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Abstract. The interpretation of large-scale protein network data de-
pends on our ability to identify significant sub-structures in the data, a
computationally intensive task. Here we adapt and extend efficient tech-
niques for finding paths in graphs to the problem of identifying path-
ways in protein interaction networks. We present linear-time algorithms
for finding paths in networks under several biologically-motivated con-
straints. We apply our methodology to search for protein pathways in
the yeast protein-protein interaction network. We demonstrate that our
algorithm is capable of reconstructing known signaling pathways and
identifying functionally enriched paths in an unsupervised manner. The
algorithm is very efficient, computing optimal paths of length 8 within
minutes and paths of length 10 in less than two hours.

1 Introduction

A major challenge of post-genomic biology is to understand the complex net-
works of interacting genes, proteins and small molecules that give rise to biolog-
ical form and function. Protein-protein interactions are crucial to the assembly
of protein machinery and the formation of protein signaling cascades. Hence,
the dissection of protein interaction networks has great potential to improve the
understanding of cellular machinery and to assist in deciphering protein function.

The available knowledge about protein interactions in a single species can
be represented as a protein interaction graph, whose vertices represent proteins
and whose edges represent protein interactions; each edge can be assigned a
weight, indicating the strength of evidence for the existence of the corresponding
interaction. An important class of protein signaling cascades can be described as
chains of interacting proteins, in which protein interactions enable each protein
in the path to modify its successor so as to transmit biological information. Such
structures correspond to simple paths in the protein interaction graph [1].

Steffen et al. [2] studied the problem of identifying pathways in a protein net-
work. They applied an exhaustive search procedure to an unweighted interaction



graph, considering all interactions equally reliable. To score the biological rele-
vance of an identified path, they scored the tendency of its genes to have similar
expression patterns. The approach was successful in detecting known signaling
pathways in yeast. A related study that we have conducted [1] aimed at iden-
tifying pathways that are conserved across two species. The study employed a
more efficient way of detecting simple paths in a graph that is based on finding
acyclic orientations of the graph’s edges.

The present work advances the methodology of searching for signaling cas-
cades in two ways: first, by assigning well-founded reliability scores to protein-
protein interactions, rather than putting all such interactions on the same foot-
ing; and second, by exploiting a powerful algorithmic technique by Alon et al. [3],
called color coding, to find high-scoring paths efficiently. The color coding ap-
proach reduces the running time of the search algorithm by orders of magnitude
compared to exhaustive search or to the faster acyclic orientation approach, thus
enabling the search for longer paths. We also extend the color coding method to
incorporate biologically-motivated constraints on the types of proteins that may
occur in a path and the order of their occurrence, and to search for structures
more general than paths, such as trees or two-terminal series-parallel graphs.

As evidence of the success of our approach we show that our method accu-
rately recovers well-known MAP kinase and ubiquitin-ligation pathways, that
many of the pathways we discover are enriched for known cellular functions,
and that the pathways we find score higher than paths found in random net-
works obtained by shuffling the edges and weights of the original network while
preserving vertex degrees.

The paper is organized as follows: Section 2 presents the path finding problem
and describes the color coding approach. In Section 3 we develop biologically-
motivated extensions of the color coding approach. Section 4 describes the es-
timation of protein interaction reliabilities and the path scoring methods used.
Finally, Section 5 presents the applications of our method to yeast protein in-
teraction data. For lack of space, some algorithmic details are omitted.

2 Finding Simple Paths: The Color Coding Technique

Alon et al. [3] devised a novel randomized algorithm, called color coding, for find-
ing simple paths and simple cycles of a specified length k, within a given graph.
In this section we describe this approach. Our presentation generalizes that in [3]
in order to allow succinct description of biologically-motivated extensions of the
basic technique.

Consider a weighted interaction graph in which each vertex is a protein and
each edge (u, v) represents an experimentally observed interaction between pro-
teins u and v, and is assigned a numerical value p(u, v) representing the proba-
bility that u and v interact (computed as per Section 4 below). Each simple path
in this graph can be assigned a score equal to the product of the values assigned
to its edges. Among paths of a given length, those with the highest scores are
plausible candidates for being identified as linear signal transduction pathways.



Given a set I of possible start vertices we would like to find the highest-scoring
paths from I to each vertex of the graph. In the case of signaling pathways I
might be the set of all receptor proteins or a single protein of particular interest.

We begin by framing the problem mathematically. In order to work with an
additive weight rather than a multiplicative one, we assign each edge (u, v) a
weight w(u, v) ≡ − log p(u, v). We define the weight of a path as the sum of the
weights of its edges, and the length of a path as the number of vertices it contains.
Given an undirected weighted graph G = (V,E, w) with n vertices, m edges and
a set I of start vertices, we wish to find, for each vertex v, a minimum-weight
simple path of length k that starts within I and ends at v. If no such simple
path exists, our algorithm should report this fact.

For general k this problem is NP-hard, as the traveling-salesman problem
is reducible to it. The difficulty of the problem stems from the restriction to
simple paths; without this restriction the best path of length k is easily found.
A standard dynamic programming algorithm for the problem is as follows. For
each nonempty set S ⊆ V of cardinality at most k, and each vertex v ∈ S,
let W (v, S) be the minimum weight of a simple path of length |S| which starts
at some vertex in I, visits each vertex in S, and ends at v. If no such path
exists then W (v, S) = ∞. The following recurrence can be used to tabulate this
function by generating the values W (v, S) in increasing order of the cardinality
of S:

W (v, S) = min
u∈S−{v}

W (u, S − {v}) + w(u, v), |S| > 1

where W (v, {v}) = 0 if v ∈ I and ∞ otherwise.
The weight of the optimal path to v is the minimum of W (v, S) over all pairs

v, S such that |S| = k, and the vertices of the optimal path can be recovered
successively in reverse order by a standard dynamic programming backtracking
method. The running time of this algorithm is O(knk) and its space requirement
is O(knk).

The idea of color coding is to assign each vertex a random color between 1
and k and, instead of searching for paths with distinct vertices, search for paths
with distinct colors. The complexity of the dynamic programming algorithm is
thereby greatly reduced, and the paths that are produced are necessarily simple.
However, a path fails to be discovered if any two of its vertices receive the same
color, so many random colorings need to be tried to ensure that the desired paths
are not missed. The running time of the color coding algorithm is exponential in
k and linear in m, and the storage requirement is exponential in k and linear in
n. This method is superior when n is much larger than k, as is the case in our
application, where typical values are n = 6, 000 and k = 8.

The color coding algorithm requires repeated randomized trials. In each trial,
every vertex v ∈ V is independently assigned a color c(v) drawn uniformly at ran-
dom from the set {1, 2, ..., k}. Call a path colorful if it contains exactly one vertex
of each color. We seek a minimum-weight colorful path from I to each vertex
v. This problem can be solved using the following dynamic programming algo-
rithm, which parallels the previous one: for each nonempty set S ⊆ {1, 2, . . . , k}
and each vertex v such that c(v) ∈ S, let W (v, S) be the minimum weight of a



simple path of length |S| that starts within I, visits a vertex of each color in S,
and ends at v. This function can be tabulated using the following recurrence:

W (v, S) = min
u:c(u)∈(S−{c(v)})

W (u, S − {c(v)}) + w(u, v), |S| > 1

where W (v, {c(v)}) = 0 if v ∈ I and ∞ otherwise.
The weight of a minimum-weight colorful path ending at v is W (v, {1, 2, . . . , k}).

For each v, each trial yields a simple path of length k starting within I and end-
ing at v, which is optimal among all the paths that are colorful under the random
coloring in that trial. The running time of each trial is O(2kkm) and the storage
requirement is O(2kn). For any simple path P of length k, the probability that
the vertices of P receive distinct colors in a given trial is k!/kk, which is at least
e−k and is well approximated by

√
2πke−k. Thus, the chance that a trial yields

an optimal path to v for our original problem is at least e−k; for any ε ∈ (0, 1),
the chance that the algorithm fails to find such a path in ek ln 1

ε trials is at most
ε. After ek ln n

ε trials the probability that there exists a vertex v for which an
optimal path has not been found is at most ε.

3 Extensions of the Color Coding Method

In this section we present color-coding solutions to several biologically motivated
extensions of the basic path-finding problem. These include: (1) constraining the
set of proteins occurring in a path; (2) constraining the order of occurrence of
the proteins in a path; and (3) finding pathway structures that are more general
than simple paths.

3.1 Constraining the Set of Proteins

To ensure that a colorful path produced by our algorithm contains a particular
protein, we can simply assign a color uniquely to that protein. By adding counters
to the state set of the dynamic programming recurrence we can control the
number of occurrences in the path of proteins from a specific family (e.g., proteins
with a specific function). To enforce the constraint that our path must contain
at least a and at most b proteins from a set T , we can define W (v, S, c) as the
minimum weight of a path of length |S| ending at v that contains a vertex of
each color in S and exactly c proteins from T . Here c ranges between 0 and b.
This extension multiplies the storage requirement and running time of each trial
by b + 1. Several counters can be added to enforce different constraints; each
multiplies the time and storage requirement by a constant factor and does not
affect the probability that the optimal path is colorful in any given trial.

3.2 Constraining the Order of Occurrence: Segmented Pathways

In many signaling pathways, the proteins occur in an inward order, from mem-
brane proteins to nuclear proteins and transcription factors (see, e.g., Figure 2(a)).
The color-coding method can be adapted to restrict attention to paths that re-
spect such an ordering.



Unique Labeling We restrict attention to simple paths that are the concate-
nation of t (possibly empty) ordered segments, where each segment contains
proteins from a particular class (such as membrane proteins), and each protein
is assigned to exactly one class. Subject to this restriction we seek, for each ver-
tex v, a minimum-weight simple path of length k from some vertex in I to v.
The segments are numbered successively in the order of their occurrence along
the desired path. Depending on biological information (e.g., cellular component
annotation), each protein u is assigned an integer label L(u) which uniquely
specifies the segment in which the protein may occur. We require that the labels
of the proteins along the path form a monotonically nondecreasing sequence.
Such a path is called monotonic.

As usual, in each trial we assign each vertex a color drawn uniformly at
random from {1, 2, . . . , k}. Since each vertex is restricted to a unique segment,
the path will be simple provided that vertices in the same segment have different
colors. For a vertex v and a subset of the colors S ⊇ {c(v)}, W (v, S, k) is defined
as the minimum weight of a simple monotonic path of length k from I to v, in
which no two vertices with the same label have the same color, and the set of
colors assigned to vertices with label L(v) is S. We can tabulate this function
using the following recurrence:

W (v, {c(v)}, l) = min
u:L(u)<L(v)

min
S

W (u, S, l − 1) + w(u, v), l > 1

W (v, S, l) = min
u:L(u)=L(v),c(u)∈S−{c(v)}

W (u, S − {c(v)}, l − 1) + w(u, v), 1 < |S| ≤ l

where W (v, {c(v)}, 1) = 0 if v ∈ I and ∞ otherwise.
Each trial has a running time of O(2kkm) and a storage requirement of

O(2kkn). For any simple path P with at most h vertices in each segment, the
probability that all vertices in each segment receive distinct colors is at least e−h.
Thus, the expected number of trials to discover an optimal segmented pathway
with at most h proteins per segment is of order eh, which is much smaller than
ek, the upper bound on expectation in the non-segmented case.

Interval Restrictions It may be unrealistic to assume that every protein can
be assigned a priori to a unique segment. Instead we can assume that, for each
protein, there is a lower bound L1(u) and an upper bound L2(u) on the number
of its segment. For example, if the successive segments correspond to membrane,
cytoplasm, nucleus and transcription factor proteins, then a protein that is nei-
ther a membrane protein nor a transcription factor will have a lower bound of 2
and an upper bound of 3.

A path (u1, u2, . . . , uk) is consistent with the segmentation if it is possible to
assign to each protein ui a segment number si such that the sequence of segment
numbers along the path is monotone nondecreasing and, for each i, L1(ui) ≤ si ≤
L2(ui). We can reformulate this condition as follows: for any path P , let s(P ) be
the maximum, over all proteins u in P , of L1(u). Then the path (u1, u2, . . . , uk)
is consistent with the segmentation iff for all i, L2(ui) ≥ s(u1, u2, . . . , ui−1).



Let each vertex u be assigned a color c(u) drawn uniformly at random from
{1, 2, . . . , k}. For each vertex v, the color-coding method seeks a minimum-weight
path of length k from I to v which is both colorful and consistent with the
segmentation. Define W (v, s, S), where L1(v) ≤ s ≤ L2(v), as the minimum
weight of a simple path P of length |S| from I to v that is consistent with the
segmentation, such that s(P ) = s and S is the set of colors assigned to the
vertices in P . We obtain the following dynamic programming recurrence:

W (v, L1(v), S) = min
u:c(u)∈(S−{c(v)})

min
s′≤L1(v)

W (u, s′, S − {c(v)}) + w(u, v), |S| > 1

W (v, s, S) = min
u:c(u)∈(S−{c(v)})

W (u, s, S − {c(v)}) + w(u, v), L1(v) < s ≤ L2(v), |S| > 1

where W (v, L1(v), {c(v)}) = 0 if v ∈ I and ∞ otherwise. The weight of a
minimum-weight colorful path ending at v and consistent with the segmenta-
tion is mins W (v, s, {1, 2, . . . , k}).

3.3 Finding More General Structures

In general, signaling pathways need not consist of a single path. For instance,
the high osmolarity pathway in yeast starts with two separate chains that merge
into a single path [2]. We shall demonstrate that the color-coding method can
be used to find high-scoring signaling pathways with a more general structure.
Our two principal examples are rooted trees, which are common when several
pathway segments merge, and two-terminal series-parallel graphs, which capture
parallel biological signaling pathways.

Rooted Trees Let G = (V,E) be a weighted graph with I ⊂ V , and let k be
a positive integer. For each vertex v we wish to find a tree of minimum weight
among all k-vertex subtrees in G that are rooted at v and in which every leaf is
an element of I.

As usual, in each trial of the color coding method each vertex u is assigned a
color drawn uniformly at random from {1, 2, . . . , k}. For v ∈ V and {c(v)} ⊆ S ⊆
{1, 2, . . . , k}, let W (v, S) be the minimum weight of a subtree with |S| vertices
that is rooted at v, contains a vertex of each color in S, and whose leaves lie in
I. The following recurrence can be used to compute W (v, S):

W (v, S) = min{ min
u:c(u)∈S−{c(v)}

W (u, S − {c(v)}) + w(u, v),

min
(S1,S2):S1∩S2={c(v)},S1∪S2=S

W (v, S1) + W (v, S2)}

where W (v, {c(v)}) = 0 if v ∈ I and ∞ otherwise. The running time for a trial
is O(3kkm) and the storage required is O(2kn).



Two-terminal Series-Parallel Graphs The definition of a two-terminal series-
parallel graph (2SPG) is recursive:
[Base case] The graph with two vertices u and v connected by an edge is a 2SPG
between terminals u and v.
[Series connection] If G1 is a 2SPG between u and v, G2 is a 2SPG between v
and w, and G1 and G2 have no vertices in common except v, then G1 ∪G2 is a
2SPG between u and w.
[Parallel connection] If G1 and G2 are 2SPGs between u and v, and they have
no vertices in common except u and v, then G1 ∪G2 is a 2SPG between u and
v.

Our goal is to find, for each vertex v, a minimum-weight k-vertex 2SPG
between some vertex in I and v. Let W (u, v, S) be the minimum weight of a
2SPG between u and v with |S| vertices in which the set of colors occurring is
S. Then, following the recursive definition of a 2SPG we obtain:

W (u, v, S) = min { min
w,S1,S2:S1∪S2=S,S1∩S2={c(w)}

W (u, w, S1) + W (w, v, S2),

min
T1,T2:T1∩T2={c(u),c(v)},T1∪T2=S

W (u, v, T1) + W (u, v, T2)}

where W (u, v, {c(u), c(v)}) = w(u, v) for every edge (u, v). The execution time
of a trial is O(3kkn2) and the storage requirement is O(2kn2).

4 Estimation of Interaction Reliabilities and Evaluation
of Paths

Since experimental interaction data are notoriously noisy (see, e.g., [4, 5]), esti-
mating and incorporating the reliability of the observed interactions in the path
detection process are key to its success. Several authors have suggested meth-
ods for evaluating the reliabilities of protein interactions [5, 4, 6]. Here, we use
a method we have previously developed [7], which is based on a logistic regres-
sion model. For completeness we describe it briefly in the sequel. We define the
probability of a true interaction as a logistic function of three observed random
variables on a pair of proteins: (1) the number of times an interaction between
the proteins was experimentally observed; (2) the Pearson correlation coefficient
of expression measurements for the corresponding genes (using 794 expression
profiles obtained from Stanford Microarray Database [8]); and (3) the proteins’
small world clustering coefficient [9], which is defined as the hypergeometric
surprise for the overlap in the neighborhoods of two proteins.

According to the logistic distribution, the probability of a true interaction
Tuv given the three input variables, X = (X1, X2, X3), is:

Pr(Tuv|X) =
1

1 + exp(−β0 −
∑3

i=1 βiXi)

where β0, . . . , β3 are the parameters of the distribution. Given training data, one
can optimize the distribution parameters so as to maximize the likelihood of the



data. As positive examples we used the MIPS [10] interaction data, which is an
accepted gold standard for yeast interactions. As negative examples, motivated
by the large fraction of false positives in interaction data, we considered observed
interactions chosen at random. We treated the chosen negative data as noisy
indications that the corresponding interactions were false, and assigned those
interactions a probability of 0.1397 for being true, where this value was optimized
using cross-validation.

Denote the reliability of an edge (u, v) by p(u, v). We use the estimated
probabilities to assign weights to the interaction graph edges, where edge (u, v)
is assigned the weight − log p(u, v). Under these assignments we seek minimum
weight paths of specified lengths. We use two quality measures to evaluate the
paths we compute: weight p-value and functional enrichment.

Given a path with weight w, its weight p-value is defined as the percent
of top-scoring paths in random networks (computed using the same algorithm
that is applied to the real network—see below) that have weight w or lower,
where random networks are constructed by shuffling the edges and weights of
the original network, preserving vertex degrees.

To evaluate the functional enrichment of a path P we associate its proteins
with known Biological Processes using the Gene Ontology (GO) annotations [11].
We then compute the tendency of the proteins to have a common annotation
using a method developed in [7]. The scoring is done as follows: define a protein
to be below a GO term t, if it is associated with t or any other term that
is a descendant of t in the GO hierarchy. For each GO term t with at least
one protein assigned to it, we compute a hypergeometric p-value based on the
following quantities: (1) the number of proteins in P that are below t; (2) the
total number of proteins below t; (3) the number of proteins in P that are below
all parents of t; and (4) the total number of proteins below all parents of t. The
p-value is further Bonferroni corrected for multiple testing.

5 Application to the Yeast Protein Network

We implemented the color coding method for finding simple paths in a graph.
The algorithm maintains a heap of the best paths found throughout the iterations
and, thus, is able to report sub-optimal paths in addition to the optimal one.
Table 1 presents a benchmark of its running time across a network with ∼4,500
nodes and ∼14,500 edges (the yeast network described below), when varying
the desired path length, the probability of success and the size of the heap
(number of required paths). The algorithm runs in minutes when searching for
a path of length 8 with success probability of 99.9%, and in less than two hours
when searching for a path of length 10. In comparison, the running time of
our implementation of an exhaustive search approach was approximately 3-fold
higher for length-8 paths (1009 seconds), and 14-fold higher for length-9 paths
(17405 seconds).

We applied our algorithm to search for pathways in the yeast protein interac-
tion network. Protein-protein interaction data were obtained from the Database



Table 1. Running times of the path finding algorithm for different parameter settings.

Path length Success probability #Paths Time (sec)

10 99.9% 100 5613
9 99.9% 100 1241
8 99.9% 500 322
8 99.9% 300 297
8 99.9% 100 294
8 90% 100 99
8 80% 100 75
8 70% 100 61
8 50% 100 42
7 99.9% 100 86
6 99.9% 100 36

of Interacting Proteins [12] (February 2004 download) and contained 14,319 in-
teractions among 4,389 proteins in yeast.

As a first test, we applied the algorithm to compute optimal paths of length
8 that start at a membrane protein (GO:0005886 or GO:0004872) and end at a
transcription factor (GO:0030528). For every two possible endpoints we identi-
fied an optimal path between them (with the success probability set to 99.9%).
We retained the 100 best paths of these (i.e., each of the paths had a distinct
pair of endpoints) and for each of them evaluated its weight p-value and func-
tional enrichment. The results are depicted in Figure 1. Clearly, both measures
significantly exceed the random expectation. In particular, 60% of the identified
paths had a significant Biological Process annotation (p < 0.05).
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Fig. 1. Cumulative distributions of weight (a) and function (b) p-values. x-axis: p-value.
y-axis: Percent of paths with p-value x or better.

Next, we wished to test the utility of the algorithm in reconstructing known
pathways in yeast. To this end, we concentrated on three MAPK signal transduc-
tion pathways that were also analyzed in [2]: pheromone response, filamentous



growth and cell wall integrity. For each of the pathways we searched the net-
work for paths of lengths 6-10 using the pathway’s endpoints to define the start
and end vertices. In all cases our results matched the known pathways well. We
describe these findings in detail below.

The pheromone response (mating type) pathway prepares the yeast cells for
mating by inducing polarized cell growth toward a mating partner, cell cycle
arrest in G1, and increased expression of proteins needed for cell adhesion, cell
fusion, and nuclear fusion. The main chain of this pathway (consisting of nine
proteins) is shown in Figure 2(a). In addition, proteins Bem1p, Rga1p, Cdc24p,
Far1p, Ste50p and Ste5p contribute to the operation of the pathway by inter-
acting with proteins in the main chain.

Looking for the optimal path of length 9 in the yeast network yielded the path
depicted in Figure 2(b). This path mainly consists of proteins in the pheromone
response pathway, with the exception of Kss1p, which is a MAP kinase redun-
dant to Fus3p, and Akr1p, which is a negative regulator of this pathway. The
occurrence of the latter protein is an artifact that arises because the direct link
between Ste3p and Ste4p is missing from the interaction data.

The aggregate of all the paths that the algorithm computed between Ste3p
and Ste12p, across a range of lengths (6-10), is depicted in Figure 2(c). All the
proteins that we have identified are part of the pathway, except for Kss1p and
Akr1p (see discussion above). A previous study by Steffen et al. reported similar
results for this pathway [2]. In comparison to Figure 2(c), Steffen et al. identified
three additional proteins (Sst2p, Mpt5p and Sph1p), which are related to the
pathway, but are not part of the main chain. Steffen et al. failed to recover
the true positive Cdc42p. Interestingly, this latter protein participates mainly
in paths of length 9 and 10 in our computations (only two additional paths of
length 8 contained this protein). Such long paths are very costly to compute
using an exhaustive approach (about five hours for length-9 paths based on our
benchmark).

The filamentous growth pathway is induced under stress conditions and
causes yeast diploid cells to grow as filaments of connected cells. The path-
way is depicted in Figure 3(a). Searching the network for the minimum-weight
path of the same length as the known pathway (8), yielded the path shown in
Figure 3(b), which largely matches the known pathway. The introduction of the
proteins Cdc25p and Hsp82p is again an artifact that arises due to a missing
link between Ras2p and Cdc42p in the network data.

The cell wall integrity pathway mediates cell cycle regulated cell wall syn-
thesis. It is depicted in Figure 3(c). A search for the minimum-weight path of
equal length starting at Ras2p and ending at Tec1p yielded the path shown in
Figure 3(d). Again, the identified path matches the known pathway well. The
only falsely detected protein, Rom2p, could be explained by the fact that the
network does not contain a direct interaction between Mid2p and Rho1p.

In addition, we used our algorithm to search for the high osmolarity MAPK
pathway, starting at Sln1p and ending at Hog1p (leading to several transcrip-
tion factors, including Mcm1p and Msn2/4p [13]). For this run, although we
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Fig. 2. The pheromone response signaling pathway in yeast. (a) The main chain of
the known pathway, adapted from [13]. (b) The best path of the same length (9) in
the network. (c) The assembly of all light-weight paths starting at STE3 and ending
at STE12 that were identified in the network. Nodes that occur in at least half of the
paths are drawn larger than the rest. Nodes that occur in less than 10% of the paths
are omitted.

could recover the exact known pathway, it was only the 11th-scoring among the
identified paths.

As a final test, we applied our algorithm to look for ubiquitin-ligation path-
ways by searching for paths of length 4-6 that start at a cullin (Cdc53p or
Apc2p) and end at an F-box protein (Met30p, Cdc4p or Grr1p). For each pair
of endpoints we output the best path for each specified length. To evaluate our
success we computed the enrichment of the identified proteins within the GO
category “ubiquitin-dependent protein catabolism” (GO:0006511). In total, 18
paths were computed, all of which were found to be highly enriched for this
GO category (p < 0.001). A more careful examination of these paths revealed
that they highly overlapped: In addition to their endpoints, these paths spanned
four other proteins (Skp1p, Cdc34p, Hrt1p and Sgt1p), all of which are known
ubiquitin-ligation proteins.
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Fig. 3. Search results for the filamentous growth and cell wall integrity pathways. (a)
The known filamentous growth pathway, adapted from [13]. (b) The best path of length
8 between RAS2 and TEC1. (c) The known cell wall integrity pathway [13]. (d) The
best path of length 7 between MID2 and RLM1.

6 Conclusions

We have presented efficient algorithms for finding simple paths in graphs based
on the color-coding technique, and several biologically-motivated extensions of
this technique. We applied these algorithms to search for protein interaction
pathways in the yeast protein network. Sixty percent of the identified paths
were significantly functionally enriched. We have also shown the utility of the
algorithm in recovering known MAP-kinase and ubiquitin-ligation pathways in
yeast. While these results are promising, there are a number of possible improve-
ments that could be incorporated into this framework: (1) adapt the color coding
methodology to identify more general pathway structures, building on our ideas
for detecting rooted trees and two-terminal series-parallel subgraphs; and (2)
extend the framework to identify conserved pathways across multiple species,
similar to [1]. In addition, our algorithms could be applied to other biological
networks, most evidently to metabolic networks.
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