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Abstract

In recent years a lot of progress has been made in understanding the behavior of
evolutionary computation methods for single- and multi-objective problems. Our
aim is to analyze the diversity mechanisms that are implicitly used in evolutionary
algorithms for multi-objective problems by rigorous runtime analyses. We show
that, even if the population size is small, the runtime can be exponential where
corresponding single-objective problems are optimized within polynomial time. To
illustrate this behavior we analyze a simple plateau function in a first step and
extend our result to a class of instances of the well-known SetCover problem.
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1 Introduction

Using evolutionary computation methods to solve multi-objective optimiza-
tion problems has become very popular during the last ten years [3, 4]. In
contrast to single-objective problems where often much more is known about
the structure of a given problem, multi-objective problems seem to be more
complicated and harder to understand. By increasing the number of objec-
tives, one has to optimize several (often conflicting) functions instead of a
single one. This implies that there is often not a single optimum, but a set of
incomparable optima, known as the Pareto front. The number of such optima
may increase with the number of objectives that are considered [22], but even
optimizing only two objective functions may lead to a Pareto front that is
exponential in the input size [7].

⋆ A conference version appeared in the 14th IEEE Congress on Evolutionary Com-
putation [9].
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Due to the problem of computing several optima instead of a single one, multi-
objective optimization is often considered as at least as difficult as single-
objective optimization. However, there are examples where adding additional
objectives can speed up the optimization process of a single-objective prob-
lem [2, 15]. In addition, it has been shown that some combinatorial optimiza-
tion problems such as minimum spanning trees or different covering problems
may be easier in a multi-objective model than in a single-objective one [8, 19].
Often it is assumed that a multi-objective model for a single-objective op-
timization problem should have the structure that the set of incomparable
objective vectors is always small. The results obtained in [19] and [8] mainly
rely on this property as it implies that the algorithms considered in these
papers work with a small population size.

In this paper, we want to point out a different obstacle when using multi-
objective models for single-objective optimization problems. To the best of
our knowledge, there is so far no rigorous analysis of a problem on which
the multi-objective approach is slower by more than a factor bounded by the
population size compared to the respective single-objective one. Our aim is to
show that a multi-objective model may lead to a totally inefficient optimiza-
tion process (in comparison to a single-objective one) even if the population
size is always small. The reason for this is that the population used to ap-
proximate the Pareto set may prevent the algorithm from obtaining optimal
solutions. Evolutionary algorithms for multi-objective optimization problems
such as NSGA-II [5] or SPEA2 [24] make use of different diversity mecha-
nisms to obtain for each Pareto optimal search point a good approximation.
For simple single-objective problems it has been shown in [10] that, depending
on the diversity strategy, the individuals either help or block each other from
developing the population closer to the optimum. There, the right diversity
measure may make the difference between a polynomial and an exponential
optimization time. The simplest strategy in the case of multi-objective opti-
mization is to keep in the population at each time step only solutions that
are not dominated by any other solution produced during the optimization
process. The positive effect of using such a population (compared with one
consisting always of a single individual) has already been pointed out in [12].

We show that such a natural strategy may have problems to cope with plateaus
of constant fitness. Plateaus are regions in the search space where all search
points have the same fitness. Often, the number of different objective values for
a given function is polynomially bounded while the number of different search
points is exponential. This implies an exponential number of solutions with
the same objective value. The behavior of a simple evolutionary algorithm on
different plateau functions has already been investigated in [14] where it has
been shown that evolutionary algorithms may be efficient on such functions by
doing a random walk on the plateau. The same holds for some single-objective
combinatorial optimization problems [13, 18] for which it has been proven that
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evolutionary algorithms have to cope with plateaus of a similar structure. We
point out that in the case of multi-objective problems such a random walk
may be prevented by other individuals in the population.

We compare the (1+1) EA [6, 14, 20] with its multi-objective counterpart
Global SEMO [11, 12, 19] and describe situations where Global SEMO is
exponentially slower even if the population size is always small. First, we
illustrate this by considering the optimization of a well-known artificial plateau
function. Afterwards, the ideas are used to construct a class of SetCover
problems where Global SEMO with polynomially bounded population size
fails to produce an optimal solution within expected polynomial time while
the (1+1) EA has a polynomially bounded expected optimization time.

The outline of the paper is as follows. In Section 2, we introduce the algorithms
that are subject of our analyses. In Sections 3 and 4, we compare them on an
artificial function and an instance of SetCover, respectively. We finish with
conclusions and some topics for future research.

2 Algorithms

In the following, we will define the setting for our theoretical investigations.
We consider the search space X = {0, 1}n and a pseudo Boolean function
f : {0, 1}n → R

k with k objectives. Concerning the algorithms, we examine
simple single-objective EA and compare it with its multi-objective counter-
part. We define both algorithms for problems where all objectives should be
maximized. Minimization problems can be considered in a similar way by
interchanging the roles of “≥” and “≤” in the algorithms.

For single-objective optimization problems (where k = 1), our analyses are
carried out for the (1+1) EA which has been considered in theoretical inves-
tigations on pseudo Boolean functions [6] as well as some of the best-known
combinatorial optimization problems [13, 20, 23]. The algorithm works with a
population of size 1 together with elitism-selection and creates in each itera-
tion one offspring by flipping each bit with probability 1/n:

Algorithm 1 (1+1) EA

Choose an initial solution x ∈ {0, 1}n

repeat

Create x′ by flipping each bit of x with probability 1/n.
if f(x′) ≥ f(x) then set x := x′. end if

until stop

Analyzing single-objective randomized search heuristics with respect to their
runtime behavior, we are interested in the number of constructed solutions
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until an optimal one has been created for the first time. This is called the
runtime or optimization time of the considered algorithm. Often, the expec-
tation of this value is considered and called the expected optimization time or
expected runtime.

In the case of multi-objective optimization problems (k ≥ 2) the objective
space becomes higher-dimensional. As there is no canonical complete order on
R

k, one compares the quality of search points with respect to the canonical
partial order on R

k, namely f(x) ≥ f(x′) iff fi(x) ≥ fi(x
′) for all i ∈ {1, . . . , k}.

We consider the algorithm called Global SEMO (Global Simple Evolutionary
Multi-objective Optimizer) [11, 16] which has been investigated in the context
of different multi-objective problems, e. g., spanning tree problems [17, 19] and
covering problems [8]. This algorithm equals the (1+1) EA for the case k = 1.

Global SEMO starts with an initial population P that consists of one single
individual. In each generation, an individual x of P is chosen randomly to
produce one child x′ by mutation. In the mutation step, each bit of x is flipped
with probability 1/n to produce the offspring x′. After that, x′ is added to the
population if it is not dominated by any individual in P (i. e., there is no x ∈ P
with f(x) ≥ f(x′) and f(x) 6= f(x′)). If x′ is added to P all individuals of P
that are dominated by x′ or have the same fitness vector as x′ are removed
from P . In detail, Global SEMO is defined as follows.

Algorithm 2 Global SEMO

Choose an initial solution x ∈ {0, 1}n

Determine f(x).
P ← {x}.
repeat

Choose x ∈ P uniformly at random.
Create x′ by flipping each bit of x with probability 1/n.
Determine f(x′).
if no x ∈ P dominates x′ then

exclude all z where f(z) ≤ f(x′) from P .
add x′ to P .

end if

until stop

Analyzing multi-objective evolutionary algorithms with respect to their run-
time behavior, we consider the number of constructed solutions until for each
Pareto optimal objective vector a solution has been included into the pop-
ulation and call this the optimization time of the algorithm—the expected
optimization time refers to the expected value of the optimization time.

Throughout this paper we consider two very popular alternatives for choosing
the initial solution in our defined algorithms. On the one hand, we consider the
case x = 0n. This is quite typical, e. g., for simulated annealing. On the other
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hand, we consider the case where the initial solution x is chosen uniformly
at random from the search space {0, 1}n. This is the most popular choice for
evolutionary algorithms.

3 Analysis of a Plateau Function

The behavior of the (1+1) EA on plateaus of different structures has been
studied in [14] by a rigorous runtime analysis. We want to examine the opti-
mization times of multi-objective plateau functions in contrast to their single-
objective counterparts. [2] introduced the function

plateau1(x) :=





|x|0 : x 6∈ {1i0n−i | 1 ≤ i ≤ n}

n + 1 : x ∈ {1i0n−i | 1 ≤ i < n}

n + 2 : x = 1n.

where |x|0 denotes the number of zeros in x. The definion of plateau1(x)
is very similar to the well-known function SPC [14]. We consider a simple
multi-objective extension PL of the function plateau1 by adding a second
objective that may only attain the two objective values 0 and 1. The function
PL is defined as follows.

PL(x) :=





(|x|0, 1) : x 6∈ {1i0n−i | 1 ≤ i ≤ n}

(n + 1, 0) : x ∈ {1i0n−i | 1 ≤ i < n}

(n + 2, 0) : x = 1n.

Adding the second objective in the defined way has the consequence that
there are two Pareto optimal search points namely 0n and 1n. As in the case
of plateau1 the multi-objective extension consists of a plateau given by the

Fig. 1. An illustration of the explored function PL.
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Fig. 2. Relation graph for the objective function PL : {0, 1}4 → R
2 with respect to

the lexicographic order ≺lex. Reflexive and transitive edges are omitted for clarity.

search points of SP := {1i0n−i | 1 ≤ i < n}. All search points of SP attain the
objective vector (n+1, 0). Figure 1 shows an illustration of this function. The
(1+1) EA maximizes PL with respect to the lexicographic order ≺lex, i. e., we
define

(x1, x2) ≺lex (y1, y2) iff x1 < y1 ∨ (x1 = y1 ∧ x2 < y2).

It is easy to see that

PL(x) ≺lex PL(y) iff plateau1(x) < plateau1(y).

Figure 2 shows the relation graph for the lexicographically sorted multi-
objective function PL. Note that this is equivalent to the relation graph
for plateau1. Therefore, all results which only use the relative structure of
plateau1 also hold for PL with respect to the lexicographic order ≺lex. As [2]
showed an expected runtime of the (1+1) EA on plateau1 of Θ(n3), the
following theorem holds.

Theorem 1 The expected optimization time of the (1+1) EA on PL is O(n3)
independently of the chosen initial solution.

This shows that the (1+1) EA is efficient on PL. We will now prove that
Global SEMO requires an exponential runtime to optimize PL and make use
of some ideas given in Theorem 2 of [10].

Theorem 2 The optimization time of Global SEMO on PL is 2Ω(n1/24) with
probability 1−e−Ω(n1/24) if the initial solution is 0n or has been chosen uniformly
at random.
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Proof. We prove the theorem for the case of a uniformly at random chosen
initial solution. As the proof mainly relies on proving that the search point 0n

has been obtained before the search point 1n, the results also hold for starting
with the initial search point 0n.

The maximal population size is two as there are only two different values
for the second fitness value. The initial solution x consists with probability
1− e−Ω(n) of at most 2n/3 ones using Chernoff bounds. As long as no solution
of SP has been obtained, only solutions with at most |x|1 ones are accepted
(|x|1 := n− |x|0). This implies that with probability at least 1− n−n/3, there
is no step producing the optimal search point 1n until a first solution in SP is
discovered. Moreover, this first solution in SP has at most 3n/4 ones as the
probability of flipping at least n/12 bits in a single mutation step is e−Ω(n).

We now consider a phase of 2n3/2 steps of the algorithm after for the first
time a solution in SP has been produced. Roughly speaking, we will show
that within such a phase the random walk of the solution y ∈ SP reaches the
optimal search point 1n only with very small probability while at the same
time the other solution x quickly becomes x = 0n and produces a descendant
on SP (both in at most n3/2 steps) with high probability and therewith sets
back y to small |y|1, which moves it further away from the optimal search
point 1n.

Let y = 1i0n−i be the solution on SP. We call a step relevant iff it produces
a solution z ∈ SP with z 6= y. To achieve this the bit yi or yi+1 has to flip.
Therefore, the probability of not having a relevant step is at least 1 − 2/n
and the expected number of non-relevant steps during this phase is at least
(1− 2/n)2n3/2 = 2n3/2 − 4n1/2. There are at least

(1− n−2/3) · (2n3/2 − 4n1/2) ≥ 2n3/2 − 3n5/6

non-relevant steps with probability

1− e

(
−(2n3/2−4n1/2)·

(n−2/3)
2

2

)

≤ 1− e

(
−n3/2·n−4/3

2

)

= 1− e−Ω(n1/6)

using Chernoff bounds.

The probability that at least n1/12 bits flip in a single accepted mutation
step is at most n−n1/12

. Such an event happens in the phase of 2n3/2 steps
only with probability at most 2n3/2−n1/12

= n−Ω(n1/12). Therefore, within this
phase the Hamming distance to the optimal search point decreases by at most
3n5/6n1/12 = 3n11/12 and an optimal search point has not been obtained with
probability 1− e−Ω(n1/12).

In the following we show that after n3/2 steps, the solution 0n is inserted into
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the population and in a second phase of n3/2 steps a solution x ∈ SP (setting
back the random walk) is produced from 0n with high probability. We consider
in each step the solution x with the largest number of zeros in the population
P . As an optimal search point will not be produced within n3/2 steps with
probability 1− e−Ω(n1/12) such a solution will never be removed from P in this
phase. Assume |x|1 = k. Then the probability of producing in the next step a
solution z with |z|0 > |x|0 is at least (k/(2en)). Summing up over the different
values of k, the search point 0n is included into P after an expected number
of at most en log n steps. After an expected number of O(n) steps a solution
with fitness value (n + 1, 0) is included afterwards. Hence, after an expected
number of 2en log n steps P = {x, 0n} where x ∈ SP and 4en log n steps are
enough with probability at least 1/2. The probability of not having obtained

these solutions within n3/2 steps is upper bounded by e−Ω(n1/2/ log n) ≤ e−Ω(n1/4)

considering n1/2/(4e log n) phases of length 4en log n.

The probability to produce from 0n a search point x ∈ SP is at least 1/(en)
as this can be achieved by flipping the first bit of 0n. The probability to select
0n in the next mutation step is 1/2. Using Markov’s inequality the probability
that such an x has not been produced during 4en steps is bounded above
by 1/2 and the probability that this has not happened during n3/2 steps is

2−Ω(n1/2). We already know that, with probability 1 − e−Ω(n1/12) a phase of
2n3/2 steps does not lead to an optimal solution. Considering 2Ω(n1/24) steps
the probability of obtaining an optimal solution is still upper bounded by
e−Ω(n1/24) which proves the theorem.

4 Analysis of a SetCover Instance

We now show that the behavior observed in the previous section may also
occur when applying multi-objective models to single-objective combinato-
rial optimization problems. We consider the well-known NP-hard SetCover
problem for which the use of a multi-objective model has already been ex-

Fig. 3. An illustration of the objective space of the examined set system.
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Solution x p(x)

B ∪ C (optimum) 2n− 4

B ∪ {Di} ∪ {Cj | 1 ≤ j < i} for all i (RW) 2n− 2

B ∪ {Ai} for all i 2n− 1

{Ai, Aj} for all i 6= j 2n

Tab. 1: All set covers x with p(x) ≤ 2n.

amined in [8]. There, it has been shown that using a multi-objective model
for the SetCover problem leads to a better approximation ratio for Global
SEMO than for the (1+1) EA in a corresponding single-objective setting. The
problem can be stated as follows.

Given a ground set S and a collection C1, . . . , Cn of subsets of S with corre-
sponding positive costs c1, . . . , cn. The goal is to find a minimum-cost selection
Ci1 , . . . , Cik , 1 ≤ ij ≤ n and 1 ≤ j ≤ k, of subsets such that all elements of S
are covered.

Considering the algorithms introduced in Section 2, a search point x ∈ {0, 1}n

encodes a selection of subsets. w(x) =
∑n

i=1 cixi measures the total cost of the
selection and u(x) denotes the number of elements of S that are uncovered.
Considering RLS and the (1+1) EA for the SetCover problem, the fitness of
a search point x is given by the vector f(x) = (u(x), u(x)+w(x)) which should
be minimized with respect to the lexicographic order. In our multi-objective
setting, we would like to minimize u(x) and p(x) := u(x) + w(x) at the same
time. Using p(x) as the second objective instead of just w(x) as done in [8] has
the effect that the number of incomparable elements for the multi-objective
approach becomes smaller which leads to a smaller population size during the
optimization process.

Our aim is to show that even such a model which tends to work with a small
population may prevent the algorithm from being efficient. The class of in-
stances under consideration can be defined as follows. Let k ∈ N be a con-
stant. Furthermore, set n := 4k + 3 and S := [n] := {j ∈ N | 1 ≤ j ≤ n}.
We define the collection S := A ∪ B ∪ C ∪ D, where A consists of the
sets Ai := [n] \ {4k + 4 − i} (i ∈ [2k + 2]), B contains exactly the set
B := {2k+1, 2k+2, . . . , n}, C consists of the sets Ci := {2k+1−2i, 2k+2−2i}
(i ∈ [k]), and D consists of the sets Di := [2k + 3− 2i] (i ∈ [k]). Thus, the set
system S has cardinality n = 4k + 3. We define the cost function w : S → R

+
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by

w(M) :=





n : M ∈ A,

n− 1 : M = B,

4 : M ∈ C,

n + 3− 4i : M = Di.

The case k = 4 is shown in Figure 4.

An optimal solution consists of all subsets in B∪C and has price (n−1)+4k =
2n − 4. There are 3 additional possibilities to have covers x with p(x) ≤ 2n.
If the current solution consists of two subsets of A, it has cost 2n. A solution
with exactly one set of A and the set B has cost 2n − 1 and all solutions
with the set B, a single set of D and suitable subsets of C have cost 2n − 2.
The latter solutions are called RW-solutions as Global SEMO can perform a
random walk on these search points. Note, that each cover contains at least
one of the previous mentioned solutions of cost at most 2n as a subset. The
objective space of the problem is illustrated in Figure 3. All set covers x with
p(x) ≤ 2n are shown in Table 1.

Theorem 3 The expected optimization of the (1+1) EA on SC is O(n5) in-
dependently of the chosen initial solution.

Proof. The number of subsets in A is 2k+2 and the total number of all subset
is 4k + 3. If the current solution x contains at least two subset of A, u(x) = 0
holds, i. e., it represents a set cover. The expected time to produce a solution
x with u(x) ≤ 1 is O(1) as there are Θ(n) subsets covering exactly n − 1
elements. If the current solution x fulfills u(x) = 1 introducing an additional
subset of A leads to a cover. As the there are Θ(n) subset of A that are
unchosen the expected waiting time to obtain a cover is O(1).

As long as the price p of the cover x is greater than 2n an improvement
can be obtained by removing a single subset of the current solution, because
each cover contains at a cover of cost at most 2n as a subset. A solution
of price at most 2n can be obtained by removing a suitable subset of the
elements chosen in the current cover. We apply the method of the expected
multiplicative weight decrease [20] to upper bound the time until a cover of
price at most 2n has been obtained. This method measures the progress an
evolutionary algorithm achieves according to some distance function. It can be
applied when a set of accepted operations can be defined that turn the current
solution into a solution with the desired property (in our case a solution of
cost at most 2n). Denote by D = p−2n the amount by which the price of the
current solution exceeds the value 2n. We consider all 1–bit flips that lead to
a cover of smaller price. The sum of all these price reductions is at least D.
For simplicity all other 1–bit flips that are not accepted reduce the price by
0. Hence, the expected price after such a step is at most 2n + (1 − 1/n) · D
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Fig. 4. The examined set system for k = 4 and n = 19.

and after t such steps the expected price is at most 2n + (1 − 1/n)t · D. As
the price of a solution is always an integer and D = O(n2) holds after having
obtained a cover for the first time, t = cn log n such steps, c an appropriate
constant, lead to a price of at most 2n. The expected waiting time for a 1–bit
flip is upper bounded by e which implies that a cover of price at most 2n is
obtained after an expected number of O(n log n) steps.

The expected time to obtain from a cover of price 2n (i. e., two sets of A) a
cover of price at most 2n− 1 is O(n2) as one of the chosen subset of A has to
be removed and the set B introduced. Similarly a solution of cost 2n− 2 can
be obtained from a solution of cost 2n − 1 by removing the chosen set of A
and introducing the largest set of D in time O(n2).

Having obtained a solution with cost 2n − 2 the algorithm has to cope with
a plateau containing O(n) solutions. The solutions on the plateau differ by
the number of subsets of C that are chosen. The number of subsets of C can
be increased (and also decreased) by a mutation step flipping the three bits
corresponding to Di, Di+1 and Ci. The expected waiting time for such a step is
O(n3) and the expected number of steps needed to obtain the optimal solution
where all subsets of C (and none of D) are chosen is O(n2) using arguments
similar to [14] for the function SPCn. Altogether, this leads to the upper
bound O(n5) stated in the theorem.

In the case of the multi-objective approach, Global SEMO works with a pop-
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ulation of the different trade-offs with respect to the two objective functions.
This may have the effect that a single-solution can not cope with the plateau
given by the instance SC. In fact the optimization time of Global SEMO on SC
is exponential with probability asymptotically close to 1 if the initial solution
is chosen as the empty set.

Theorem 4 The optimization time of Global SEMO on SC is 2Ω(n) with prob-
ability 1− o(1) if it starts with the initial solution 0n.

For the proof of this theorem we need the following lemma.

Lemma 5 In the first n mutation steps Global SEMO chooses the empty so-
lution 0n at least 1

2
ln n times for mutation with probability at least 1− n−1/8.

Proof. We use the following generalized Chernoff bound [1]: Let p1, . . . , pn ∈
[0, 1] and X1, . . . , Xn be mutually independent random variables with P[Xi =
1 − pi] = pi and P [Xi = −pi] = 1 − pi. Set X := X1 + . . . + Xn and p :=
(p1 + . . . + pn)/n. Then

P[X < −a] < e−a2/(2pn)

for any a > 0.

Thus, we have to define random variables that give an estimation to the be-
havior of Global SEMO in the first n steps. Global SEMO starts with the
empty solution 0n. Since we have w(M) > |M | for every set M ∈ S, the
function (u + w) attains its unique minimum for 0n. Hence, 0n remains in the
population forever. The population size of Global SEMO before the k–th step
is at most k. Therefore, the probability that Global SEMO chooses the 0n for
mutation in the k–th step is at least 1/k. Let pi := 1

i
for all 1 ≤ i ≤ n. We set

p := (p1 + . . .+pn)/n and define random variables X̃i with P[X̃i = 1] = pi and
P [X̃i = 0] = 1− pi for all 1 ≤ i ≤ n. Then the random variable X̃ =

∑n
i=1 X̃i

is a lower bound for the random variable describing the number of mutation
steps of 0n in the first n steps. To use the generalized Chernoff bound, we have
to subtract the mean of X̃i from the random variable X̃i for all i. We define
Xi := X̃i −

1
i

and X :=
∑n

i=1 Xi = X̃ −
∑n

i=1
1
i
. The mean of all Xi and thus

also the mean of X is 0. We set a := 1
2
pn ≥ 1

2
ln n and apply the generalized

Chernoff bound to the random variable X. We have

P[X̃ < 1
2
lnn] ≤ Pr[X < −a] ≤ e−

a2

2pn ≤ e−
pn
8 = n−1/8.

As discussed above, this proves that Global SEMO chooses the solution 0n at
least 1

2
ln n times for mutation in the first n steps with probability at least

1− n−1/8.
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Proof of Theorem 4. As a first step we show that with high probability after
2n steps of Global SEMO

• the population size is 3,
• there is a set cover with a p–value less or equal 2n in the current population,
• the optimum is not determined.

Using Lemma 5, Global SEMO chooses 0n at least 1
2
ln n times for mutation

in the first n steps with high probability. Now we show that in these at least
1
2
ln n mutation steps of the search point 0n, Global SEMO produces a solution

with exactly one A-set with high probability. We call such a search point an
A1–solution. The probability that a mutation of 0n results in an A1–solution is
at least |A|

n
(1− 1

n
)n−1 ≥ 1

2e
. Thus, the probability that Global SEMO produces

an A1–solution in 1
2
ln n mutation steps of 0n is at least

1− (1− 1
2e

)
1

2
ln n ≥ 1− e−

1

10
lnn = 1− n−1/10.

As the p–value of every A1–solution is n+1 and only the empty solution 0n has
a lower p–value, such an A1–solution stays in the population and can only be
replaced by another A1–solution. Moreover, all strings with u–value between
2 and n− 1 were removed from the current population. Thus, the population
size is at most 3 (0n, A1–solution, and maybe a set cover) from that moment
on.

We consider another round of n steps of Global SEMO. Since the population
size is at most 3, 0n will be chosen for mutation at least n/4 times in this
phase with probability exponentially close to 1 using Chernoff bounds. The
probability that such a mutation of 0n results in a solution with exactly two
sets of A is at least |A|(|A|−1)

2n2 (1 − 1
n
)n−2 ≥ 1

8e
. We call such a search point an

A2–solution. Thus, the probability that at least one A2–solution is produced
in n/4 mutation steps of 0n is at least 1− (1− 1

8e
)n/4 = 1− e−Ω(n). Every A2–

solution is a set cover and has a p–value of exactly 2n. Hence, with probability
1−O(n−1/10) after 2n steps of Global SEMO the population size is 3 and there
is a solution which is a set cover and has a p–value of at most 2n.

The last thing that we have to show for the first claimed aim is that in the
considered first phase of 2n steps, the optimum is not determined. One can
easily check that the unique optimum is the solution with all sets in B∪C and
no other set. Since Global SEMO starts with 0n, the optimum cannot be found
until every bit that corresponds to a set of B ∪ C has been flipped at least in
one mutation step of Global SEMO. Using |B ∪C| > n/3, the probability that
the optimum is not produced in the first 2n steps of Global SEMO is at least

1− (1− (1− 1
n
)2n)n/3 ≥ 1− e−Ω(n).
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Table 1 shows all possible set covers with a p–value of at most 2n. Besides the
A2–solutions (with p–value 2n), the optimal search point (all sets of B∪C with
p–value 2n − 4), and the solutions with one set from A and the set B (with
p–value 2n−1), the only set covering solutions that can be accepted by Global
SEMO are of the following form. They contain exactly the set B the sets C1

up to Ci and the set Di+1 for all 0 ≤ i ≤ k − 1. For i = 0 the sets are B and
D1 (and no set from C). The p–value of all these search points is 2n − 2. We
call them RW-solutions since Global SEMO has to perform a random walk on
these search points to reach the optimum. After Global SEMO has determined
the first RW-solution only RW-solutions or the optimum are accepted from
Global SEMO as set covers.

We already know that after 2n steps of the search point 0n, an A1-solution and
a set cover of cost at most 2n has been obtained with probability exponentially
close to 1. If the set cover in the population after the first 2n steps of Global
SEMO is an RW-solution, at most the first k/3 sets of C are represented in
this solution with probability at least

1− (1− (1− 1
n
)2n)k/3 ≥ 1− e−Ω(k) = 1− e−Ω(n).

All covers of cost at most 2n which are not RW-solutions do not include a set
of C. An RW-solution can be obtained from the search point 0n by flipping two
specific bits. The expected waiting time for this event is O(n2). This implies
that the first RW-solution obtained during the run of the algorithm, contains
with probability 1− e−Ω(n) at most k/3 sets of C.

We now show that Global SEMO cannot perform the random walk on the RW-
solutions since this random walk is reset too frequently. Let us consider a phase
of n3 steps of Global SEMO after the algorithm has obtained a population
consisting of the search point 0n, an A1-solution and an RW-solution with at
most k/3 sets of C. We show that with probability exponentially close to 1
the random walk is reset and also with probability exponentially close to 1
the optimum is not reached in this phase of n3 steps. We call a mutation of 0n

that results in the solution with sets B and D1 a reset-step, since this solution
is accepted (until the optimum is determined) and it brings the random walk
at a hamming distance of k +1 from the optimum. The probability for such a
reset-step is at least 1

3n2 (1−
1
n
)n−2 ≥ 1

3en2 . The 3 in the denominator is caused
by the population size 3. Thus, there will be a reset-step in n3 steps of Global
SEMO with probability at least

1− (1− 1
3en2 )

n3

= 1− 2−Ω(n).

Now we bound the probability that the optimum is determined in a phase of n3

steps of Global SEMO. The probability to reduce the distance to the optimum
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by integrating the next set of C in the current set cover (plus integrating and
deleting the corresponding two sets of D) is at most 1/n3. Moreover, the
probability to reduce the distance to the optimum by integrating the next j
sets of C in the current set cover (and additionally integrating and deleting
the corresponding two sets of D), is at most 1/nj+2 (j ∈ [k]). For a fixed
a ∈ [n3] there are at most ka possible ways to achieve the optimum in exactly
a steps that reduce the distance to the optimum by some value j > 0. And
each of these ways has probability at most 1/nk+2a. Hence, the probability to
determine the optimum in n3 steps with exactly a random walk steps is at
most n−k−a. Altogether, the probability to reach the optimum in a phase of
n3 steps is at most

n3∑

a=1

n−k−a = n−Ω(n).

We have shown that with probability at least 1− 2−Ω(n) in n3 steps of Global
SEMO, there is a reset-step and the optimum is not reached before this. Hence,
within 2Ω(n) steps Global SEMO does not find the optimum with probability
1−2−Ω(n). This proves the theorem as all our statements hold with probability
1− o(1).

In the case that the initial solution is chosen uniformly at random, the prob-
ability to obtain an exponential optimization time can only be bounded in a
much weaker way. However, the probability that Global SEMO fails on SC in
this case is still at least 1/poly(n), where poly(n) is a polynomial in n of small
degree. This implies that the expected optimization time is exponential.

Theorem 6 The expected optimization time of Global SEMO with a randomly
chosen initial solution on SC is exponential. Precisely, the optimization time
is 2Ω(n) with probability Ω(1/n2e−1).

Proof. We now start with a random initial solution. Let m be the number of
A–sets in the initial solution of Global SEMO. By Chernoff bounds we know
that with probability 1− eΩ(n),

n/6 ≤ m ≤ n/3.

Thus, the initial solution is a set cover with high probability and as long as
there are no uncovered elements, the population size remains 1 and the Global
SEMO behaves like the (1+1) EA.

We now consider the first 2e n lnn steps. The probability that a specific set
has been removed in this time from the initial solution is

p := 1−
(
1− 1

n

)2e n ln n
≥ 1− e2e ln n ≥ 1− 1/n2e.
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For n large enough we get the following upper bound on p.

p = 1−
(
1− 1

n

)2e lnn
(1− 1

n
)2e (n−1) ln n ≤ 1− 1/(2n2e).

The probability that any two sets from A have not been removed within
2e n lnn steps is therefore

q = 1− pm −m(1− p)pm−1

≥ 1−
(
1−

1

2n2e

)n/6

−
n

3n2e

(
1−

1

2n2e

)n/6

= 1−
(
1−

1

2n2e

)n/6 (
1 +

n

3n2e

)

≥ 1− e−1/(12n2e−1)
(
1 +

n

3n2e

)

= Ω(1/n2e−1)

by the power series of the exponential function.

It remains to calculate the probability that within the first 2e n ln n steps all
sets except two A–sets are removed under the condition that two arbitrary
A–sets are never removed. Let W be the sum of all weights of all sets. Then,

W :=
∑

M∈S

w(M) = 10k2 + 26k + 8 =
5

8
n2 +

11

4
n−

47

8
.

We want to calculate the probability to arrive at a weight sum of the current
solution of 2n within 2e n lnn steps by using again the method of the expected
multiplicative weight decrease [20]. We consider a single step. Let w be the
weight sum before this step. The weight distance which we want to bridge to
reach our aim is D = w − 2n. As the weight sum of all current sets is w, the
expected weight decrease of a 1-bit flip is D/(n− 2). Therefore, one 1-bit flip

decreases the weight distance by an expected factor of
(
1 − 1

n−2

)
. And such

a 1-bit occurs with probability 1/e. After 2e n lnn steps, the expected weight
distance is at most

(
1− 1

n−2

)2 n lnn
W ≤W/n2 < 1.

Hence, with probability at least 1/2 we reach within 2e n ln n steps an A2–
solution (cf. notation used in the proof of Theorem 4) under the condition
that two arbitrary A–sets are never removed. Using the considerations above,
Global SEMO attains with probability at least Ω(1/n2e−1) a situation where
the only current individual is an A2-solution.

We like to apply the argumentation in the proof of Theorem 4. For this aim
we show the following. Starting from the described situation, Global SEMO
integrates 0n and an A1-solution with probability at least 1/2e. Moreover,
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if the set cover of the current population is an RW-solution, then at most
the first k/3 sets of C are represented in this search point with probability
1− e−Ω(n).

The next accepted step of Global SEMO in which at least one bit has been
mutated removes at least one of the two A–sets. With probability (1− 1

n
)n−1 ≥

1
e

no other bit is touched and thus an A1–solution is introduced in the current
population. We consider a phase of 3e n steps of Global SEMO. As already
shown in the proof of Theorem 4, at most the first k/3 sets of C are represented
in the current set cover after 5e n steps with probability at least

1− (1− (1− 1
n
)3en)k/3 ≥ 1− e−Ω(k) = 1− e−Ω(n).

The last thing we have to prove is that in this phase of 3e n steps with proba-
bility at least 1/2 the empty solution 0n is produced by Global SEMO. Until
this happens the population size is 2. Thus, with probability 1 − e−Ω(n) by
Chernoff bounds at least n times the A1–solution is chosen for mutation and
a 1–bit flip is performed. The probability that in these at least n 1–bit flips
the 0n–string is produced is at least

1− (1− 1
n
)n ≥ 1− 1

e
> 1

2
.

This reduces to a situation already examined in the proof of Theorem 4 and
therefore finishes this proof.

5 Conclusions

Understanding the behavior of evolutionary algorithms for multi-objective op-
timization is a challenging task where many questions are still open. We have
investigated how a simple multi-objective approach can cope with plateaus
of constant fitness. Comparing a multi-objective EA with its single-objective
counterpart, we have pointed out that even simple plateaus may be hard to
optimize as the algorithm may not have the opportunity to do a random walk.
In our investigations we considered a multi-objective version of a well-known
pseudo-Boolean function as well as a class of instances from the SetCover
problem.

The results obtained in this paper can also be used to show that the approxi-
mation achievable by Global SEMO in expected polynomial time may be bad.
As Global SEMO just works on the dominance relation between the different
search points, such results may be obtained by changing the costs of the sets
without changing the dominance relation. However, multi-start strategies still
have a good chance of being successful and it would be very interesting to ex-
amine which instances for the SetCover problem can not be approximated
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well by using multi-objective models and restart strategies. Similar studies
have been carried out recently in [21] for the (1+1) EA and the Vertex Cover
problem.

We want to point out some further interesting topics for future work. First,
it seems interesting to compare different diversity strategies used in evolu-
tionary algorithms for multi-objective optimization and investigate situations
where using a certain strategy can make the difference between an exponential
and a polynomial runtime. Second, it would be desirable to present a single-
objective combinatorial optimization problem (not only a class of instances)
where applying an intuitive multi-objective approach increases the runtime
exponentially even if the population size is always polynomially bounded.
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