D].

4.1 Minimizing Waste

Similarly to the treatment of throughput feedback, we establish upper and lower bounds for the waste needed
to find a solution. We show the following:

Inn Inn
— — < - < .
(1 o(l))DInlnn < WASTE-BF(n,D,C) < (2+o(1))DInlnn

The first bound follows from Theorem 3.4. To prove the second bound, we proceed as follows: We use
Protocol 3.1 once more. While it is an optimal waste minimization protocol for throughput feedback, for
binary feedback it typically leaves us with some pinning box. We use a second protocol to reduce the
pinning box’s size to zero. Intriguingly, this second protocol isgregportional allocation protocqglwhich

was originally introduced in [1] in the context mdundminimization. We show that this protocol reduces the
size of the pinning box to zero without wasting more than the total size of the pinning intervals. Finally, we
show that when we start the proportional allocation protocol, the pinning box has size & magtninn.

Protocol 4.1 (Proportional Allocation, [1]).

1 foreachie {1,...,n}

2 h min{hi,D}
3 inroundtdo
D-L(t-1
4 p—= H(tfl)SL(t)fl)
5 foreachi € {1,...,n} do
6 Gi(t) —lit =) +p(hi(t—1)—li(t-1))
7 query (Ga(t),...,an(t))
8 if H(t) = D or L(t) = D then outputlast query;stop

Theorem 4.2. Let Protocol 4.1 be started at stegpwith a certain pinning box already established. Then it
will find a solution wasting no more than(k) — L(to).

Proof. Let A(t) := H(t) — L(t) denote the total pinning interval gap. Our aim is to show the following
claim: If the protocol wastes \{t) in round t, we haveé\(t + 1) < A(t) —W(t). In other words, we reduce
the pinning interval gap by at least the amount we waste. If this claim holds, we clearly cannot waste more
thanA(tp) before the gap drops to zero.
In each round we distinguish two cases, depending on whefher1/2 orp > 1/2 in this round. For
the casep < 1/2, consider the values; := max{0,q —¢i}. We claimW(t) = 3{_,wi. This can be seen as
follows:
n n n
W(t)=D—- S min{c,q} =D-— i —max{0,g —¢c}) =) w.
(t) i; {ci,ai} ;(q. {0,q —ci}) i; i

We used the fact that Protocol 4.1 always distributes the complete debpainat is,5 [; g = D. Consider
a channel with w; > 0 and thugy; > ¢;. Since the query was a failure, the upper bobyill be decreased
to gi. Thus the pinning interval changes frdinhi] to [l;,q;] and its size changes from—1I; to g — I; =
p(hi — ;). Thus, channelcauses the gafy to shrink by at leastl — p)(h; — I;) while it causes a waste of at
mostw; =g — ¢ < g —l; = p(h; —;j). Since this argument is true for all channels, we concludeil{at
is less than the decrease of the pinning interval gap.

For the cas@ > 1/2, we argue similarly, but we now consider the valugs= max{0,c; — g }. The
sum of these values is an upper bound on the waste:
n n n n
Wt)=D—- Y min{c,q}=D—-Y (ci—max{0,c,—q})=D-C+FTw <Y W.
(t) iZl {ci,ai} ;(| {0,ci Ch}) i; | iZi |

It remains to argue that on each channel we decrease the size of the pinning interval byvdt Bagpose

w > 0. Thenc; > ¢ and the pinning interval changes frdinhi] to [g;, hj]. Its size changes from; — |;

tohi — g = (1—p)(hi — i) and thus its size reduces by at lepé —1;). Sincew, =¢ —q <h —q =
(1—p)(h —1;) and sincep > 1/2, we conclude that the reduction of the interval size is larger than the
waste. O

Theorem 4.3. WASTE-BF(n,D,C) < (2+0(1)) D10

Inlnn*

Proof. We run Protocol 3.1, followed by Protocol 4.1. By Corollary 3.3, the waste at the end of the first
protocol is(l+o(1))DIn n/Inlnn. Observe that an upper bound is established when a channel is being
overshot and that Protocol 3.1 overshoots each channel exactly once. Consider the channels that are overshot
in roundt. For each of them (there age_1 — g many), the protocol querid3/g;_; and gets that value as

an upper bound on their capacity. These upper bounds cumulBtglte g;/g;—1) < D. Given the bound

on the number of queries from Theorem 3.2, we conclddig) — L (to) < H(to) < (1+0(1))DInn/Ininn.

Theorem 4.2 now yields the claim. O

4.2 Minimizing Rounds

In the previous section we saw that for the total waste it makes only little difference whether binary feedback
and throughput feedback is used: using binary feedback at most doubles the waste. In this section we see
that the situation is quite different for rounds. For throughput feedback the optimal number of rounds is
Inn/Ininn. In particular, this number does not depend on either C. As we show in the following, for

binary feedback the optimal number of rounds depends bofhamd onC. In particular, an increased total
capacityC allows us to find solutions more quickly. In detail, we show the following:

C C 3
1-0(1)) (logy ——— —1 < ROUNDSBF(N,D,C) <log, —— + =1 .
As we mentioned earlier, Chandrayana et al. have proposed the proportional allocation protocol, Proto-
col 4.1, as a protocol for minimizing the number of rounds. They prove the following fact:

Fact 4.4 ([1]). ROUNDS-BF(n,D,D) < log, D + %"

Chandrayana et al. prove a lower bound that matches this upper bound in the sense that they show
ROUNDS-BF(n,D,D) = 6(log, D) for fixed n. However, the protocol is far from optimal@fis larger tharD
and if we know this. Suppose for example, that 2 and we knowC = 2D. In this situation, ifc; = C and
¢ =0, Protocol 4.1 will need logD rounds to find the solutio(D,0). There is a much faster protocol: In
the first round, queryD/2,D/2). If this query is a solution, we are done. Otherwise, on at least one channel
our query will succeed, say on the second one. But {BdD) is a solution. ThUROUNDS-BF(2,D,2D) =2
and this is trudor all D.

We present a modification of Protocol 4.1 that finds a solution in a number of rounds that depends on
but not onD, if we knowC = oD for some constardt > 1. The protocol will need at most lgg%; + 3 log, n
rounds in this situation.

Protocol 4.5 (Scaled Proportional Allocation).LetA := |(C—D)/n]+ 1 and let D := [D/A]. Scaled
proportional allocation simulates Protocol 4.1 with the following modifications:

1. The demand we try to distribute i$ Dstead of D.

2. Whenever proportional allocation wishes to make a qugfy. ..,), query(Ad;.. ..,Aqy,) instead.

Theorem 4.6. ROUNDS-BF(n,D,C) < log, S+ + 3 log,n.

Proof. Consider the actual capaciti@s, . . .,cn) and letc := [cj/A|. A run of Protocol 4.5 will produce the
same queries as running the original Protocol 4.1 for the capacity @tor. ,c;,) and for the demanb’:
We haveAq] < ¢ if and only if Ag < A|[ci/A|, which is in turn equivalent tof < |ci/A|. Thus a query
Aq will be answered wittsuccessn Protocol 4.5 if and only if the querg is answered the same way in
Protocol 4.1 for the scaled capacities and the scaled demand.

There exists a solution with respect to the capacitiés . ., c;,) and the demanb’ since

sa=3lal=s =t g

The left-hand side is an integer and we even Hgg ¢/ > [D/A] =D’
So far, we have shown that Protocol 4.5 will need as much time to find a solution as Protocol 4.1 will
need for the scaled capacity vector and the scaled demand. By Fact 4.4, we will find a solution in time

,, logon D log,n nD log,n
06,0+ == =l0% | e —pym1| T T2 % | n[cooynra | T 2
nD log,n
<
_m%{C—D+lw+

3
> IogziC D1 2Iog2n

Theorem 4.7. ROUNDS-BF(n,D,C) > (1-0(1)) (log, =% —log,).

Proof. We present an adversary strategy against an optimal protocol for given numiigrandC. The
adversary keeps track of a $€bf capacity vectors summing up @that are consistent with all the answers
the adversary has provided until now. Initialk,contains all vectors of nonnegative integers summing up
to C and thus has siz *” 1) When the protocol poses a query, tHepdssible answers vectors partition
X into 2" sets whose elements are consistent with one answer vector. At least one of these sets has size at
least|X|/2" and the adversary returns the answer vector corresponding to this set.
We claim that the protocol cannot produce its final output bef¥itehas dropped to{C D*” 1). To
see this, note that every vector summing uPts componentwise below at m E*{‘ 1) many vectors
in X. We conclude that the numb@&rof rounds needed by the optimal protocol to produce its solution must

satisfy (<" 1) /(2T < (“"P*11) and thus

C+n-1
1 ") _n-1 C+n-1 _n-1
T>Zlo nl/_> lo > lo :
=1 0% (CoH-1y = n 2 Din—1- n “%nc-bp+1
The last term equalél — o(1)) (log, =S+ — log,n), which proves the claim. O

4.3 Minimizing Rounds for Two Channels

The upper and lower bounds proved in the previous section do not quite match: the upper bounds contain
a positive logn term, the lower bounds a negative jogterm. As a first step toward closing this gap,

we completely solve the problem for= 2: the number of rounds needed to find a solution using binary
feedback is logD rounds forC = D. This result is a bit surprising since even a binary search neegblog
rounds to find a distribution. The protocol that achieves the bound gDlagthe following:

10

Protocol 4.8 (Two Channel Protocol).

1 |<0h<D

2 inroundtdo

3 gy« (h—1)/3+1

g2 < (h—1)/3+D—h

query (. Go) receiving(fi, f2)

if H(t) = D or L(t) = D then outputlast query;stop

if f; = failurethenh « q; elsel — q;

if f, = failurethen!l — max{l,D —q,} elseh «— min{h,D — 0.}

00 ~NO 01 b~

Theorem 4.9. ROUNDS-BF(2,D) = log; D.

Proof. By Corollary 2.2 it suffices to shoROUNDS-BF(2,D,D) = log;D. We begin with an adversary
strategy that ensures that any fixed protocol cannot find the solution in less th@hrognds. This will
show the inequalitRoUNDS-BF(2,D,D) > log; D.

The aim of the adversary is to keep the protocol in the dark about the capacitite adversary keeps
track of a pinning intervall, h] that gets smaller in each round. In any rownthe answers of the adversary
up to then will be consistent with every capacity vedtor, c;) with ¢; € [I,h] andc, = D —¢;. Initially,
| = 0 andh = D, which clearly fulfills the requirements. In roundconsider a querg(t) = (q1,q92) and
consider where the two numbegsandD — g lie in the interval]l, h]. They can split the interval into at most
three intervals and at least one of them must have size at(leadt)/3. The adversary answers such that
any value within this largest interval is permissible. For simplicity, asdushg; < D — g, < h—aother cases
are similar. Then, in detail, if the largest intervalllisg:], the adversary answe(failure,success If the
largest interval igg:1, D — o], the adversary answetsuccesssuccess If the largest interval i$D — g, h],
the adversary answe(succesdailure). In each round, the size of the interval is reduced by a factor of at
most 3. Thus, only after lad rounds the adversary will finally have to settle on a capacity distribution.

To prove the inequalitRoUuNDS-BF(2,D,D) < logz D, consider Protocol 4.8. It implements a strategy
against the just-given adversary by keeping track of the intérMalfor which it knowsc; € [I,h] and thus
¢z € [D—h,D—1]. In each round it poses two querigg, d2) such thaty; andD — g cut the interval into
three equal parts. For every possible answer vedtorf,) the interval size will be reduced by a factor of 3,
which proves the claim. O

5 Conclusion and Open Problems

In this paper we proposed a framework for studying different ways of distributing a flow in a simple network
with unknown capacities. We studied two kinds of feedback, namely binary and throughput feedback. For
the latter type of feedback we presented a protocol that is optimal both with respect to the number of rounds
and the waste produced. For binary feedback there is still a gap between the upper and lower bounds when
the numben of channels is also taken into account. For the special case of two channels we gave an optimal
protocol that outperforms binary search.

Experimental work done by Chandrayana et al. [1] has shown that the (unscaled) protocol allocation
protocol performs well on real data with respect to the number of rounds needed. Our theoretical work backs
these findings, but we showed that scaling can significantly improve the performance of the protocol if the
available capacity is larger than the demand. The proportional allocation protocol is also part of our near-
optimal protocol for waste minimization. This opens the intriguing possibility that the scaled proportional
allocation protocol might be an optimal protocol for minimizing both rounds and waste.

11

We did not address the computational complexity of protocols in the present paper; protocols concep-
tually had arbitrarily much computational power. However, reviewing the protocols for which we showed
optimality, we see that they are both easy to implement and have low computational complexity.

We mention the following open problems, which we suggest for further research:

1. In the binary feedback model, find an algorithm that is optimal, up to a factar(1), with respect
to both total waste and number of rounds.

2. In the binary feedback model, improve the upper and lower bounds on the optimal number of rounds
when a lower bound is given on the total capa€ity

3. Study dynamic versions of our problems, in which the capacities may change from round to round.
This can be done either under deterministic constraints on the changes of capacity from round to
round, or under a probabilistic model of the fluctuation of capacities. For thencade some results
in the framework of competitive analysis of on-line algorithms are given in [2].

4. Determine the optimal waste for a model in which the throughput on chaisglif g < ¢;, and 0 if
g > ¢i. This model is suggested by certain Internet congestion control protocols in which, whenever
a packet is dropped in a round, it cannot be guaranteed that any packets are delivered. For the case
n= 1, this model is studied in [2].

5. Our problem suggests a generalization of the classic Twenty Questions scenario in which a player
attempts to efficiently identify an unknown object by asking yes/no questions. In the generalization,
the player’s goal is to identify several objects concurrently by asking a question about each object in
each round, but each question has a cost, and a limit is placed on the total cost that may be expended
in a round. Explore further examples of this generalized Twenty Questions framework.

References

[1] Kartikeya Chandrayana, Yin Zhang, Matthew Roughan, Shubho Sen, and Richard Karp. Search game
in inter-domain traffic engineering. Manuscript, 2004.

[2] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker. Combinatorial optimization in congestion
control. InProceedings of the 41th Annual Symposium on Foundations of Computer Sgiages
66—74, Redondo Beach, CA, 2000.

12

