
Optimal Flow Distribution among
Multiple Channels with Unknown Capacities

Richard Karp Till Nierhoff∗ Till Tantau?

International Computer Science Institute
1947 Center St Suite 600

Berkeley, CA 94704
{karp,nierhoff,tantau}@icsi.berkeley.edu

2nd July 2004

Abstract

Consider a simple network flow problem in which there aren channels directed from a source to a
sink. The channel capacities are unknown and we wish to determine a feasible network flow of valueD.
Flow problems with unknown capacities arise naturally in numerous applications, including inter-domain
traffic routing in the Internet, bandwidth allocation for sending files in peer-to-peer networks, but also the
distribution of physical goods like newspapers among different points of sale. We study protocols that
probe the network by attempting to send a flow of at mostD units through the network. If the flow is not
feasible, the protocol is told on which channels the capacity was exceeded (binary feedback) and possibly
also how many units of flow were successfully send on these channels (throughput feedback). For the
latter, more informative type of feedback we present optimal protocols for minimizing the number rounds
needed to find a feasible flow and for minimizing the total amount of wasted flow. For binary feedback,
we show that one can exploit the fact that network capacities are often larger than the demandD: We
present a protocol for this situation that is optimal under certain assumptions and finds solution more
quickly than the generalized binary search protocol previously proposed in the literature. For the special
case of two channels we present a protocol that is optimal without any extra assumptions and outperforms
binary search.

1 Introduction

Problem Statement. We study the network flow problem in which there aren channels directed from a
source to a sink, and we wish to determine a feasible flow of valueD from the source to the sink. Each
channeli has a capacityci . Initially, these capacities are unknown, but we know that they are nonnegative,
integral, and sum up to someC≥ D. We also assume that the capacities do not change over time, that is,
we only consider the static case in the present paper. To determine a feasible flow we proceed in rounds
t = 1,2,3, . . . ,T. In roundt we choose a nonnegativequery vector q(t) = (q1,q2, . . . ,qn), and simultaneously
for all i, attempt to sendqi units of flow through channeli. The queries are nonnegative, rational, and sum
up to at mostD. We then receive feedback about the success of our attempts in the form of afeedback
vector f(t) = (f1, . . . , fn). In the case ofbinary feedbackwe learn, for each channeli, whether all of our

∗The authors were supported through DAAD (German academic exchange service) postdoc fellowships.

1

flow reached the sink; that is,fi = successwhenqi ≤ ci and fi = failure otherwise. In the case ofthroughput
feedback, we learn how much flow was delivered through each channel; that is,fi = min{qi ,ci}.

We study the efficient choice of the successive query vectors. We may be interested in minimizing the
number of rounds required to determine a feasible flow, or in finding a feasible flow with minimum total
waste. In the latter case, thethroughput P(t) = ∑n

i=1min{qi ,ci} of roundt is the total amount of flow that
reaches the sink, thewaste W(t) in roundt is D minus the throughput, and thetotal wasteas the sum of the
waste over all rounds.

Our aim is to find optimal protocols, for each type of feedback, that output a feasible solution in a
minimal number of rounds or cause a minimal amount of total waste. We introduce functions that describe
how well such optimal protocols perform: LetROUNDS-BF(n,D,C) denote the minimal number of rounds
for binary feedback needed by any protocol to find a feasible solution forn channels, a demandD, and
a network capacityC. Similarly, we defineROUNDS-TF(n,D,C) for throughput feedback. The functions
WASTE-BF(n,D,C) and WASTE-TF(n,D,C) tell us how much total waste any protocol must cause before
it finds a solution. Finally, we also introduce four sibling functions that miss the third parameterC as in
ROUNDS-BF(n,D). For these functions the total capacityC is not known to the protocol and the protocol
must find a solution or infer thatC < D.

Motivation. The original motivation for this problem was a scenario in which the channels correspond
to Internet service providers, and the goal is to distribute a given amount of traffic among the providers,
without advance knowledge of the maximum rate at which each provider is willing and able to transmit
our traffic [1]. On a smaller scale, a user of a peer-to-peer network who tries to service parallel download
requests from different peers also faces the problem of distributing her fixed, often small, bandwidth among
the peers.

In addition to the network flow interpretation, there is an interpretation of our problem as a product
distribution problem. For example, suppose a publisher can produce up toD copies of a newspaper each
day, and must distribute the copies ton cities, where the demandci at each cityi is initially unknown. Our
problem models the process of efficient probing for the distribution that maximizes sales.

Our Contribution. Our main results can be summarized by the inequalities shown below. In all cases, the
lower bounds are established through adversary strategies. The upper bounds are established by analyzing
the performance of concrete protocols. In the equations, and in the following,o(1) always refers to the
parametern.

Function Lower Bound Upper Bound
ROUNDS-TF(n,D) ≥

(
1−o(1)

)
lnn

ln lnn ≤
(
1+o(1)

)
lnn

ln lnn

WASTE-TF(n,D) ≥
(
1−o(1)

)
D lnn

ln lnn ≤
(
1+o(1)

)
D lnn

ln lnn

WASTE-BF(n,D,C) ≥
(
1−o(1)

)
D lnn

ln lnn ≤
(
2+o(1)

)
D lnn

ln lnn

ROUNDS-BF(n,D,C) ≥
(
1−o(1)

)(
log2

C
C−D+1− log2n

)
≤ log2

C
C−D+1 + 3

2 log2n

ROUNDS-BF(2,D,D) = dlog3De = dlog3De

Organization of this Paper. In Section 2 we introduce notions that are common to the analysis of all
variants of the problem. Section 3 treats throughput feedback, and we establish matching upper and lower
bounds, simultaneously for the minimal number of rounds and the minimal waste. In Section 4 we study
binary feedback. There, we treat waste and rounds separately and give special attention to the case of two
channels. We conclude with a list of open problems.

2

2 Basic Protocol Analysis Tools

In this section we introduce basic ideas and terminology that will be used in all of our analyses.

2.1 Maintaining the Pinning Box

For any protocol, at any point during a run of the protocol we will have gathered certain information about the
(unknown) capacities of the channels. For each channeli, from the answers to the previoust queries we will
have deduced anupper bound hi(t) and alower bound li(t) for the channel capacityci . Thusci ∈ [l i(t),hi(t)],
called thepinning interval. The cross product of the pinning intervals will be called thepinning box. The
sum∑n

i=1

(
hi(t)− l i(t)

)
will be called thesizeof the pinning box. If, at any point,l i(t) = hi(t), we obviously

know ci . At the beginning of a run, we know the trivial boundsl i(0) = 0 andhi(0) = ∞. A better upper
bound is given byhi(0) = C, but we may not knowC. The sum of thel i(t) at timet will be denotedL(t).
Similarly, the sum of thehi(t) will be denotedH(t).

We query a vectorq(t) = (q1, . . . ,qn) at time stept. The feedbackf (t) = (f1, . . . , fn) may allow us
to improve some or perhaps even all of our pinning intervals. For binary feedback, we can perform the
following updating: if fi = failure, sethi(t) = min{hi(t−1),dqie−1}; if fi = success, setl i(t) = max{l i(t−
1),dqie}. It may seem strange that we allow for the possibility of trying to transmit less on a channel than
the lower bound or more than the upper bound. Indeed, transmitting more than the upper bound makes little
sense, but transmitting less than the lower bound can be useful: The demand “saved” by not transmitting it
on a certain channel might be used to probe the capacity of other channels more quickly. For throughput
feedback, we can always setl i(t) = max{l i(t−1), fi}; and if fi < qi , we even knowl i(t) = hi(t) = fi = ci .

2.2 Effects of Increasing the Capacity

In certain situations an increase in the total capacityC affects the number of rounds or the waste needed
to find a solution. Intuitively, a bigger capacityC should make it easier to find a solution—or at least not
harder. However, a protocol that works fine for a capacity of, say,C = D might try to exploit this fact to its
advantage. For example forn= 2 andC = D, if we know l1 = 3

4D, then we can conclude that the capacity on
the second channel can be at mostD/4, but we cannot conclude this if we only know C≥ D. Nevertheless,
the following theorem shows that our first intuition is correct.

Theorem 2.1. Let D≤C≤C′. Then

ROUNDS-BF(n,D,C)≥ ROUNDS-BF(n,D,C′),
WASTE-BF(n,D,C)≥ WASTE-BF(n,D,C′).

Proof. Let P be a protocol that minimizes the number of rounds forn channels, a demandD, and a guaran-
teed capacity ofC. We give a protocolP′ that will need at most as many rounds asP and will work for any
capacityC′ ≥C. It does not even need to knowC′.

Protocol P′.
1 in round t← 1,2,3, . . . do
2 let q(t) be the query protocol P would pose in round t

if it had seen the same results to our previous queries as we have seen
3 queryq(t)
4 let B :=

{
(c1, . . . ,cn) | l i ≤ ci ≤ hi , ∑n

i=1ci = C
}

5 let (m1, . . . ,mn) := (minc∈Bc1, . . . ,minc∈Bcn)

3

6 if ∑n
i=1mi ≥ D then

7 outputsome(d1, . . . ,dn) with ∑n
i=1di = D and li ≤ di ≤mi ; stop

In essence, for an unknown capacity vectorc′ = (c′1, . . . ,c
′
n) summing up toC′, ProtocolP′ runs Pro-

tocol P, “pretending” that the capacity isC. It interrupts the simulation once it has found a vectorm =
(m1, . . . ,mn) that sums up to at leastD and that, in a certain sense, lies “beneath” all vectors summing up
to C inside the pinning box.

Our first claim is that the output of the protocol is, indeed, a solution. There exists a vectorc∈ B that is
componentwise below the real capacity vectorc′. It can be obtained, for example, by successively dropping
the components ofc′ to their established lower bounds until we can drop some components exactly as much
as is needed to make the resulting vectorc sum up toC. Thenc ∈ B. Sincec ∈ B, the vectorm will be
componentwise belowc. Since the output is componentwise belowm in turn, we conclude that the output
is componentwise below the capacity vectorc′ and is hence a solution.

Our second claim is that ProtocolP′ runs for at mostT := ROUNDS-BF(n,D,C) rounds. Consider the
situation the protocol faces at roundT. The crucial observation at this point is that all elements of the
setB produce the exact same answers to all the queries the ProtocolP′ (and hence alsoP) has posed until
now. Since ProtocolP always finishes withinT rounds, it must be able to output a solution that satisfies
all elements ofB. But such a solution must necessarily lie beneathm, which must thus sum up toD. Thus
∑n

i=1mi ≥ D.
For the claimWASTE-BF(n,D,C) ≤ WASTE-BF(n,D,C′), just note that ProtocolP′ also wastes at most

as much as ProtocolP does.

Corollary 2.2.

ROUNDS-BF(n,D,D) = ROUNDS-BF(n,D),
WASTE-BF(n,D,D) = WASTE-BF(n,D).

The inequalityROUNDS-BF(n,D,C) ≤ ROUNDS-BF(n,D,C′) is a proper inequality in many cases. For
example, we will see thatROUNDS-BF(n,D,D) = Θ(logD) but ROUNDS-BF(n,D,2D) = Θ(1) for fixedn.

For throughput feedback, the situation is simpler.

Theorem 2.3. For all C ≥ D we have

ROUNDS-TF(n,D,C) = ROUNDS-TF(n,D),
WASTE-TF(n,D,C) = WASTE-TF(n,D).

Proof. As in the previous proof, we take a protocolP that minimizes the number of rounds or the waste and
construct a protocolP′ that simulates this protocol. Only this time, we stop the simulation when the sum of
the lower bounds exceedsD. Observe that until this happens, there always exists a capacity vector summing
up toD that produces the exact same feedback as the one we saw. Furthermore, for this capacity vector, at
least one channel will not yet have been upper-bounded. Thus we can also find a vector summing up to any
valueC > D that produces the exact same feedback as the one we saw.

3 Throughput Feedback

In this section we establish matching upper and lower bounds on the number of rounds and the waste needed
to find a solution when we get throughput feedback. The upper bound is established by explicitly describing

4

and analyzing a concrete protocol, the lower bound is shown using an adversary argument. The results of
this section can be summed up by the following equations:(

1−o(1)
) lnn

ln lnn
≤ ROUNDS-TF(n,D)≤

(
1+o(1)

) lnn
ln lnn

,(
1−o(1)

)
D

lnn
ln lnn

≤ WASTE-TF(n,D)≤
(
1+o(1)

)
D

lnn
ln lnn

.

3.1 Upper Bounds on Rounds and Waste

For throughput feedback, the capacity of a channel is determined as soon as a query exceeds it (“over-
shoots”). We propose the following protocol that seeks to overshoot as many channels as possible as quickly
as possible.

Protocol 3.1 (Upper Bound Protocol).

1 g0← n
2 in round t← 1,2,3, . . . do
3 q1 = · · ·= qgt−1 := D/gt−1

4 queryq(t) = (q1, . . . ,qgt−1,0, . . . ,0)
5 gt ← the number of channels with capacity at least D/gt−1

6 reorderthe channels such that exactly the first gt channels
have capacity at least D/gt−1

7 if gt = 0 or H(t) = D or L(t) = D then stop

Observe that the protocol, during its course, only uses channels whose capacity has not been determined
yet, and distributes the flow evenly among them. It stops when it has determined all channel capacities and
also when it has found a flow distribution that is compatible with them. We next give a bound on the number
of rounds the protocol needs to finish.

Theorem 3.2. ROUNDS-TF(n,D)≤
(
1+o(1)

)
lnn

ln lnn.

Proof. We show that Protocol 3.1 will find solutions in no more than
(
1+o(1)

)
lnn

ln lnn rounds. The main idea
of the proof is that the longer it takes to overshoot the channels, the quicker the known capacity increases.
Consider a run of the protocol and letT be the number of queries issued. In the following, the indext will
be understood to range from 1 toT−1, unless stated otherwise.

Let αt := gt/gt−1. After the first round,g1 channels are known to have capacity at leastD/g0, so
L(1) = α1D. Similarly, after roundt ≥ 2, the known capacity on thegt channels that are not overshot
increases fromD/gt−2 to D/gt−1. Thus,

L(t)−L(t−1)≥ gt(D/gt−1−D/gt−2) = αt(1−αt−1)D. (1)

Let max∈ {1, . . . ,T−1} be an index such thatαmax≥ αt for all t. Telescoping (1), we get

L(T−1)/D≥ α1 + ∑
t≥2

αt(1−αt−1) (2)

= αmax+
max−1

∑
t=1

αt(1−αt+1)+
T−1

∑
t=max+1

αt(1−αt−1) (3)

≥ αmax+(1−αmax) ∑
t 6=max

αt . (4)

5

Since the protocol does not stop after queryT − 1, we knowL(T − 1) < D. Thus, by (3),αmax≤
L(T−1)/D < 1. We may therefore divide by 1−αmax and from (4) we get

∑
t 6=max

αt < 1. (5)

Another consequence of the fact that the protocol does not stop after queryT−1 is thatgT−1≥ 1, where
gT−1 = n∏T−1

t=1 αt . Thus,

∏
t 6=max

αt >
T−1

∏
t=1

αt ≥ 1/n. (6)

Applying the inequality of the arithmetic and geometric means, from (5) and (6) we get

1/n < ∏
t 6=max

αt ≤
(

∑t 6=maxαt

T−2

)T−2

< (T−2)−(T−2), (7)

and consequently,(T−2)T−2≤ n. ThereforeT ≤
(
1+o(1)

)
lnn

ln lnn and the claim follows.

Our upper bound on the number of rounds has the following immediate corollary, which is proved by
observing that in any round one can waste at mostD.

Corollary 3.3. WASTE-TF(n,D)≤
(
1+o(1)

)
D lnn

ln lnn.

3.2 Lower Bounds on Rounds and Waste

We give lower bounds that match the upper bounds above, first on the waste.

Theorem 3.4. WASTE-TF(n,D)≥
(
1−o(1)

)
D lnn

ln lnn.

Proof. Consider a optimal protocol. We describe an adversary strategy that causes it to waste at least the
amount stated in the theorem.

The Capacity Distribution. Let α := 1/ lnn andT :=
⌈

lnn
ln lnn

⌉
.

After each query, as long as there is at least one channel left, the adversary fixes the capacity of all but
anα-fraction of the channels. More precisely, after thet first queries the capacity ofgt := dαtne channels
has not yet been fixed. Observe thatαT−1n > 1, butαTn≤ 1, so the number of queries handled that way
is T−1. After T queries, only one channel is left and its capacity is chosen as the difference betweenC and
the total capacity already assigned. The feedback is always given consistently with all capacity assignments
that extend the fixed capacities.

If the capacity of two channels is fixed after the same query, the capacities shall be the same. Thus, there
areT different capacity values to be chosen. We denote them, abusing notation, byc1, . . . , cT , whereci is
the capacity of the channels fixed after queryi. Specifically, letc1 := 0 andct := D

(1−α)αt−2n for 2≤ t ≤ T−1.
For convenience, we denote the number of channels fixed after queryt by

rt := gt−1−gt ≤ αt−1n+1−αtn≤
(

1+
1

αt−1n

)
αt−1(1−α)n,

whence the newly assigned capacity after queryt is

rt ·ct ≤
(

1+
1

αt−1n

)
αD≤ 2αD. (8)

6

An immediate consequence of (8) is

L(T−1) =
T−1

∑
t=1

rtct ≤ 2α(T−1)D = o(D),

so that the protocol has not located enough capacity after any of the firstT −1 queries. Moreover, there
is always at least one unbounded channel left. Therefore the protocol continues up to theTth query. Note
that before that query there is only one unbounded channel left, and that that channel is given the remaining
capacity valueC−∑T

t=1 rtct ≥
(
1−o(1)

)
D.

Assignment of the Capacities. Since the capacity distribution is not dependent on the protocol, it is
convenient to describe the information state of the protocol before queryt as an assignment of the capacities
c1, . . . ,ct−1 to a selection ofn−gt−1 = r1+ · · ·+ rt−1 channels. As an invariant we shall maintain that none
of the channels whose capacity has not yet been fixed has been queried with an amount ofct or more.

The invariant holds before the first query. Given thetth queryq(t) = (q1, . . . ,qn), using the invariant we
may assume without loss of generality thatq1≤ ·· · ≤ qgt−1. The adversary assigns the capacityct to channels
gt +1,gt +2, . . . ,gt−1. We need to verify that the invariant still holds. SinceD≥ qgt + · · ·+qn≥ (rt +1)qgt ,
where

rt +1 = gt−1−gt +1 > αt−1n−αtn = (1−α)αt−1n,

we havegt ′ ≤ gt < D
(1−α)αt−1n = ct+1 for 1≤ t ′ ≤ gt .

The information state of the protocol before queryt is not morethan stated in the invariant. Although
the protocol might gather less information in the firstt queries, we can just assume that the adversary gives
away the difference in information.

The Total Waste. Let P(t) denote the throughput in queryt. By the definition of throughput,

P(t)≤
gt

∑
j=1

q j + rtct + · · ·+ r1c1≤ gt/gt−1 ·D+2(t−1)αD.

The second inequality follows from the order on theq j and inequality (8).
Sincegt/gt−1≤ (1+ 1

αtn)α≤ 2α, we getP(t)≤ 2tαD, and thus a total waste of

T−1

∑
t=1

(D−Pt)≥ (T−1)D−2

(
T
2

)
αD = TD

(
1−Tα

)
,

which proves the theorem.

Once more, by observing that in any round we can waste at mostD, we get a corollary.

Corollary 3.5. ROUNDS-TF(n,D)≥
(
1−o(1)

)
lnn

ln lnn.

4 Binary Feedback

In this section we study upper and lower bounds for flow distribution when we get binary feedback. We
first study the waste functionWASTE-BF(n,D,C) and show that it behaves similarly to the correspond-
ing waste function for throughput feedback. Next, we review results from the literature on the function
ROUNDS-BF(n,D,D) and then extend these results toROUNDS-BF(n,D,C). Unlike ROUNDS-TF(n,D,C),
for binary feedback the number of rounds does not only depend onn andD, but also onC. While the upper
and lower bounds that we establish forROUNDS-BF(n,D,C) do not quite match for generaln, we solve the
special case of two channels completely: interestingly,ROUNDS-BF(2,D,D) = dlog3De.

7

4.1 Minimizing Waste

Similarly to the treatment of throughput feedback, we establish upper and lower bounds for the waste needed
to find a solution. We show the following:(

1−o(1)
)
D

lnn
ln lnn

≤ WASTE-BF(n,D,C)≤
(
2+o(1)

)
D

lnn
ln lnn

.

The first bound follows from Theorem 3.4. To prove the second bound, we proceed as follows: We use
Protocol 3.1 once more. While it is an optimal waste minimization protocol for throughput feedback, for
binary feedback it typically leaves us with some pinning box. We use a second protocol to reduce the
pinning box’s size to zero. Intriguingly, this second protocol is theproportional allocation protocol, which
was originally introduced in [1] in the context ofroundminimization. We show that this protocol reduces the
size of the pinning box to zero without wasting more than the total size of the pinning intervals. Finally, we
show that when we start the proportional allocation protocol, the pinning box has size at mostD lnn/ ln lnn.

Protocol 4.1 (Proportional Allocation, [1]).

1 foreach i ∈ {1, . . . ,n}
2 hi ←min{hi ,D}
3 in round t do
4 ρ← D−L(t−1)

H(t−1)−L(t−1)
5 foreach i ∈ {1, . . . ,n} do
6 qi(t)← l i(t−1)+ρ

(
hi(t−1)− l i(t−1)

)
7 query

(
q1(t), . . . ,qn(t)

)
8 if H(t) = D or L(t) = D then outputlast query;stop

Theorem 4.2. Let Protocol 4.1 be started at step t0 with a certain pinning box already established. Then it
will find a solution wasting no more than H(t0)−L(t0).

Proof. Let ∆(t) := H(t)− L(t) denote the total pinning interval gap. Our aim is to show the following
claim: If the protocol wastes W(t) in round t, we have∆(t +1) ≤ ∆(t)−W(t). In other words, we reduce
the pinning interval gap by at least the amount we waste. If this claim holds, we clearly cannot waste more
than∆(t0) before the gap drops to zero.

In each roundt we distinguish two cases, depending on whetherρ≤ 1/2 or ρ > 1/2 in this round. For
the caseρ≤ 1/2, consider the valueswi := max{0,qi−ci}. We claimW(t) = ∑n

i=1wi . This can be seen as
follows:

W(t) = D−
n

∑
i=1

min{ci ,qi}= D−
n

∑
i=1

(
qi−max{0,qi−ci}

)
=

n

∑
i=1

wi .

We used the fact that Protocol 4.1 always distributes the complete demandD, that is,∑n
i=1qi = D. Consider

a channeli with wi > 0 and thusqi > ci . Since the query was a failure, the upper boundhi will be decreased
to qi . Thus the pinning interval changes from[l i ,hi] to [l i ,qi] and its size changes fromhi − l i to qi − l i =
ρ(hi− l i). Thus, channeli causes the gap∆ to shrink by at least(1−ρ)(hi− l i) while it causes a waste of at
mostwi = qi −ci ≤ qi − l i = ρ(hi − l i). Since this argument is true for all channels, we conclude thatW(t)
is less than the decrease of the pinning interval gap.

For the caseρ > 1/2, we argue similarly, but we now consider the valuesw′i := max{0,ci −qi}. The
sum of these values is an upper bound on the waste:

W(t) = D−
n

∑
i=1

min{ci ,qi}= D−
n

∑
i=1

(
ci−max{0,ci−qi}

)
= D−C+

n

∑
i=1

w′i ≤
n

∑
i=1

w′i .

8

It remains to argue that on each channel we decrease the size of the pinning interval by at leastw′i . Suppose
w′i > 0. Thenci > qi and the pinning interval changes from[l i ,hi] to [qi ,hi]. Its size changes fromhi − l i
to hi −qi = (1−ρ)(hi − l i) and thus its size reduces by at leastρ(hi − l i). Sincew′i = ci −qi ≤ hi −qi =
(1− ρ)(hi − l i) and sinceρ > 1/2, we conclude that the reduction of the interval size is larger than the
waste.

Theorem 4.3. WASTE-BF(n,D,C)≤
(
2+o(1)

)
D lnn

ln lnn.

Proof. We run Protocol 3.1, followed by Protocol 4.1. By Corollary 3.3, the waste at the end of the first
protocol is

(
1+ o(1)

)
D lnn/ ln lnn. Observe that an upper bound is established when a channel is being

overshot and that Protocol 3.1 overshoots each channel exactly once. Consider the channels that are overshot
in roundt. For each of them (there aregt−1−gt many), the protocol queriesD/gt−1 and gets that value as
an upper bound on their capacity. These upper bounds cumulate toD(1−gt/gt−1) ≤ D. Given the bound
on the number of queries from Theorem 3.2, we concludeH(t0)−L(t0)≤ H(t0)≤

(
1+o(1)

)
D lnn/ ln lnn.

Theorem 4.2 now yields the claim.

4.2 Minimizing Rounds

In the previous section we saw that for the total waste it makes only little difference whether binary feedback
and throughput feedback is used: using binary feedback at most doubles the waste. In this section we see
that the situation is quite different for rounds. For throughput feedback the optimal number of rounds is
lnn/ ln lnn. In particular, this number does not depend on eitherD or C. As we show in the following, for
binary feedback the optimal number of rounds depends both onD and onC. In particular, an increased total
capacityC allows us to find solutions more quickly. In detail, we show the following:

(
1−o(1)

)(
log2

C
C−D+1

− log2n

)
≤ ROUNDS-BF(n,D,C)≤ log2

C
C−D+1

+
3
2

log2n.

As we mentioned earlier, Chandrayana et al. have proposed the proportional allocation protocol, Proto-
col 4.1, as a protocol for minimizing the number of rounds. They prove the following fact:

Fact 4.4 ([1]). ROUNDS-BF(n,D,D)≤ log2D+ log2 n
2 .

Chandrayana et al. prove a lower bound that matches this upper bound in the sense that they show
ROUNDS-BF(n,D,D) = θ(log2D) for fixedn. However, the protocol is far from optimal ifC is larger thanD
and if we know this. Suppose for example, thatn = 2 and we knowC = 2D. In this situation, ifc1 = C and
c2 = 0, Protocol 4.1 will need log2D rounds to find the solution(D,0). There is a much faster protocol: In
the first round, query(D/2,D/2). If this query is a solution, we are done. Otherwise, on at least one channel
our query will succeed, say on the second one. But then(0,D) is a solution. ThusROUNDS-BF(2,D,2D) = 2
and this is truefor all D.

We present a modification of Protocol 4.1 that finds a solution in a number of rounds that depends onn
but not onD, if we knowC= αD for some constantα > 1. The protocol will need at most log2

α
α−1 + 3

2 log2n
rounds in this situation.

Protocol 4.5 (Scaled Proportional Allocation). Let ∆ := b(C−D)/nc+ 1 and let D′ := dD/∆e. Scaled
proportional allocation simulates Protocol 4.1 with the following modifications:

1. The demand we try to distribute is D′ instead of D.

2. Whenever proportional allocation wishes to make a query(q′1, . . . ,q
′
n), query(∆q′1, . . . ,∆q′n) instead.

9

Theorem 4.6. ROUNDS-BF(n,D,C)≤ log2
C

C−D+1 + 3
2 log2n.

Proof. Consider the actual capacities(c1, . . . ,cn) and letc′i := bci/∆c. A run of Protocol 4.5 will produce the
same queries as running the original Protocol 4.1 for the capacity vector(c′1, . . . ,c

′
n) and for the demandD′:

We have∆q′i ≤ ci if and only if ∆q′i ≤ ∆bci/∆c, which is in turn equivalent toq′i ≤ bci/∆c. Thus a query
∆q′i will be answered withsuccessin Protocol 4.5 if and only if the queryq′i is answered the same way in
Protocol 4.1 for the scaled capacities and the scaled demand.

There exists a solution with respect to the capacities(c′1, . . . ,c
′
n) and the demandD′ since

n

∑
i=1

c′i =
n

∑
i=1

⌊ci

∆

⌋
≥

n

∑
i=1

ci−∆+1
∆

=
C−n∆+n

∆
=

D
∆

.

The left-hand side is an integer and we even have∑n
i=1c′i ≥ dD/∆e= D′.

So far, we have shown that Protocol 4.5 will need as much time to find a solution as Protocol 4.1 will
need for the scaled capacity vector and the scaled demand. By Fact 4.4, we will find a solution in time

log2D′+
log2n

2
= log2

⌈
D

b(C−D)/nc+1

⌉
+

log2n
2

= log2

⌈
nD

nb(C−D)/n+1c

⌉
+

log2n
2

≤ log2

⌈
nD

C−D+1

⌉
+

log2n
2
≤ log2

C
C−D+1

+
3
2

log2n.

Theorem 4.7. ROUNDS-BF(n,D,C)≥
(
1−o(1)

)(
log2

C
C−D+1− log2n

)
.

Proof. We present an adversary strategy against an optimal protocol for given numbersn, D, andC. The
adversary keeps track of a setX of capacity vectors summing up toC that are consistent with all the answers
the adversary has provided until now. Initially,X contains all vectors of nonnegative integers summing up
to C and thus has size

(C+n−1
n−1

)
. When the protocol poses a query, the 2n possible answers vectors partition

X into 2n sets whose elements are consistent with one answer vector. At least one of these sets has size at
least|X|/2n and the adversary returns the answer vector corresponding to this set.

We claim that the protocol cannot produce its final output before|X| has dropped to
(C−D+n−1

n−1

)
. To

see this, note that every vector summing up toD is componentwise below at most
(C−D+n−1

n−1

)
many vectors

in X. We conclude that the numberT of rounds needed by the optimal protocol to produce its solution must
satisfy

(C+n−1
n−1

) /
(2n)T ≤

(C−D+n−1
n−1

)
and thus

T ≥ 1
n

log2

(C+n−1
n−1

)(C−D+n−1
n−1

) ≥ n−1
n

log2
C+n−1

C−D+n−1
≥ n−1

n
log2

C
n(C−D+1)

.

The last term equals
(
1−o(1)

)(
log2

C
C−D+1− log2n

)
, which proves the claim.

4.3 Minimizing Rounds for Two Channels

The upper and lower bounds proved in the previous section do not quite match: the upper bounds contain
a positive log2n term, the lower bounds a negative log2n term. As a first step toward closing this gap,
we completely solve the problem forn = 2: the number of rounds needed to find a solution using binary
feedback is log3D rounds forC = D. This result is a bit surprising since even a binary search needs log2D
rounds to find a distribution. The protocol that achieves the bound of log3D is the following:

10

Protocol 4.8 (Two Channel Protocol).

1 l ← 0, h← D
2 in round t do
3 q1← (h− l)/3+ l
4 q2← (h− l)/3+D−h
5 query(q1,q2) receiving(f1, f2)
6 if H(t) = D or L(t) = D then outputlast query;stop
7 if f1 = failure thenh← q1 elsel ← q1

8 if f2 = failure then l ←max{l ,D−q2} elseh←min{h,D−q2}

Theorem 4.9. ROUNDS-BF(2,D) = log3D.

Proof. By Corollary 2.2 it suffices to showROUNDS-BF(2,D,D) = log3D. We begin with an adversary
strategy that ensures that any fixed protocol cannot find the solution in less than log3D rounds. This will
show the inequalityROUNDS-BF(2,D,D)≥ log3D.

The aim of the adversary is to keep the protocol in the dark about the capacityc1. The adversary keeps
track of a pinning interval[l ,h] that gets smaller in each round. In any roundt, the answers of the adversary
up to then will be consistent with every capacity vector(c1,c2) with c1 ∈ [l ,h] andc2 = D− c1. Initially,
l = 0 andh = D, which clearly fulfills the requirements. In roundt, consider a queryq(t) = (q1,q2) and
consider where the two numbersq1 andD−q2 lie in the interval[l ,h]. They can split the interval into at most
three intervals and at least one of them must have size at least(h− l)/3. The adversary answers such that
any value within this largest interval is permissible. For simplicity, assumel ≤ q1≤D−q2≤ h—other cases
are similar. Then, in detail, if the largest interval is[l ,q1], the adversary answers(failure,success). If the
largest interval is[q1,D−q2], the adversary answers(success,success). If the largest interval is[D−q2,h],
the adversary answers(success, failure). In each round, the size of the interval is reduced by a factor of at
most 3. Thus, only after log3D rounds the adversary will finally have to settle on a capacity distribution.

To prove the inequalityROUNDS-BF(2,D,D) ≤ log3D, consider Protocol 4.8. It implements a strategy
against the just-given adversary by keeping track of the interval[l ,h] for which it knowsc1 ∈ [l ,h] and thus
c2 ∈ [D−h,D− l]. In each round it poses two queries(q1,q2) such thatq1 andD−q2 cut the interval into
three equal parts. For every possible answer vector(f1, f2) the interval size will be reduced by a factor of 3,
which proves the claim.

5 Conclusion and Open Problems

In this paper we proposed a framework for studying different ways of distributing a flow in a simple network
with unknown capacities. We studied two kinds of feedback, namely binary and throughput feedback. For
the latter type of feedback we presented a protocol that is optimal both with respect to the number of rounds
and the waste produced. For binary feedback there is still a gap between the upper and lower bounds when
the numbern of channels is also taken into account. For the special case of two channels we gave an optimal
protocol that outperforms binary search.

Experimental work done by Chandrayana et al. [1] has shown that the (unscaled) protocol allocation
protocol performs well on real data with respect to the number of rounds needed. Our theoretical work backs
these findings, but we showed that scaling can significantly improve the performance of the protocol if the
available capacity is larger than the demand. The proportional allocation protocol is also part of our near-
optimal protocol for waste minimization. This opens the intriguing possibility that the scaled proportional
allocation protocol might be an optimal protocol for minimizing both rounds and waste.

11

We did not address the computational complexity of protocols in the present paper; protocols concep-
tually had arbitrarily much computational power. However, reviewing the protocols for which we showed
optimality, we see that they are both easy to implement and have low computational complexity.

We mention the following open problems, which we suggest for further research:

1. In the binary feedback model, find an algorithm that is optimal, up to a factor 1+o(1), with respect
to both total waste and number of rounds.

2. In the binary feedback model, improve the upper and lower bounds on the optimal number of rounds
when a lower bound is given on the total capacityC.

3. Study dynamic versions of our problems, in which the capacities may change from round to round.
This can be done either under deterministic constraints on the changes of capacity from round to
round, or under a probabilistic model of the fluctuation of capacities. For the casen = 1, some results
in the framework of competitive analysis of on-line algorithms are given in [2].

4. Determine the optimal waste for a model in which the throughput on channeli is qi if qi ≤ ci , and 0 if
qi > ci . This model is suggested by certain Internet congestion control protocols in which, whenever
a packet is dropped in a round, it cannot be guaranteed that any packets are delivered. For the case
n = 1, this model is studied in [2].

5. Our problem suggests a generalization of the classic Twenty Questions scenario in which a player
attempts to efficiently identify an unknown object by asking yes / no questions. In the generalization,
the player’s goal is to identify several objects concurrently by asking a question about each object in
each round, but each question has a cost, and a limit is placed on the total cost that may be expended
in a round. Explore further examples of this generalized Twenty Questions framework.

References

[1] Kartikeya Chandrayana, Yin Zhang, Matthew Roughan, Shubho Sen, and Richard Karp. Search game
in inter-domain traffic engineering. Manuscript, 2004.

[2] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker. Combinatorial optimization in congestion
control. In Proceedings of the 41th Annual Symposium on Foundations of Computer Science, pages
66–74, Redondo Beach, CA, 2000.

12

