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ABSTRACT

distributed systermd, all nodes have the same capacity; systém
Suppose we have a parallel or distributed system whose mades ~ Nas the same total capacity but there is higher variance gutinen

limited capacities such as processing speed, bandwidth, memory, N0des’ capacities. Which system do we expect to perfornetiett
or disk space. How does the performance of the system depend Qf course, the answer depends on the partlcular sy_stem and it
on the amount of heterogeneity of its capacity distribuiowe potlon of performance. If we are n the business of routingpis
propose a general framework to quantify the worst-caseteffe inan overlay network anq capamty cqrresponds to the nu@ber
increasing heterogeneity in models of parallel systemsveiGa neighbors a node can maintain, we might construct a logarith

cost functiong(C, W) representing the system’s performance as a d!ameter ngtwork in the homogeneous case but a star graph wit
function of its nodes’ capacitie§' and workloadi’ (such as the diameter2 in the extreme case where one node has most of the

completion time of an optimum schedule of jolis on machines ~ SYSteM's capacity. Thus, the latency of routes through eelay

C), we say thay hasprice of heterogeneity when for any work- network will be lower in _the latter, more h_eterogeneou; aq’en
load, cost cannot increase by more than a faetibnode capacities _On the other hand,_con5|de_r a Gluster running a smglatme_.lsb
become arbitrarily more heterogeneous. We give constamdso N9 Of ten parallel jobs which have equal computational e

on the price of heterogeneity of several well-known job sichieg m‘?”ts- Ten 1000 MHz processors can complete the .lo.bs almost
and graph degree/diameter problems, indicating thatasang het- twice as fast as the more heterogeneous system consistirigeof
erogeneity can never be much of a disadvantage. On the athdr h 1100 MHz processors_and one 100 MHz processor. .

with the introduction of timing constraints such as rele@ses or In many cases, basic intuition or observing behavior aeextr

precedence constraints on the jobs, the dependence on ayoae- ¢ points — such as n the oyer]ay .examplg apove — gives a good
ities becomes more complex, so that increasing heterdyemely sense of whether higher variation in capacity improvesquarénce.
be quite detrimental However, back-of-the-envelope calculations cannot axiditee fol-

lowing:

1. Precise justification of intuition. For example, when pro-
cessing a batch of jobs, having fewer fast processors is typi
cally assumed to be better than more slow processors, when
the total speed is constant. The example of a 10-processor
cluster above shows a case where that intuition is not quite
correct. By how much can this intuition possibly be viol&ed

Categories and Subject Descriptors

C.4 [Performance of Systemp Modeling techniques; F.nTheory
of Computation]: Miscellaneous

General Terms

Algorithms, Performance, Theory 2. Comparison across systemto gain insight about the struc-
ture of optimization problems. What characteristics ofabpr
lem determine whether heterogeneity is generally good for
it? For that matter, what precisely does it mean for hetero-
geneity to have a generally good effect?
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These questions are best answered in a quantitative frarevisich
can model the effect of heterogeneity on many systems. Agtho
some particular systems have been studied (see Sectiom tBp t

est of our knowledge a general model has not been proposed. |
his paper, we propose one such model and show several kasic r
sults within it.

Model. After using majorization to quantify “amount of hetero-
geneity”, we study what we call thgrice of heterogeneityInfor-

1. INTRODUCTION

Suppose we have a parallel system whose nodes ¢epaci-
ties such as processing speed, bandwidth, memory, or disk.space
How does the performance of the system depend on the amoun
of heterogeneity of its capacity distribution?ore concretely, in
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mally, a cost functiory(C, W) describing a system’s performance
has price of heterogeneity when for any workload/? and ca-
pacitiesC, cost cannot increase by more than a factaf C' be-
comes arbitrarily more heterogeneous. In the job scheglebam-
ple, W specifies the job lengths; specifies the processor speeds,
andg(C, W) is the minimum completion time of any schedule of
jobsTW on processor€’.



| Problem | Price of heterogeneity] Reference |
Minimum makespan scheduling =2-1/n Theorem 2

Scheduling on related machines, various objective funstio O(1) Corollaries 1, 2
Precedence constrained scheduling, general jobs O(logn) Corollary 3
Precedence constrained scheduling, unit-length jobs <16 Corollary 6
Scheduling with release times, job lengthsl, k] Q(k) Theorem 5
Minimum network diameter, bounded degree <2 Theorem 6

Table 1: Bounds on the price of heterogeneity shown in this pzer.

The price of heterogeneity characterizes the worst-caseadse
in cost due to increasing heterogeneity, which can address-Q
tion 1 above. For example, if heterogeneity always helg the
price of heterogeneity of the cost functionlis At a high level,
we could hope to classify a parallel system’s price of hefene-
ity as being eitheconstantin which case increasing heterogeneity
can never be much of a disadvantageymboundegdindicating that
increasing heterogeneity can be quite detrimental. Bysiflasg
multiple systems in this way, we may begin to answer Quegtion

An important special case of our model is when capacities are
restricted so that there are nodes of capacity,/m andn — m of
capacity0. In this case, increasing heterogeneity (according to the
definition we will give in Section 2) corresponds to decragsi,
and thus decreasing parallelism. Our upper bounds can bedie
as bounding the maximum benefit of additional parallelistfixad
total capacity.

In addition to providing theoretical insight, if we have asto
function that is a good model of a real system, a practicalicgp
tion of the price of heterogeneity is to provide test cases &ne
provably close to the worst possible capacity distributiobhis
is useful, for example, when testing a system which the desig
wishes to be deployable in a wide range of (possibly unknaan)
pacity distributions. In Section 9, we will discuss one sgelse,
load balancing in distributed hash tables.

Results.Our bounds on the price of heterogeneity are summarized
in Table 1. In this paper we focus on scheduling problemswlaut
also give a network design example to show the generalith®f t
model. Most of the upper bounds are obtained via what weleall t
Simulation Lemma, which shows how to use one set of capacitie
to “simulate” another. The Simulation Lemma may also be ulsef
in contexts other than the price of heterogeneity; for eXamip

is easy to show that for any fixed set of capacities, as johthsng
become arbitrarily more homogeneous, optimal makesparinean
crease by a factor &f and no more.

In addition, we show two lower bounds. First, we observe ithat
jobs have release times before which they cannot be exeantéd
we wish to minimize average or maximum job latency, the poice
heterogeneity i§2(k) when job sizes are ifi, k]. Second, we sepa-
rate precedence constrained scheduling (PCS) from thelslamng
problems with known constant price of heterogeneity by shgw
that the simulation method can lengthen makespan by a fattor
O(n), intuitively because of dependencies between jobs onrdiffe
ent processors. An interesting and apparently nontriviehaques-
tion is whether PCS ha3(1) price of heterogeneity.

These results show that increasing heterogeneity can’tumhm
of a disadvantage for basic scheduling problems, but thebowmn
tion of timing constraints and variable job lengths can pcmla
complex dependence on the capacity distribution.

The rest of this paper is as follows. We present our model in
Section 2 and related work in Section 3. We introduce the &imu
tion Lemma in Section 4, and bound the price of heterogerodity

various cost functions in Sections 5-8. In Section 9, weudis@
scenario in which our results provide a worst case for tgstiffe
conclude in Section 10.

2. MODEL

To define what it means for one capacity distributidhto be
more heterogeneous than another distributignwe use thema-
jorizationpartial order. Given two nonnegative vectéfs= (ci, ...,
cn) andC’ = (c,...,c,), we say thatC’ majorizesC, written
C’" > C,when

k k n n
VEk z cfl-] > ZCM and Zc; = Zci,
i=1 i=1 i=1 i=1

wherec;) denotes théth largest component of'.

Majorization is a standard way to compare the imbalancesf di
tributions; see [13] for a general reference. Some of itp@ries
are as follows. Restricted to vectors wif);"_; ¢; = n, majoriza-
tion defines a partial order whose bottam= (1,...,1) is the
homogeneous distribution, and whose Top= (n,0,...,0) is the
centralized distribution. Two other measures of hetereigrare
variance vafC') = H_éH S (ei—||C]|/n)? and negative entropy
—H(C) = Y, cilog, ci. Although variance and entropy dis-
agree on the ordering of vectors in general, majorizatiaoissis-
tent with both, in the sense that = C implies vaC") > var(C)
and—H(C') > —H(C).

For our purposes, eost functionis a functiong : C x W —
R™, whereC C R™ is the set of legal node capacity vectors and
W is arbitrary additional problem-specific information. Tgagly,
g(C, W) will represent the cost of the optimal solution to some
combinatorial problem with node capaciti€sand workloadiV.
However, one could also examine, for example, the cost afapp
imate solutions produced by a particular algorithm. We caw n
define our main metric.

DEFINITION 1. Theprice of heterogeneit{PoH) of a cost func-
tiong:Cx W — RTis
!
sup g, w)
w.c,cr: o=cr, wew 9(C, W)

A PoH of 5/4 would say that for any capaciti€s andC’ = C,
distribution C’ can handle any workload with cost at masi%
higher thanC'. That is, as heterogeneity increases, performance
cannot get much worse.

Price of heterogeneity can also be viewed as a generalizafio
Schur concavity. A functiory is Schur concavavhenC’ = C
implies g(C’) < ¢g(C). One could say thaj is a-approximately
Schur concavevhenC’ = C implies g(C’) < a - g(C). Then
g(C, W) has PoHa if and only if g(C, W) is a-approximately
Schur concave i@ for everyW.



Note that an assumption of this model is that the nodes have th

PROOF. Letaw = 2 — 1. The following algorithm produces

same “type” of capacity, so two nodes with the same amount of ana-simulationf : {1,.. 7? n} — {1,...,n}. Begin by sorting

capacity are equivalent.

3. RELATED WORK

In several systems, it has been recognized that a hetermgene
capacity distribution is significantly preferable to a hgapneous
one. For example, heterogeneity in the participating ndolesd-
width constraints can reduce route lengths in distributeshtiables
(DHTSs) [9, 15] and in unstructured peer-to-peer file shasgyg-
tems [4], and can improve load balance in DHTs [8]. In sup&rco
puting, designs using a few fast processors and many slower p

cessors have been evaluated against homogeneous syst&hs [2

These studies generally look at specific capacity and wadkitis-

tributions. Our model is complementary since we examine the

worst case over all capacity distributions and workloads.

Closer to our model, Yang and de Veciana [20] studied a branch

ing process model of a BitTorrent-like content distribatgystem

in its transientphase, such as during the arrival of a flash crowd.

The analysis showed that expected service capacity ireseas
the distribution of node bandwidth becomes more heteragene
in the sense of increasing convex orderings (which gerzeratia-
jorization to random variables).

As mentioned in the introduction, an important special aafse
our model is when capacities are restricted so that thererare
nodes of capacity,/m andn — m of capacity0. Price of diversity
upper-bounds the increase in costiaslecreases. In queuing the-
ory, a well known result is that among M/M/ queues . servers
of speedn/m with exponential job service times); = 1 is opti-
mal [17]. However, for various other job service time distitions,
mean response time may be minimized when> 1 (see [19] and
the references therein). Intuitively, this is because ggeveral

servers keeps many small jobs from being held up by one big job

This corresponds to the super-constant price of heterdgeoke
scheduling with release times (Section 7).

4. THE SIMULATION LEMMA

A natural way to show that the heterogeneous capaditiesre
as good as the more homogeneous capacitiesto “simulate”C'
usingC’. More specifically, we would assigii-nodes ta”’-nodes
according to som¢ : {1,...,n} — {1,...,n}, and show that
eachC’-nodei can “simulate” the work previously performed by
the subset o€-nodesf ' (i). For most natural cases, a prerequi-
site for this technique to succeed is that the total capaaitylated
by eachC’-nodei is not much more than its own capacity

DEFINITION 2. For capacity vectors” and C’ = C, an a-
simulation ofC' with C" isa functionf : {1,...,n} — {1,...,n}
suchthaty®, . -1, ¢; < acj, forall i.

It is NP-complete to decide whethed asimulation exists (see Ap-
pendix A). The main result of this section is tha{za— 1/n)-
simulation always exists.

LEMMA 1. (Simulation Lemma) For any capacity distributions
C andC’ = C,a(2 — 1/n)-simulation exists and can be found in
timeO(nlogn).

The bound is exactly tight, as exhibited in Figure 1. In thea-
der of this section, we prove the lemma, and then use it toigeov
sufficient conditions for a cost function to have constamtepof
heterogeneity (Theorem 1). In later sections, we will sed th
number of optimization problems satisfy those conditions.

the two capacity vectors in decreasing order. Maintain &ovesf
available capacitiesA = (a1, ...,ax). Initially, A = (0,...,0).
For eachi = 1 to n, perform the following steps:

1. Seta; «— c}.
2. Letj € {1,...,4} be suchthat; > ¢;/a.
3. Setf(i) «— janda; <« a; — ¢; /.

The algorithm can be implementeddi{n log n) time by storingA

in a heap and takingto be the maximum element. It remains to be
shown that (1) in each iteration, a suitapleatisfyinga; > c¢;/a
can be found, and (2) the resultirffigs ana-simulation.

We show (1) first. After Step 1 of thith iteration, the total ca-
pacity that has been added.Aais ), _, ¢}, and the total capacity
that has been subtracted¥s;_' ¢ /. So the total capacity re-
maining in A after Step 1 of théth iteration is

i i—1 1 7
’ Ck Ci / Ck
E Cp — — = —+ E Crp — —_—
« « «
k=1 k=1 k=1 k=1

C; 1 : : ’
> =2 1-= E =
> 2 + ( a) cr  (sinceC” = C)
k=1
C; . 1 .
> —4idi-(1—=]c¢ (sincec: >--->¢)
« (0%

Il

-
7N
~.
gle

H)

Moreover, at stepthere are< 7 positive entries ofl, so some entry
must be> £ + (1 — 1) ¢;. Plugging ini < nanda =2 —1/n,
this expression reduces ¢g/«. Thus, a suitablg can be found.

We now show (2)i.e., thatzief,l(j) ¢i < ac); for eachj. Note
thata; first became positive by setting = ¢. Each time we set
f(i) « j for somei, the capacity assigned to entfyincreased
by ¢;, anda; decreased by;/«. Sincea; > 0 always, the total
capacity assigned tpis < acj. O

THEQREM 1. Suppose a cost functignsatisfies the following
properties:

1. g(C, W) is nonincreasing in each component(@f

2. g(C, W) is a symmetric function of the component£of

3. 9(3-C,W) < B-g(C,W)forall CandW; and

4. g(D,W) < g(C,W), whereD is formed from' by replac-
ing components and j with ¢; 4+ ¢; and 0, respectively, for
anyC, W, i, andj.

Then the price of heterogeneity gfs < 5.

PROOF LetC andC’ be capacity distributions such that >
C. We must showg(C', W) < B - g(C,W). Let f be a2-
simulation as given by the Simulation Lemma, in which, fartea

260 > 3 -1 G e LetE = (e1,...,en). We have

9(0/7 W) < ﬂ : g(2C/7 W) (Pmpert)B)
< B-g(E,W)  (Propertylan@C’ > E)
< pB-g(C,W) (repeated application of
Properties 2 and 4).
O
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Figure 1: Two families of examples showing the tightness ohe Simulation Lemma. Herea = 2 — 1/n. In both examples, every
assignment ofC to C’ gives some element of” at least« times its capacity.

5. SCHEDULING ON RELATED MACHINES

We now apply the results of the previous section to the prmble
of scheduling on related machinesVe are given a sef of jobs,
each with alengtli(;), and am-vectorC' of processor speeds. We
must schedule the jobs on ourmachines so that each machine is
executing at most one job at any time. Machineompletes each
jobjintimef(j)/c;, soifitis given jobsJ;, it can finish its jobs in
timet; = £(Ji)/ci, wherel(J) := 3, ; £(j). The most common
measure of the cost of a schedule isiiigzkespanthe time until the
last job (equivalently, processor) finishes. We begin bylyenirag
the price of heterogeneity of the cost functigfC, J), defined as
the minimum makespan of any schedule of jobsn processor§’
(Section 5.1). We then generalize that result (Sectionaid?5.3)
before noting a complementary property of the distributtbijob
lengths (Section 5.4).

5.1 Minimum Makespan Scheduling

This section illustrates the basic technique we will useater
bounds on the PoH. For concreteness of exposition, we uSirire
ulation Lemma directly, rather than Theorem 1. Unlike oueda
results, in this case we provide matching lower and uppend®u
The lower bound transfers from that of the Simulation LemFRig-(

ure 1) because both the lemma and the makespan considenthe ma

imum amount of work assigned to a machine.
Before giving the main theorem of this section, we introdece
simple but important fact:

FacT 1. Forany schedule of jobs on processors of spegds. . , ¢,
(“parallel schedule™), there is a serial schedule of thosdb$ on a
single processor of speed + - - - + ¢ (“serial schedule”) such
that each job completes before or at the same time as it diden t
parallel schedule.

PROOF Schedule jobs on the single processor in order of their
completion time in the parallel schedule, with ties brokenitear-
ily. Consider any joly and suppose its completion time in the paral-
lel schedule ig. In the parallel schedule, the total length of all jobs
completed by time mustbe< 3°F_ ¢-¢;. Then the new schedule

completes these in time (Zl tec ) [(ci+--+er) = O

THEOREM 2. The PoH of minimum makespan schedulingHs
1/n.

PROOF We begin with the upper bound. Given any machine
speeds” andC’ = C, and any schedule of johson machine<”
with makespan\/, it is sufficient to produce a schedule of the jobs
on theC’-machines with makespan\/.

Suppose jobs/,, C J are scheduled on machirkein the C-
schedule. Leff : C — C’ be the mapping defined by the Simu-
lation Lemma. For each, schedule jobg/;, on C’-machinef (k).
Now let (i) := f~'(i) be the set of2-machines mapped 1©’-
machinei, and lets = -, . cx be the total speed of these
machines. By Fact 1, a machine of speamuld complete the jobs
assigned t@’-machinei in time < M. By the Simulation Lemma,
¢; > s/(2—1/n), so eachC’-machinei completes its jobs in time
<(2-1/n)M

To show the lower bound, we can use either pair of capacity
vectors in Figure 1, in both cases withunit-length jobs. The
reader can verify thaD PT(C, J) = 1, butOPT(C’',J) > 2 —
1/n. O

5.2 General objective functions of job
completion times

Fact 1 is actually much stronger than was necessary to bound
the makespan: it bounds the completion timebfjobs, not just
the last. This property lets us analyze a large class of tigec
functions.

Leth : R™ — R be a function of the job completion times. We
sayh is 3-boundedvhenh(2t) < 3-h(t) for all t. Examples of-
bounded objective functions sometimes used to evaluatguidléey
of a schedule are the average job completion time and theorm

of the job completion times,e, h(t) = (3", ) VP forp > 1.
The squared completion timg(t) = >, ¢7, is 4-bounded.

COROLLARY 1. Supposé: : R™ — R™ is a nondecreasing,
(-bounded function of the job completion times. L&t J) be
the minimal value ok over all schedules of job$ on machineg”.
Theng has PoH< §.

PROOF We apply Theorem 1. Properties 1 through 3 follow
directly from those ork and the fact that completion times are in-
versely proportional to processor speed. Property 4 falinam
Factl1l. [

Note that the above corollary applies even in the case’that
not symmetric, as in the case of weighted average complgtizn
with some jobs weighted more than others.

5.3 General objective functions of machine
completion times

We may similarly consider bounded functioh®f the machine
completion times. In this case we require thais a symmetric
function of its arguments. The following follows easily finadCorol-
lary 1 by considering the completion time of the last job onhea
machine. We omit the proof.



COROLLARY 2. Supposéh : R™ — RT is a nondecreasing,
[-bounded function of the machine completion times.gl(€t, .J)
be the minimal value df over all schedules of job$ on machines
C. Theng has PoH< §.

An interesting open problem would be to obtain tighter beufu
the L,-norm of machine completion times as a functiorpofFor
the Li-norm in particular, the PoH i$ since the optimal assign-
ment places all tasks on the fastest machine, and that neachin
always at least as fast @’ in C.

5.4 A complementary result

We observe that the Simulation Lemma can also be used to de-

scribe the effect of heterogeneity of job length distribos. The-
orem 2 showed that as capaciti&sbecome more heterogeneous,
the minimum makespa@ PT'(C, J) can’'t get much worse, for any
fixed job lengthsJ. The following theorem says that #se job
lengthshecome morévomogeneoyshe makespan can'’t get much
worse, for any fixedhode capacities

THEOREM 3. LetJ and J’ be vectors of job lengths with' =
J. ForanyC, OPT(C,J) < 2-OPT(C,.J").

PrROOF Letf : J — J' be a2-simulation, which exists by the
Simulation Lemma. Then if’-job j is executed on machingin
the optimal schedule, we place thejobs f~*(5) on machinei.
Since f is a2-simulation, this at most doubles the total length of
jobs placed ori, and hence the completion time of any machine at
most doubles. [

6. PRECEDENCE CONSTRAINED
SCHEDULING

In the precedence constrained scheduling (PCS) problem§r]
are given node capaciti€s, a setJ of jobs, a length(;) for each
j € J, and a partial ordex; on J. We must schedule the jobs
on the nodes as before, with the added constraint that £ ; j2
then jobj; must complete by the timg begins. The cost is the
minimum makespan of such a schedule.

The key difficulty in transferring the simulation techniqoePCS
lies in adapting Fact 1. When merging the work of two machafes
capacitiess; andcs into one machine of capacity + cz, it is no
longer sufficient to show that theompletion timeof each job does
not increase. To satisfy precedence constraints withoublaab
modification of the schedule, one would have to devise a stbed
for which thestart timeof each job does not decrease.

In fact, we show that the direct application of the simulatio
technique cannot possibly succeed: having edtimachine per-
form the work of some subset of th&-machines can result in a
factor ©(n) inflation of the makespa(Theorem 4). Intuitively,
mapping several’-machines onto on€”-machine reduces paral-
lelism. The result is that a sequence of short jobs must aotalty
be interrupted by long jobs, during which time other machinave
to remain idle while waiting for the short jobs to finish.

However, the simulation technique can be applied in an LP re-
laxation of PCS [5], intuitively because that LP lets a singla-
chine run multiple jobs in parallel. This produces@(log n) up-
per bound on the PokKCorollary 3). We can also show an analog
of Fact 1 in the special case that job lengths vary by at mosha c
stant factor(Corollary 6).

6.1 A lower bound for the simulation
technique

The following theorem shows that having eaghmachine per-
form the work of some subset of th&-machines can result in a

Nodes Jobs
1 k
2 k2

kn

Figure 2: An instance of PCS on which the simulation tech-
nique fails.

factorn/4 inflation of the optimal makespan. This is tight within a
factor of4, because we can always schedule jobsmlgthe fastest
machine (which in th&®’-machines is at least as fast as in the
machines), resulting in a factet »n increase in makespan.

THEOREM 4. There exist capacity vectors andC’ = C and
aninstancgC, J, ¢, < ;) of precedence constrained scheduling with
an optimal schedule of makespanPT which maps jobs to ma-

chines according té : J — {1,...,n}, such that any schedule
for instance(C”, J, £, < ;) which places jol on machinef (h (7))
for somef : {1,...,n} — {1,...,n} must have makespan
200 . OPT.

4

PrROOF We takeC' = (1,...,1) andC’ = (2,...2,0,...,0),
i.e. n/2 machines of spee2l The problem instance is as follows.
We haven groups of jobs, indexetlthroughn. Groupi consists of
k"~ jobs of lengthk’. We choose a conveniehtlater. The opti-
mal C-schedule places grodpn machine, as shown in Figure 2.
The set of precedence constraints is the maximum set fortrvihéec
above schedule is valid. That is, we have a constraint> jo iff
job ji1 completes by the time joly, starts. Note that the resulting
makespan on thé'-machines is", and this is optimal since no
machine is idle until all jobs are complete.

Now suppose that we map tli&machines ta”’-machines ac-
cording to somef : {1,...,n} — {1,...,n}, and we restrict
ourselves to executing the grougebs onC’-machinef (i) as in
the theorem statement. We seek to lower-bound the make$pan o
any such schedule.

Define a group asbstructingif it is assigned byf to a machine
which is also assigned a group of smaller jobs. 4t .., g, be
the obstructing groups, withy < --- < g.,. Notem > n/2 since
there aren groups and only:/2 machines with positive capacity.
Lett(g;) be the time spent executing grogpduring which no job
from any larger obstructing group is being executed. Noaé tie
makespan of the scheduleds>""" | t(g:). We now lower-bound
eacht(g;). First we need a key fact:

FACT 2. While any job from an obstructing group is execut-
ing, at mosk9 =1 jobs in any smaller group < g; can execute
on any other machine.

PROOF. Letx be ag; job, and letD be the set of groupg-jobs
executed on any machine durimgWe wish to upper-bounfD]|.
Sincey; is obstructing, there is some smaller group on the same
machine. Le” be the set of those smaller jobs. To handle bound-
ary cases cleanly, augmekt with two “marker jobs”y; and -,
both of zero length, with; at the beginning of the chain of depen-
dencies inY” and~; at the end. We may assume w.l.0.g. thais
the first job executed on its machine andis the last.



Since a machine can only execute one job at a time, there exist

two jobsyi,y2 € Y such thaty,’s immediate successor ig,

y1 1S been executed before andy: is executed afte. Thus,
sincey; has completed when starts,D cannot include any jobs

on whichy, depends. Similarly, sincg, has not yet completed,

D cannot include any jobs which dependsn Thus, D includes
only group4 jobs that, according to the precedence constraints, can
execute concurrently with; or y». The total length of such jobs is

at most the length of; plus the length ofj., which is< 2k% ~1.
Since each grougjob has lengtit’, we have D| < 2k% ! /k?
2k9i~371 as desired. O

Now consider some obstructing grogp By Fact 2, the number
of g;-jobs executed during a job of lengt¥ is < 2k% 91,
Since there ar@™ 9 jobs of lengthk?¢, the total number of;-
jobs executed during longer obstructing jobs is

m n
SRV ok < 2 Y RS T < on kT
i=j+1 i=j+1

Since there aré&™ 97 groupy; jobs to begin with, the number
of groupy; jobs not executed during longer obstructing jobs is
> k"9 = 2n - k"9 = (1—0(1))k™ 9 for k = n? (recallk

is arbitrary). The time per job % /2 since allC’-machines have
speed®. Thus, we have thatg;) > (1 —o(1))k" 9% - k% /2 =
(1 —0(1))k™ = 2(1—0o(1)) - OPT.

Since this is true for all obstructing groups, we have that th
makespan of the€”’-schedule is at leadt”" | t(g;) > m - 2(1-
o(1)) - OPT. As noted abovemn > n/2, which proves the theo-
rem. [

6.2 Upper bounds

We begin with an upper bound for the general case of PCS. Chu-
dak and Shmoys [5] gave a linear programming relaxation & PC
which formed the basis of thei?(log n)-approximation algorithm,
which is the best known. The full proof appears in Appendix B.

COROLLARY 3. The PoH of precedence constrained schedul-
ingisO(logn).

PROOF (Sketch) The LP relaxation does not include the con-
straint that a machine executes at most one job at a timetHtss
easy for one fast machine to simulate the work of several siaw
chines, so we can apply the Simulation Lemma to show that the
optimal solutions to the LP hav®(1) PoH. By the main result
of [5], the optimal solution to PCS is at moSk(log n) times the
LP’s solution. [J

COROLLARY 5. Restricted to instances with a constant number
of distinct machine speeds, PCS has RoH ).

PrRoOF Follows from the result of [5] that the optimal values of
the LP relaxation are withi®(1) of the true optimum when there
areO(1) distinct machine speeds[]

COROLLARY 6. The PoH of precedence constrained schedul-
ing with unit-size jobs i< 16.

PROOF See Appendix C.

7. SCHEDULING WITH RELEASE TIMES

The last scheduling problem we considesé&heduling with re-
lease times We must produce an offline schedule of jahon
machinesC' as in scheduling on related machines, except that we
are also given for each jgbe J arelease time-(;) before whichy
may not be executed. Our cost functigfC, (J, r)) is the minimal
total response timef any schedule of jobd with release times
on machines”. We define total response time as the sum over all
jobs j of the timej spends in the system normalized by its length:
MG e—r D) wheret(j) s the start time of jobj andc is the
capacity of the machine on which it is run.

Similar release time constraints appear in Garey and Jot@go
but we borrow the response time objective from queuing gsyste
such as [19], in which it is known that decreasing paralfelis-

i.e., increasing heterogeneity — can significantly incesasponse
time (see discussion in Section 3).

It is easy to observe that even moving from two machines to
one can be quite disadvantageous. As in PCS, reduced fiaralle
causes short jobs to be held up by long jobs. The full prooéapp
in Appendix D.

THEOREM 5. The price of heterogeneity of scheduling with re-
lease times with job sizes ji, k] is Q(k).

PrROOF (Sketch)LetC' = (1,1) andC’ = (2,0). Suppose/
consists ofnk jobs of size 1 arriving attime® 1, ..., mk—1and
m jobs of sizek arriving at timed), k, 2k, ..., mk — k. These can
be scheduled as they arrive on themachines, for a total response
time of ©(mk). Now consider scheduling these jobs on the single
C’-machine of nonzero capacity. Eith€x(m) long jobs are de-
layed for time®(km) until all short jobs are complete, or each of
O(m) long jobs delay® (k) short jobs for timed (k) each. Pick-
ingm = k2, in either case total response timefigk”), compared
with ©(k?) for the C-machines. [

We next note several special cases where bounds can be ObB. NETWORK CONSTRUCTION

tained using straightforward techniques. The first thesays that
PCS has a property which is necessary, but not sufficien@{ay
PoH: the homogeneous distribution is within a constantofaof
the worst case.

COROLLARY 4. LetOPT(C’, W) be the optimal makespan of
an instancelV of PCS with capacities’. ThenOPT(C', W)
<4-OPT(L,W)foranyC’, wherel = (1,...,1).

ProoOF (Sketch)Produce distributiorD from C” by setting to
0 any elementwith ¢; < %. Clearly,OPT(C',W) < OPT(D,W).
Schedule the jobs o using Graham'’s classic list scheduling al-
gorithm [10]; the standard lower bounds show-approximation
of OPT (D, W), but also apply taPT'(L, W) at an additional
factor2 increase in schedule length[]

In designing a communication network, a typical goal is taimi
mize the number of hops between any two nodes, subject tallsoun
on the maximum number of links incident to each node. For exam
ple, in placing physical links between nodes of a supercaenpu
or cluster, each node may have a limited number of networtspor
In an overlay multicast network, each link may involve fordiag
a stream of multicast data, so the degree of a node would be lim
ited by its available bandwidth. Constructing such netwoslith
low maximum latency between nodes involves a classic tfafo
between degree and diameter.

In this section we will study how the optimal diameter change
as the degree bounds become more heterogeneous. Note that in
the following formulation, we do not make use of the “workdda
parameter of the cost function.



DEFINITION 3. (Minimum Graph Diameter) Given positive in-
teger degree bounds = (ci, ..., cn), MinDiam(C) is the min-
imum diameter of a grapld” in whichdeg(i) < ¢; for all nodes
7.

THEOREM 6. The price of heterogeneity 8f inDiam is < 2.

PROOF. (Sketch)We'll show MinDiam(C') < TREE(C")
< TREE(C) < 2 - MinDiam(C), whereTREE(C) is the
diameter of the least-height tree with degree boufidsThe first
inequality is obvious, and the third follows from the facathhe
diameter of the best graph is at least the height of the best tr
which is half the tree’s diameter.

The second inequality says tHERFE E has PoHL. This can be
shown as follows. By an interchange argument, in the optireal
if ¢; > ¢; then leve(i) < level(j), where leve(-) denotes distance
from the root. We use the standard fact that'if= C thenC’ can
be produced fronC' by a sequence of transfers of capacity from
lower- to higher-capacity nodes [13]. If we transfer onet wfi
capacity (a unit bound on the degree) frgno i, wherec; > c¢;,
then we can transfer the associated subtree as well, whigiota
increase the height of the tree since I¢veK level(j). [

We did not apply the Simulation Lemma because the capacities

specify hard constraints which cannot be violated (Coodi of
Theorem 1 is not satisfied). Note that one could instead seek t
minimize degrees subject to an upper bound on the diameter, i
which model Theorem 1 does showDd1) PoH.

9. AWORST CASE FOR TESTING

In this section, we discuss how the price of heterogeneity ca
provide a worst case for testing, using load balancers &triduted
hash tables (DHTSs) as an example.

Most DHTs have been designed without knowledge of theireven
tual adoptive environment, which might be a homogeneousteiu
a worldwide managed system like PlanetLab [1] (whose nodBs v

in memory and disk space by a factor of four and eight, respec-
tively?), or a peer-to-peer system like Gnutella (whose nodes vary 11.

in bottleneck bandwidth by at least three orders of mageifd6]).
With such a wide range of target deployments, it may be véduab
to test under a capacity distribution which would bound the s
tem’s performance iany deployment scenario. If we have a cost
functiong(C, W) which models the system well, andgihas PoH
«, then the system'’s cost under homogeneous capacitieshmwit
a factora of the worst case, for any worklodd’, any fixedn, and
any fixed total capacity. We next argue that in the case of Di4@ |
balancing, it is possible to produce such a cost funciovhich is

a reasonable model of the system.

Several proposed DHT load balancers [8,12] assign owneoghi
objects stored in the system by first partitioning the olsjerhong
virtual nodes and then placing virtual nodes on physical nodes.
Each virtual node has an associated load, such as the raieoofi
ing requests for objects stored on it. The goal is to assignali
nodes to physical nodes in a load-balanced way.

More specifically, suppose we desire to minimize the mean la-

tency experienced by users of the system. Define the load on a 6]

virtual node as the number of usersconnected to it, and model
the latency experienced by a user connected to physical hase
u; /ci, wherew; is the total number of users connected: tol his
problem can be modeled by scheduling on related machinds wit

2As of February 16, 2005, CoMon [14] reported memory between

the objective of minimizing the square of the completionetiof
each machine. Corollary 2 implies that this problem has RoH
If the DHT load balancer finds assignments of virtual to pbasi
nodes that are within a facter of optimal, then mean latency will
be within a factord« of its worst under homogeneous capacities,
for any pattern of load on the virtual servers.

10. CONCLUSION

We have taken the initial steps toward analyzing the effEcet
erogeneity in distributed systems. There are a number eftiins
for future research. First, our bounds could be tightenedply-
ing the question of whether precedence constrained sdhgdads
constant price of heterogeneity is of particular inter8sicond, one
could analyze other cost functions, such as scheduling raith
dom, rather than adversarial, jobs; resource constrained sthed
ing [7]%; or the Nash equilibria of network congestion and load bal-
ancing games [11, 18]. Regarding the latter, note that ifraeghas
price of anarchyy and its social optima have price of heterogeneity
(3, then the Nash equilibria have price of heterogensity 3, but
better bounds may be possible. Additionally, Suri et al [A&ye
asked whether the price of anarchy itself decreases whehingac
speeds in their load balancing game become heterogeneaus. O
framework may have relevance in answering that question.

A third direction is to broaden our model. Extending the ooti
of heterogeneity to allow nodes to have multiple kinds ofazap
ity, or in general more than one attribute, may greatly beoaitis
applicability.
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APPENDIX
A. NP-COMPLETENESS OF SIMULATION

Define the problem uLATION as follows: givena > 1, C,
andC’ > C, is there am-simulation ofC' with C’?

FACT 3. SIMULATION is NP-complete.

PrROOF. Clearly the problem is in NP. To show NP-hardness we
reduce from BRRTITION [7]. In that problem, we are given a set

S of n positive integers, and must decide whether there exists an — Zﬁ(j)x'lj

R C SforwhichY _,r=3> _os.

Normalize the elements & so thatzsess = n. Seta = 1,
C =SandC' = (%,%,0,...,0). If C" = C, then(a,C,C") is
a valid instance of ULATION, and it is easy to verify thaf can
be partitioned in half iff there existslasimulation.

If C" # C,theny Y | ¢y < YO0, cpy for somek, wherecy;
denotes theth largest component af'. SinceC’ has only two
positive elements, this must happen foe= 1, which implies that
c1 > 3. Inthat case, there can be no perfect partitioly 0so0 we
can map onto any “no” instance ofNBULATION . [

B. PROOF OF COROLLARY 3

In the mixed-integer program of Chudak and Shmoys [5], ma-
chines are divided into groups of equal speed, and jobs aignesl

to machine groups. For our purposes, we may assume w.lhag. t
all machines have different speeds, in which case the progex
comes the following. Variable;; € {0, 1} represents the assign-
ment of jobj to machinek, andt(j) represents the completion time
of job j. We seek to minimize the makespansubject to

da=1 VjelJ 1)
k=1
iZ((j):ck] <D Vk:ic>0 @)
2
Tr; =0 Vk:cp,=0 3)
"5z .
S AT gy (4)
k
k=1
")z . ' M .
W2 < i) 1) i <o ©)
=1 "
tj) <D Vi, (6)

which can be interpreted as requiring that (1) each job isoones
machine, (2) each machine finishes by tiie (3) zero-capacity
machines aren’t used, (4) the completion time of each joblesaat
its processing time, (5) precedence constraints are resshesnd
(6) all jobs finish by timeD.

Let L P be the relaxation of this program whetg; € [0, 1], and
let LP(C), LP(C"), OPT(C), andOPT(C") denote the optimal
values ofL P and of precedence constrained scheduling, with some
given capacitie€” andC’ = C and workload(J, ¢, < ;). For any
C andC’ = C, we will showOPT(C") < O(logn) - LP(C") <
2-0(logn) - LP(C) < O(logn) - OPT(C). The first inequality
is due to [5]; the last is due to the fact thaP is a relaxation of
PCS. We show the second inequality by verifying the conastiof
Theorem 1 for the optimal values @&fP. Properties 1 through 3
follow directly, with 3 = 2. For Property 4, letzs,) be an optimal
solution toL P(C), and suppose; = c1 + c2, ¢, = 0, andcj,
e for i € {2,...n}. We show(zy;) is a feasible solution for
LP(C") with the same makespaP and completion times(j),
where for allj, x1; = x1;+x2;, x5; = 0, and fork € {2,...,n},
x}; = wk;. Constraints (1), (3), and (6) are obviously satisfied.
To verify (4) and (5), note that the time to process a job dbesn
increase:

é(j)x;cj N [ T+ T2
— ( J J
zk: T O] Bty

3 fv_) <3 Wy
ko2 Ok PR
Finally, (2) is satisfied since

n n

1
ch & c1+c2 Z ()@1s + 225)
Jj=1 j=1
1IN 1 — .
< max (a > L)y, C_QZZ(J)“J')
j=1 Jj=1
< D.

C. PROOF OF COROLLARY 6

Consider any capacitigs, ¢’ = C, and jobsJ, and suppose the
best schedule on th&-machines executes jobon machinen(;)
during [¢(4), ¢(4) + 1/em()- Itis sufficient to show & sched-
ule such that each job is executed withiG - ¢(5), 16 - (¢(j) +
1/em(;))]. We first modify the schedule to make it more conve-
nient: round the”-machine speeds down to the nearest power of
2, and execute each jgbat a time which is a multiple of /c,,, .



Each of these modifications at most doubles the length ofteds
ule. LetC™ andt*(-) be the resulting capacities and execution
times.

Now let f be given by the Simulation Lemma. Consider the
machinesf ! (i) for somei. First, we merge each pair of machines
mi,me € £ (i) for which Cm, = Cm, Dy replacing them with
a machine of capacityc;,,, . We revise the execution time of each
job j ast*(j) = t*(j) if m(j) = ma, andt*(j) = £*(j) + 4 -
1/ch1y if m(j) = m2. Completion times do not increase since
the machine capacity has doubled, and jobs do not overlae sin
eacht™(j) was a multiple ofl /c,, ;. Iterating this merging of the
machines inf~*(3), we are left withk machinesmy, ..., my of
unique power-of-two capacitiés , . . . , 2¥ (some may be missing).

We can now schedule these machines’ jobs on a single machine= 2~ 2 " &

m of capacity2"*! without changing the range of time in which
each job is executed, as follows. Break time into slots oftlen
1/2FF1 the length necessary to process one job on maghirfeor
each jobj; on machineny, there are two available slots within its
scheduled timét* (1), t*(j1) + 1/2%]. Place each job in one of
these slots arbitrarily. For each jgbon machinen, 1, there still
remain two available slots within the larger tifié(j2), t* (j2) +
1/2F~1], so we can recursively schedule the jobs on machings
...,mk_1 in the same manner.

The Simulation Lemma guarantees > %Zlef,lm Cmy >
1 - 2%, We used a machine of speeli**, so this increases the
makespan by a factor df Combining this with our earlier modifi-
cation of the schedule, the corollary follows.

D. PROOF OF THEOREM 5

PROOF LetC = (1,1) andC’ = (2,0). SupposeJ consists
of mk jobs of size 1 arriving at time®, 1,...,mk — 1 andm
jobs of sizek arriving at times0, k, 2k, ...,mk — k. These can
be scheduled as they arrive on themachines, for a total response
time of ©(mk). Now consider scheduling these jobs on the single
C’-machine of nonzero capacity. For any schedule, we havefone o
two cases:

In Case 1, fewer thah/2 of the large jobs are scheduled during
time [0, km]. Then> m/2 large jobs wait, on average, at least
time km/2 before they are executed. After normalizing by job
length, we have that the total response time of just thesg i@b

CEmo L — 9(m?).

In Case 2, at least/2 of the large jobs are scheduled during
time [0, km]. Ignoring all large jobs except these, we can produce
an optimal such schedule by settitig:) = r(j1) for each small
job j1, and inserting each large joh at its specified time(j2),
delaying the small jobs only as much as necessary. Sincdageh
job takes timek /2 to execute on the machine of capadityve must
delay starting (k) small jobs by time9 (k) each, so total response
time increases b (k). This occurs for each of m,/2 large jobs
that we insert, for a total slowdown of ©(mk?).

Finally, sincem is arbitrary, takem = k2 so in either case
total response time i€(k*), compared with®(k*) for the C-
machines. [J



