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ABSTRACT
Suppose we have a parallel or distributed system whose nodeshave
limited capacities, such as processing speed, bandwidth, memory,
or disk space. How does the performance of the system depend
on the amount of heterogeneity of its capacity distribution? We
propose a general framework to quantify the worst-case effect of
increasing heterogeneity in models of parallel systems. Given a
cost functiong(C,W ) representing the system’s performance as a
function of its nodes’ capacitiesC and workloadW (such as the
completion time of an optimum schedule of jobsW on machines
C), we say thatg hasprice of heterogeneityα when for any work-
load, cost cannot increase by more than a factorα if node capacities
become arbitrarily more heterogeneous. We give constant bounds
on the price of heterogeneity of several well-known job scheduling
and graph degree/diameter problems, indicating that increasing het-
erogeneity can never be much of a disadvantage. On the other hand,
with the introduction of timing constraints such as releasetimes or
precedence constraints on the jobs, the dependence on node capac-
ities becomes more complex, so that increasing heterogeneity may
be quite detrimental.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; F.m [Theory
of Computation]: Miscellaneous

General Terms
Algorithms, Performance, Theory

Keywords
Heterogeneity, majorization, scheduling

1. INTRODUCTION
Suppose we have a parallel system whose nodes havecapaci-

ties, such as processing speed, bandwidth, memory, or disk space.
How does the performance of the system depend on the amount
of heterogeneity of its capacity distribution?More concretely, in
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distributed systemA, all nodes have the same capacity; systemB
has the same total capacity but there is higher variance among the
nodes’ capacities. Which system do we expect to perform better?

Of course, the answer depends on the particular system and its
notion of performance. If we are in the business of routing packets
in an overlay network and capacity corresponds to the numberof
neighbors a node can maintain, we might construct a logarithmic-
diameter network in the homogeneous case but a star graph with
diameter2 in the extreme case where one node has most of the
system’s capacity. Thus, the latency of routes through the overlay
network will be lower in the latter, more heterogeneous scenario.
On the other hand, consider a cluster running a simulation consist-
ing of ten parallel jobs which have equal computational require-
ments. Ten 1000 MHz processors can complete the jobs almost
twice as fast as the more heterogeneous system consisting ofnine
1100 MHz processors and one 100 MHz processor.

In many cases, basic intuition or observing behavior at extreme
points — such as in the overlay example above — gives a good
sense of whether higher variation in capacity improves performance.
However, back-of-the-envelope calculations cannot address the fol-
lowing:

1. Precise justification of intuition. For example, when pro-
cessing a batch of jobs, having fewer fast processors is typi-
cally assumed to be better than more slow processors, when
the total speed is constant. The example of a 10-processor
cluster above shows a case where that intuition is not quite
correct. By how much can this intuition possibly be violated?

2. Comparison across systemsto gain insight about the struc-
ture of optimization problems. What characteristics of a prob-
lem determine whether heterogeneity is generally good for
it? For that matter, what precisely does it mean for hetero-
geneity to have a generally good effect?

These questions are best answered in a quantitative framework which
can model the effect of heterogeneity on many systems. Although
some particular systems have been studied (see Section 3), to the
best of our knowledge a general model has not been proposed. In
this paper, we propose one such model and show several basic re-
sults within it.

Model. After using majorization to quantify “amount of hetero-
geneity”, we study what we call theprice of heterogeneity. Infor-
mally, a cost functiong(C,W ) describing a system’s performance
has price of heterogeneityα when for any workloadW and ca-
pacitiesC, cost cannot increase by more than a factorα if C be-
comes arbitrarily more heterogeneous. In the job scheduling exam-
ple,W specifies the job lengths,C specifies the processor speeds,
andg(C,W ) is the minimum completion time of any schedule of
jobsW on processorsC.



Problem Price of heterogeneity Reference
Minimum makespan scheduling = 2− 1/n Theorem 2

Scheduling on related machines, various objective functions O(1) Corollaries 1, 2
Precedence constrained scheduling, general jobs O(log n) Corollary 3

Precedence constrained scheduling, unit-length jobs ≤ 16 Corollary 6
Scheduling with release times, job lengths∈ [1, k] Ω(k) Theorem 5

Minimum network diameter, bounded degree ≤ 2 Theorem 6

Table 1: Bounds on the price of heterogeneity shown in this paper.

The price of heterogeneity characterizes the worst-case increase
in cost due to increasing heterogeneity, which can address Ques-
tion 1 above. For example, if heterogeneity always helps, then the
price of heterogeneity of the cost function is1. At a high level,
we could hope to classify a parallel system’s price of heterogene-
ity as being eitherconstant, in which case increasing heterogeneity
can never be much of a disadvantage, orunbounded, indicating that
increasing heterogeneity can be quite detrimental. By classifying
multiple systems in this way, we may begin to answer Question2.

An important special case of our model is when capacities are
restricted so that there arem nodes of capacityn/m andn−m of
capacity0. In this case, increasing heterogeneity (according to the
definition we will give in Section 2) corresponds to decreasing m,
and thus decreasing parallelism. Our upper bounds can be viewed
as bounding the maximum benefit of additional parallelism, at fixed
total capacity.

In addition to providing theoretical insight, if we have a cost
function that is a good model of a real system, a practical applica-
tion of the price of heterogeneity is to provide test cases that are
provably close to the worst possible capacity distribution. This
is useful, for example, when testing a system which the designer
wishes to be deployable in a wide range of (possibly unknown)ca-
pacity distributions. In Section 9, we will discuss one suchcase,
load balancing in distributed hash tables.

Results.Our bounds on the price of heterogeneity are summarized
in Table 1. In this paper we focus on scheduling problems, butwe
also give a network design example to show the generality of the
model. Most of the upper bounds are obtained via what we call the
Simulation Lemma, which shows how to use one set of capacities
to “simulate” another. The Simulation Lemma may also be useful
in contexts other than the price of heterogeneity; for example, it
is easy to show that for any fixed set of capacities, as job lengths
become arbitrarily more homogeneous, optimal makespan canin-
crease by a factor of2 and no more.

In addition, we show two lower bounds. First, we observe thatif
jobs have release times before which they cannot be executedand
we wish to minimize average or maximum job latency, the priceof
heterogeneity isΩ(k) when job sizes are in[1, k]. Second, we sepa-
rate precedence constrained scheduling (PCS) from the scheduling
problems with known constant price of heterogeneity by showing
that the simulation method can lengthen makespan by a factorof
Θ(n), intuitively because of dependencies between jobs on differ-
ent processors. An interesting and apparently nontrivial open ques-
tion is whether PCS hasΘ(1) price of heterogeneity.

These results show that increasing heterogeneity can’t be much
of a disadvantage for basic scheduling problems, but the combina-
tion of timing constraints and variable job lengths can produce a
complex dependence on the capacity distribution.

The rest of this paper is as follows. We present our model in
Section 2 and related work in Section 3. We introduce the Simula-
tion Lemma in Section 4, and bound the price of heterogeneityof

various cost functions in Sections 5-8. In Section 9, we discuss a
scenario in which our results provide a worst case for testing. We
conclude in Section 10.

2. MODEL
To define what it means for one capacity distributionC′ to be

more heterogeneous than another distributionC, we use thema-
jorizationpartial order. Given two nonnegative vectorsC = (c1, . . . ,
cn) andC′ = (c′1, . . . , c

′
n), we say thatC′ majorizesC, written

C′ � C, when

∀k

k
X

i=1

c′[i] ≥

k
X

i=1

c[i] and
n
X

i=1

c′i =

n
X

i=1

ci,

wherec[i] denotes theith largest component ofC.
Majorization is a standard way to compare the imbalance of dis-

tributions; see [13] for a general reference. Some of its properties
are as follows. Restricted to vectors with

Pn
i=1 ci = n, majoriza-

tion defines a partial order whose bottom⊥ = (1, . . . , 1) is the
homogeneous distribution, and whose top⊤ = (n, 0, . . . , 0) is the
centralized distribution. Two other measures of heterogeneity are
variance var(C) = 1

||C||

Pn
i=1(ci−||C||/n)2 and negative entropy

−H(C) =
Pn

i=1 ci log2 ci. Although variance and entropy dis-
agree on the ordering of vectors in general, majorization isconsis-
tent with both, in the sense thatC′ � C implies var(C′) ≥ var(C)
and−H(C′) ≥ −H(C).

For our purposes, acost functionis a functiong : C × W →
R

+, whereC ⊆ R
n is the set of legal node capacity vectors and

W is arbitrary additional problem-specific information. Typically,
g(C,W ) will represent the cost of the optimal solution to some
combinatorial problem with node capacitiesC and workloadW .
However, one could also examine, for example, the cost of approx-
imate solutions produced by a particular algorithm. We can now
define our main metric.

DEFINITION 1. Theprice of heterogeneity(PoH) of a cost func-
tion g : C ×W → R

+ is

sup
W,C,C′ : C�C′ , W∈W

g(C′, W )

g(C,W )
.

A PoH of 5/4 would say that for any capacitiesC andC′ � C,
distribution C′ can handle any workload with cost at most25%
higher thanC. That is, as heterogeneity increases, performance
cannot get much worse.1

1Price of heterogeneity can also be viewed as a generalization of
Schur concavity. A functiong is Schur concavewhenC′ � C
impliesg(C′) ≤ g(C). One could say thatg is α-approximately
Schur concavewhenC′ � C implies g(C′) ≤ α · g(C). Then
g(C,W ) has PoHα if and only if g(C,W ) is α-approximately
Schur concave inC for everyW .



Note that an assumption of this model is that the nodes have the
same “type” of capacity, so two nodes with the same amount of
capacity are equivalent.

3. RELATED WORK
In several systems, it has been recognized that a heterogeneous

capacity distribution is significantly preferable to a homogeneous
one. For example, heterogeneity in the participating nodes’ band-
width constraints can reduce route lengths in distributed hash tables
(DHTs) [9, 15] and in unstructured peer-to-peer file sharingsys-
tems [4], and can improve load balance in DHTs [8]. In supercom-
puting, designs using a few fast processors and many slower pro-
cessors have been evaluated against homogeneous systems [2, 3].
These studies generally look at specific capacity and workload dis-
tributions. Our model is complementary since we examine the
worst case over all capacity distributions and workloads.

Closer to our model, Yang and de Veciana [20] studied a branch-
ing process model of a BitTorrent-like content distribution system
in its transientphase, such as during the arrival of a flash crowd.
The analysis showed that expected service capacity increases as
the distribution of node bandwidth becomes more heterogeneous,
in the sense of increasing convex orderings (which generalize ma-
jorization to random variables).

As mentioned in the introduction, an important special caseof
our model is when capacities are restricted so that there arem
nodes of capacityn/m andn−m of capacity0. Price of diversity
upper-bounds the increase in cost asm decreases. In queuing the-
ory, a well known result is that among M/M/m queues (m servers
of speedn/m with exponential job service times),m = 1 is opti-
mal [17]. However, for various other job service time distributions,
mean response time may be minimized whenm > 1 (see [19] and
the references therein). Intuitively, this is because having several
servers keeps many small jobs from being held up by one big job.
This corresponds to the super-constant price of heterogeneity of
scheduling with release times (Section 7).

4. THE SIMULATION LEMMA
A natural way to show that the heterogeneous capacitiesC′ are

as good as the more homogeneous capacitiesC is to “simulate”C
usingC′. More specifically, we would assignC-nodes toC′-nodes
according to somef : {1, . . . , n} → {1, . . . , n}, and show that
eachC′-nodei can “simulate” the work previously performed by
the subset ofC-nodesf−1(i). For most natural cases, a prerequi-
site for this technique to succeed is that the total capacitysimulated
by eachC′-nodei is not much more than its own capacityc′i:

DEFINITION 2. For capacity vectorsC and C′ � C, an α-
simulation ofC with C′ is a functionf : {1, . . . , n} → {1, . . . , n}
such that

P

j∈f−1(i) cj ≤ αc′i, for all i.

It is NP-complete to decide whether a1-simulation exists (see Ap-
pendix A). The main result of this section is that a(2 − 1/n)-
simulation always exists.

LEMMA 1. (Simulation Lemma) For any capacity distributions
C andC′ � C, a (2− 1/n)-simulation exists and can be found in
timeO(n log n).

The bound is exactly tight, as exhibited in Figure 1. In the remain-
der of this section, we prove the lemma, and then use it to provide
sufficient conditions for a cost function to have constant price of
heterogeneity (Theorem 1). In later sections, we will see that a
number of optimization problems satisfy those conditions.

PROOF. Let α = 2 − 1
n

. The following algorithm produces
anα-simulationf : {1, . . . , n} → {1, . . . , n}. Begin by sorting
the two capacity vectors in decreasing order. Maintain a vector of
available capacitiesA = (a1, . . . , an). Initially, A = (0, . . . , 0).
For eachi = 1 to n, perform the following steps:

1. Setai ← c′i.

2. Letj ∈ {1, . . . , i} be such thataj ≥ ci/α.

3. Setf(i)← j andaj ← aj − ci/α.

The algorithm can be implemented inO(n log n) time by storingA
in a heap and takingj to be the maximum element. It remains to be
shown that (1) in each iteration, a suitablej satisfyingaj ≥ ci/α
can be found, and (2) the resultingf is anα-simulation.

We show (1) first. After Step 1 of theith iteration, the total ca-
pacity that has been added toA is

Pi
k=1 c′k, and the total capacity

that has been subtracted is
Pi−1

k=1 ck/α. So the total capacity re-
maining inA after Step 1 of theith iteration is

i
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X
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1
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Moreover, at stepi there are≤ i positive entries ofA, so some entry
must be≥ ci

iα
+
`

1− 1
α

´

ci. Plugging ini ≤ n andα = 2− 1/n,
this expression reduces toci/α. Thus, a suitablej can be found.

We now show (2),i.e., that
P

i∈f−1(j) ci ≤ αc′j for eachj. Note
thataj first became positive by settingaj = c′j . Each time we set
f(i) ← j for somei, the capacity assigned to entryj increased
by ci, andaj decreased byci/α. Sinceaj ≥ 0 always, the total
capacity assigned toj is≤ αc′j .

THEOREM 1. Suppose a cost functiong satisfies the following
properties:

1. g(C,W ) is nonincreasing in each component ofC;

2. g(C,W ) is a symmetric function of the components ofC;

3. g( 1
2
· C, W ) ≤ β · g(C,W ) for all C andW ; and

4. g(D, W ) ≤ g(C,W ), whereD is formed fromC by replac-
ing componentsi andj with ci + cj and0, respectively, for
anyC, W , i, andj.

Then the price of heterogeneity ofg is≤ β.

PROOF. Let C andC′ be capacity distributions such thatC′ �
C. We must showg(C′, W ) ≤ β · g(C,W ). Let f be a2-
simulation as given by the Simulation Lemma, in which, for each i,

2c′i ≥
P

j∈f−1(i) cj
def
= ei. Let E = (e1, . . . , en). We have

g(C′, W ) ≤ β · g(2C′, W ) (Property3)

≤ β · g(E,W ) (Property 1 and2C′ ≥ E)

≤ β · g(C,W ) (repeated application of

Properties 2 and 4).



...

...

...

...

2
α

1

C ′
=

C =

1

2
α

1
α

...

...

...
...

n
α

1

C ′
=

C =

1

1
α

1
α

Figure 1: Two families of examples showing the tightness of the Simulation Lemma. Hereα = 2 − 1/n. In both examples, every
assignment ofC to C′ gives some element ofC′ at leastα times its capacity.

5. SCHEDULING ON RELATED MACHINES
We now apply the results of the previous section to the problem

of scheduling on related machines. We are given a setJ of jobs,
each with a lengthℓ(j), and ann-vectorC of processor speeds. We
must schedule the jobs on ourn machines so that each machine is
executing at most one job at any time. Machinei completes each
job j in timeℓ(j)/ci, so if it is given jobsJi, it can finish its jobs in
timeti = ℓ(Ji)/ci, whereℓ(J) :=

P

j∈J ℓ(j). The most common
measure of the cost of a schedule is itsmakespan: the time until the
last job (equivalently, processor) finishes. We begin by analyzing
the price of heterogeneity of the cost functiong(C,J), defined as
the minimum makespan of any schedule of jobsJ on processorsC
(Section 5.1). We then generalize that result (Sections 5.2and 5.3)
before noting a complementary property of the distributionof job
lengths (Section 5.4).

5.1 Minimum Makespan Scheduling
This section illustrates the basic technique we will use in later

bounds on the PoH. For concreteness of exposition, we use theSim-
ulation Lemma directly, rather than Theorem 1. Unlike our later
results, in this case we provide matching lower and upper bounds.
The lower bound transfers from that of the Simulation Lemma (Fig-
ure 1) because both the lemma and the makespan consider the max-
imum amount of work assigned to a machine.

Before giving the main theorem of this section, we introducea
simple but important fact:

FACT 1. For any schedule of jobs on processors of speedsc1, . . . , ck

(“parallel schedule”), there is a serial schedule of those jobs on a
single processor of speedc1 + · · · + ck (“serial schedule”) such
that each job completes before or at the same time as it did in the
parallel schedule.

PROOF. Schedule jobs on the single processor in order of their
completion time in the parallel schedule, with ties broken arbitrar-
ily. Consider any jobj and suppose its completion time in the paral-
lel schedule ist. In the parallel schedule, the total length of all jobs
completed by timet must be≤

Pk
i=1 t ·ci. Then the new schedule

completes these in time≤
“

Pk
i=1 t · ci

”

/(c1+· · ·+ck) = t.

THEOREM 2. The PoH of minimum makespan scheduling is2−
1/n.

PROOF. We begin with the upper bound. Given any machine
speedsC andC′ � C, and any schedule of jobsJ on machinesC
with makespanM , it is sufficient to produce a schedule of the jobs
on theC′-machines with makespan2M .

Suppose jobsJk ⊆ J are scheduled on machinek in the C-
schedule. Letf : C → C′ be the mapping defined by the Simu-
lation Lemma. For eachk, schedule jobsJk on C′-machinef(k).
Now let F (i) := f−1(i) be the set ofC-machines mapped toC′-
machinei, and lets =

P

k∈F (i) ck be the total speed of these
machines. By Fact 1, a machine of speeds could complete the jobs
assigned toC′-machinei in time≤M . By the Simulation Lemma,
c′i ≥ s/(2−1/n), so eachC′-machinei completes its jobs in time
≤ (2− 1/n)M .

To show the lower bound, we can use either pair of capacity
vectors in Figure 1, in both cases withn unit-length jobs. The
reader can verify thatOPT (C,J) = 1, but OPT (C′, J) ≥ 2 −
1/n.

5.2 General objective functions of job
completion times

Fact 1 is actually much stronger than was necessary to bound
the makespan: it bounds the completion time ofall jobs, not just
the last. This property lets us analyze a large class of objective
functions.

Leth : R
m → R

+ be a function of the job completion times. We
sayh isβ-boundedwhenh(2t) ≤ β ·h(t) for all t. Examples of2-
bounded objective functions sometimes used to evaluate thequality
of a schedule are the average job completion time and theLp-norm

of the job completion times,i.e., h(t) =
`
Pm

i=1 tp
i

´1/p
, for p ≥ 1.

The squared completion time,h(t) =
P

i t2i , is 4-bounded.

COROLLARY 1. Supposeh : R
m → R

+ is a nondecreasing,
β-bounded function of the job completion times. Letg(C,J) be
the minimal value ofh over all schedules of jobsJ on machinesC.
Theng has PoH≤ β.

PROOF. We apply Theorem 1. Properties 1 through 3 follow
directly from those onh and the fact that completion times are in-
versely proportional to processor speed. Property 4 follows from
Fact 1.

Note that the above corollary applies even in the case thath is
not symmetric, as in the case of weighted average completiontime
with some jobs weighted more than others.

5.3 General objective functions of machine
completion times

We may similarly consider bounded functionsh of themachine
completion times. In this case we require thath is a symmetric
function of its arguments. The following follows easily from Corol-
lary 1 by considering the completion time of the last job on each
machine. We omit the proof.



COROLLARY 2. Supposeh : R
n → R

+ is a nondecreasing,
β-bounded function of the machine completion times. Letg(C, J)
be the minimal value ofh over all schedules of jobsJ on machines
C. Theng has PoH≤ β.

An interesting open problem would be to obtain tighter bounds for
theLp-norm of machine completion times as a function ofp. For
the L1-norm in particular, the PoH is1 since the optimal assign-
ment places all tasks on the fastest machine, and that machine is
always at least as fast inC′ in C.

5.4 A complementary result
We observe that the Simulation Lemma can also be used to de-

scribe the effect of heterogeneity of job length distributions. The-
orem 2 showed that as capacitiesC become more heterogeneous,
the minimum makespanOPT (C, J) can’t get much worse, for any
fixed job lengthsJ . The following theorem says that asthe job
lengthsbecome morehomogeneous, the makespan can’t get much
worse, for any fixednode capacities.

THEOREM 3. LetJ andJ ′ be vectors of job lengths withJ ′ �
J . For anyC, OPT (C,J) ≤ 2 · OPT (C,J ′).

PROOF. Let f : J → J ′ be a2-simulation, which exists by the
Simulation Lemma. Then ifJ ′-job j is executed on machinei in
the optimal schedule, we place theJ-jobs f−1(j) on machinei.
Sincef is a2-simulation, this at most doubles the total length of
jobs placed oni, and hence the completion time of any machine at
most doubles.

6. PRECEDENCE CONSTRAINED
SCHEDULING

In the precedence constrained scheduling (PCS) problem [7], we
are given node capacitiesC, a setJ of jobs, a lengthℓ(j) for each
j ∈ J , and a partial order≺J on J . We must schedule the jobs
on the nodes as before, with the added constraint that ifj1 ≺J j2
then jobj1 must complete by the timej2 begins. The cost is the
minimum makespan of such a schedule.

The key difficulty in transferring the simulation techniqueto PCS
lies in adapting Fact 1. When merging the work of two machinesof
capacitiesc1 andc2 into one machine of capacityc1 + c2, it is no
longer sufficient to show that thecompletion timeof each job does
not increase. To satisfy precedence constraints without a global
modification of the schedule, one would have to devise a schedule
for which thestart timeof each job does not decrease.

In fact, we show that the direct application of the simulation
technique cannot possibly succeed: having eachC′-machine per-
form the work of some subset of theC-machines can result in a
factor Θ(n) inflation of the makespan(Theorem 4). Intuitively,
mapping severalC-machines onto oneC′-machine reduces paral-
lelism. The result is that a sequence of short jobs must occasionally
be interrupted by long jobs, during which time other machines have
to remain idle while waiting for the short jobs to finish.

However, the simulation technique can be applied in an LP re-
laxation of PCS [5], intuitively because that LP lets a single ma-
chine run multiple jobs in parallel. This produces anO(log n) up-
per bound on the PoH(Corollary 3) . We can also show an analog
of Fact 1 in the special case that job lengths vary by at most a con-
stant factor(Corollary 6) .

6.1 A lower bound for the simulation
technique

The following theorem shows that having eachC′-machine per-
form the work of some subset of theC-machines can result in a

Jobs

...

1

2

...

n

Nodes

k

k2

kn

Figure 2: An instance of PCS on which the simulation tech-
nique fails.

factorn/4 inflation of the optimal makespan. This is tight within a
factor of4, because we can always schedule jobs ononly the fastest
machine (which in theC′-machines is at least as fast as in theC-
machines), resulting in a factor≤ n increase in makespan.

THEOREM 4. There exist capacity vectorsC andC′ � C and
an instance(C, J, ℓ,≺J ) of precedence constrained scheduling with
an optimal schedule of makespanOPT which maps jobs to ma-
chines according toh : J → {1, . . . , n}, such that any schedule
for instance(C′, J, ℓ,≺J) which places jobi on machinef(h(i))
for somef : {1, . . . , n} → {1, . . . , n} must have makespan≥
1−o(1)

4
· n · OPT .

PROOF. We takeC = (1, . . . , 1) andC′ = (2, . . . 2, 0, . . . , 0),
i.e. n/2 machines of speed2. The problem instance is as follows.
We haven groups of jobs, indexed1 throughn. Groupi consists of
kn−i jobs of lengthki. We choose a convenientk later. The opti-
malC-schedule places groupi on machinei, as shown in Figure 2.
The set of precedence constraints is the maximum set for which the
above schedule is valid. That is, we have a constraintj1 → j2 iff
job j1 completes by the time jobj2 starts. Note that the resulting
makespan on theC-machines iskn, and this is optimal since no
machine is idle until all jobs are complete.

Now suppose that we map theC-machines toC′-machines ac-
cording to somef : {1, . . . , n} → {1, . . . , n}, and we restrict
ourselves to executing the group-i jobs onC′-machinef(i) as in
the theorem statement. We seek to lower-bound the makespan of
any such schedule.

Define a group asobstructingif it is assigned byf to a machine
which is also assigned a group of smaller jobs. Letg1, . . . , gm be
the obstructing groups, withg1 ≤ · · · ≤ gm. Notem ≥ n/2 since
there aren groups and onlyn/2 machines with positive capacity.
Let t(gi) be the time spent executing groupgi during which no job
from any larger obstructing group is being executed. Note that the
makespan of the schedule is≥

Pm
i=1 t(gi). We now lower-bound

eacht(gi). First we need a key fact:

FACT 2. While any job from an obstructing groupgi is execut-
ing, at most2kgi−j−1 jobs in any smaller groupj < gi can execute
on any other machine.

PROOF. Let x be agi job, and letD be the set of group-j jobs
executed on any machine duringx. We wish to upper-bound|D|.

Sincegi is obstructing, there is some smaller group on the same
machine. LetY be the set of those smaller jobs. To handle bound-
ary cases cleanly, augmentY with two “marker jobs”γ1 andγ2,
both of zero length, withγ1 at the beginning of the chain of depen-
dencies inY andγ2 at the end. We may assume w.l.o.g. thatγ1 is
the first job executed on its machine andγ2 is the last.



Since a machine can only execute one job at a time, there exist
two jobs y1, y2 ∈ Y such thaty1’s immediate successor isy2,
y1 is been executed beforex, andy2 is executed afterx. Thus,
sincey1 has completed whenx starts,D cannot include any jobs
on whichy1 depends. Similarly, sincey2 has not yet completed,
D cannot include any jobs which depend ony2. Thus,D includes
only group-j jobs that, according to the precedence constraints, can
execute concurrently withy1 or y2. The total length of such jobs is
at most the length ofy1 plus the length ofy2, which is≤ 2kgi−1.
Since each group-j job has lengthkj , we have|D| ≤ 2kgi−1/kj =
2kgi−j−1, as desired.

Now consider some obstructing groupgj . By Fact 2, the number
of gj-jobs executed during a job of lengthkgi is ≤ 2kgi−gj−1.
Since there arekn−gi jobs of lengthkgi , the total number ofgj-
jobs executed during longer obstructing jobs is

m
X

i=j+1

kn−gi · 2kgi−gj−1 ≤ 2

n
X

i=j+1

kn−gj−1 ≤ 2n ·kn−gj−1.

Since there arekn−gj group-gj jobs to begin with, the number
of group-gj jobs not executed during longer obstructing jobs is
≥ kn−gj − 2n ·kn−gj−1 = (1− o(1))kn−gj for k = n2 (recallk
is arbitrary). The time per job iskgj /2 since allC′-machines have
speed2. Thus, we have thatt(gj) ≥ (1 − o(1))kn−gj · kgj /2 =
1
2
(1− o(1))kn = 1

2
(1− o(1)) ·OPT .

Since this is true for all obstructing groups, we have that the
makespan of theC′-schedule is at least

Pm
j=1 t(gj) ≥ m · 1

2
(1−

o(1)) · OPT . As noted above,m ≥ n/2, which proves the theo-
rem.

6.2 Upper bounds
We begin with an upper bound for the general case of PCS. Chu-

dak and Shmoys [5] gave a linear programming relaxation of PCS
which formed the basis of theirO(log n)-approximation algorithm,
which is the best known. The full proof appears in Appendix B.

COROLLARY 3. The PoH of precedence constrained schedul-
ing isO(log n).

PROOF. (Sketch) The LP relaxation does not include the con-
straint that a machine executes at most one job at a time. It isthus
easy for one fast machine to simulate the work of several slowma-
chines, so we can apply the Simulation Lemma to show that the
optimal solutions to the LP haveO(1) PoH. By the main result
of [5], the optimal solution to PCS is at mostO(log n) times the
LP’s solution.

We next note several special cases where bounds can be ob-
tained using straightforward techniques. The first theoremsays that
PCS has a property which is necessary, but not sufficient, forO(1)
PoH: the homogeneous distribution is within a constant factor of
the worst case.

COROLLARY 4. LetOPT (C′, W ) be the optimal makespan of
an instanceW of PCS with capacitiesC′. ThenOPT (C′, W )
≤ 4 ·OPT (⊥, W ) for anyC′, where⊥ = (1, . . . , 1).

PROOF. (Sketch)Produce distributionD from C′ by setting to
0 any elementi with c′i ≤

1
2
. Clearly,OPT (C′, W )≤ OPT (D, W ).

Schedule the jobs onD using Graham’s classic list scheduling al-
gorithm [10]; the standard lower bounds show a2-approximation
of OPT (D, W ), but also apply toOPT (⊥, W ) at an additional
factor2 increase in schedule length.

COROLLARY 5. Restricted to instances with a constant number
of distinct machine speeds, PCS has PoHO(1).

PROOF. Follows from the result of [5] that the optimal values of
the LP relaxation are withinO(1) of the true optimum when there
areO(1) distinct machine speeds.

COROLLARY 6. The PoH of precedence constrained schedul-
ing with unit-size jobs is≤ 16.

PROOF. See Appendix C.

7. SCHEDULING WITH RELEASE TIMES
The last scheduling problem we consider isscheduling with re-

lease times. We must produce an offline schedule of jobsJ on
machinesC as in scheduling on related machines, except that we
are also given for each jobj ∈ J arelease timer(j) before whichj
may not be executed. Our cost functiong(C, (J, r)) is the minimal
total response timeof any schedule of jobsJ with release timesr
on machinesC. We define total response time as the sum over all
jobsj of the timej spends in the system normalized by its length:
t(j)+ℓ(j)/c−r(j)

ℓ(j)
, wheret(j) is the start time of jobj andc is the

capacity of the machine on which it is run.
Similar release time constraints appear in Garey and Johnson [7],

but we borrow the response time objective from queuing systems
such as [19], in which it is known that decreasing parallelism —
i.e., increasing heterogeneity — can significantly increase response
time (see discussion in Section 3).

It is easy to observe that even moving from two machines to
one can be quite disadvantageous. As in PCS, reduced parallelism
causes short jobs to be held up by long jobs. The full proof appears
in Appendix D.

THEOREM 5. The price of heterogeneity of scheduling with re-
lease times with job sizes in[1, k] is Ω(k).

PROOF. (Sketch)Let C = (1, 1) andC′ = (2, 0). SupposeJ
consists ofmk jobs of size 1 arriving at times0, 1, . . . , mk−1 and
m jobs of sizek arriving at times0, k, 2k, . . . , mk− k. These can
be scheduled as they arrive on theC-machines, for a total response
time of Θ(mk). Now consider scheduling these jobs on the single
C′-machine of nonzero capacity. EitherΘ(m) long jobs are de-
layed for timeΘ(km) until all short jobs are complete, or each of
Θ(m) long jobs delaysΘ(k) short jobs for timeΘ(k) each. Pick-
ing m = k2, in either case total response time isΩ(k4), compared
with Θ(k3) for theC-machines.

8. NETWORK CONSTRUCTION
In designing a communication network, a typical goal is to mini-

mize the number of hops between any two nodes, subject to bounds
on the maximum number of links incident to each node. For exam-
ple, in placing physical links between nodes of a supercomputer
or cluster, each node may have a limited number of network ports.
In an overlay multicast network, each link may involve forwarding
a stream of multicast data, so the degree of a node would be lim-
ited by its available bandwidth. Constructing such networks with
low maximum latency between nodes involves a classic tradeoff [6]
between degree and diameter.

In this section we will study how the optimal diameter changes
as the degree bounds become more heterogeneous. Note that in
the following formulation, we do not make use of the “workload”
parameter of the cost function.



DEFINITION 3. (Minimum Graph Diameter) Given positive in-
teger degree boundsC = (c1, . . . , cn), MinDiam(C) is the min-
imum diameter of a graphG in whichdeg(i) ≤ ci for all nodes
i.

THEOREM 6. The price of heterogeneity ofMinDiam is≤ 2.

PROOF. (Sketch)We’ll show MinDiam(C′) ≤ TREE(C′)
≤ TREE(C) ≤ 2 · MinDiam(C), whereTREE(C) is the
diameter of the least-height tree with degree boundsC. The first
inequality is obvious, and the third follows from the fact that the
diameter of the best graph is at least the height of the best tree,
which is half the tree’s diameter.

The second inequality says thatTREE has PoH1. This can be
shown as follows. By an interchange argument, in the optimaltree,
if ci ≥ cj then level(i) ≤ level(j), where level(·) denotes distance
from the root. We use the standard fact that ifC′ � C thenC′ can
be produced fromC by a sequence of transfers of capacity from
lower- to higher-capacity nodes [13]. If we transfer one unit of
capacity (a unit bound on the degree) fromj to i, whereci ≥ cj ,
then we can transfer the associated subtree as well, which cannot
increase the height of the tree since level(i) ≤ level(j).

We did not apply the Simulation Lemma because the capacities
specify hard constraints which cannot be violated (Condition 3 of
Theorem 1 is not satisfied). Note that one could instead seek to
minimize degrees subject to an upper bound on the diameter, in
which model Theorem 1 does show aO(1) PoH.

9. A WORST CASE FOR TESTING
In this section, we discuss how the price of heterogeneity can

provide a worst case for testing, using load balancers for distributed
hash tables (DHTs) as an example.

Most DHTs have been designed without knowledge of their even-
tual adoptive environment, which might be a homogeneous cluster,
a worldwide managed system like PlanetLab [1] (whose nodes vary
in memory and disk space by a factor of four and eight, respec-
tively2), or a peer-to-peer system like Gnutella (whose nodes vary
in bottleneck bandwidth by at least three orders of magnitude [16]).
With such a wide range of target deployments, it may be valuable
to test under a capacity distribution which would bound the sys-
tem’s performance inanydeployment scenario. If we have a cost
functiong(C,W ) which models the system well, and ifg has PoH
α, then the system’s cost under homogeneous capacities is within
a factorα of the worst case, for any workloadW , any fixedn, and
any fixed total capacity. We next argue that in the case of DHT load
balancing, it is possible to produce such a cost functiong which is
a reasonable model of the system.

Several proposed DHT load balancers [8,12] assign ownership of
objects stored in the system by first partitioning the objects among
virtual nodes, and then placing virtual nodes on physical nodes.
Each virtual node has an associated load, such as the rate of incom-
ing requests for objects stored on it. The goal is to assign virtual
nodes to physical nodes in a load-balanced way.

More specifically, suppose we desire to minimize the mean la-
tency experienced by users of the system. Define the load on a
virtual node as the number of usersui connected to it, and model
the latency experienced by a user connected to physical nodei as
ui/ci, whereui is the total number of users connected toi. This
problem can be modeled by scheduling on related machines with

2As of February 16, 2005, CoMon [14] reported memory between
0.49 and 1.98 GB and disk size between 32.7 and 264.7 GB among
PlanetLab nodes. Data was unavailable for some nodes.

the objective of minimizing the square of the completion time of
each machine. Corollary 2 implies that this problem has PoH4.
If the DHT load balancer finds assignments of virtual to physical
nodes that are within a factorα of optimal, then mean latency will
be within a factor4α of its worst under homogeneous capacities,
for any pattern of load on the virtual servers.

10. CONCLUSION
We have taken the initial steps toward analyzing the effect of het-

erogeneity in distributed systems. There are a number of directions
for future research. First, our bounds could be tightened; resolv-
ing the question of whether precedence constrained scheduling has
constant price of heterogeneity is of particular interest.Second, one
could analyze other cost functions, such as scheduling withran-
dom, rather than adversarial, jobs; resource constrained schedul-
ing [7]3; or the Nash equilibria of network congestion and load bal-
ancing games [11,18]. Regarding the latter, note that if a game has
price of anarchyα and its social optima have price of heterogeneity
β, then the Nash equilibria have price of heterogeneity≤ αβ, but
better bounds may be possible. Additionally, Suri et al [18]have
asked whether the price of anarchy itself decreases when machine
speeds in their load balancing game become heterogeneous. Our
framework may have relevance in answering that question.

A third direction is to broaden our model. Extending the notion
of heterogeneity to allow nodes to have multiple kinds of capac-
ity, or in general more than one attribute, may greatly broaden its
applicability.
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APPENDIX

A. NP-COMPLETENESS OF SIMULATION

Define the problem SIMULATION as follows: givenα ≥ 1, C,
andC′ � C, is there anα-simulation ofC with C′?

FACT 3. SIMULATION is NP-complete.

PROOF. Clearly the problem is in NP. To show NP-hardness we
reduce from PARTITION [7]. In that problem, we are given a set
S of n positive integers, and must decide whether there exists an
R ⊂ S for which

P

r∈R r = 1
2

P

s∈S s.
Normalize the elements ofS so that

P

s∈S s = n. Setα = 1,
C = S andC′ = (n

2
, n

2
, 0, . . . , 0). If C′ � C, then(α, C, C′) is

a valid instance of SIMULATION , and it is easy to verify thatS can
be partitioned in half iff there exists a1-simulation.

If C′ 6� C, then
Pk

i=1 c′[i] <
Pk

i=1 c[i] for somek, wherec[i]

denotes theith largest component ofC. SinceC′ has only two
positive elements, this must happen fork = 1, which implies that
c1 > n

2
. In that case, there can be no perfect partition ofS, so we

can map onto any “no” instance of SIMULATION .

B. PROOF OF COROLLARY 3
In the mixed-integer program of Chudak and Shmoys [5], ma-

chines are divided into groups of equal speed, and jobs are assigned

to machine groups. For our purposes, we may assume w.l.o.g. that
all machines have different speeds, in which case the program be-
comes the following. Variablexkj ∈ {0, 1} represents the assign-
ment of jobj to machinek, andt(j) represents the completion time
of job j. We seek to minimize the makespanD subject to

n
X

k=1

xkj = 1 ∀j ∈ J (1)

1

ck

n
X

j=1

ℓ(j)xkj ≤ D ∀k : ck > 0 (2)

xkj = 0 ∀k : ck = 0 (3)
n
X

k=1

ℓ(j)xkj

ck
≤ t(j) ∀j (4)

n
X

k=1

ℓ(j)xkj

ck
≤ t(j)− t(j′) ∀j′ ≺J j (5)

t(j) ≤ D ∀j, (6)

which can be interpreted as requiring that (1) each job is on some
machine, (2) each machine finishes by timeD, (3) zero-capacity
machines aren’t used, (4) the completion time of each job is at least
its processing time, (5) precedence constraints are respected, and
(6) all jobs finish by timeD.

LetLP be the relaxation of this program wherexkj ∈ [0, 1], and
let LP (C), LP (C′), OPT (C), andOPT (C′) denote the optimal
values ofLP and of precedence constrained scheduling, with some
given capacitiesC andC′ � C and workload(J, ℓ,≺J). For any
C andC′ � C, we will showOPT (C′) ≤ O(log n) · LP (C′) ≤
2 ·O(log n) · LP (C) ≤ O(log n) ·OPT (C). The first inequality
is due to [5]; the last is due to the fact thatLP is a relaxation of
PCS. We show the second inequality by verifying the conditions of
Theorem 1 for the optimal values ofLP . Properties 1 through 3
follow directly, withβ = 2. For Property 4, let(xkj) be an optimal
solution toLP (C), and supposec′1 = c1 + c2, c′2 = 0, andc′k =
ck for i ∈ {2, . . . n}. We show(x′

kj) is a feasible solution for
LP (C′) with the same makespanD and completion timest(j),
where for allj, x′

1j = x1j +x2j , x′
2j = 0, and fork ∈ {2, . . . , n},

x′
kj = xkj . Constraints (1), (3), and (6) are obviously satisfied.

To verify (4) and (5), note that the time to process a job doesn’t
increase:

X

k

ℓ(j)x′
kj

c′k
= ℓ(j)

 

x1j + x2j

c1 + c2
+
X

k>2

xkj

ck

!

≤
X

k

ℓ(j)xkj

ck
.

Finally, (2) is satisfied since

1

c′1

n
X

j=1

ℓ(j)x′
1j =

1

c1 + c2

n
X

j=1

ℓ(j)(x1j + x2j)

≤ max

 

1

c1

n
X

j=1

ℓ(j)x1j ,
1

c2

n
X

j=1

ℓ(j)x2j

!

≤ D.

C. PROOF OF COROLLARY 6
Consider any capacitiesC, C′ � C, and jobsJ , and suppose the

best schedule on theC-machines executes jobj on machinem(j)
during [t(j), t(j) + 1/cm(j)). It is sufficient to show aC′ sched-
ule such that each job is executed within[16 · t(j), 16 · (t(j) +
1/cm(j))]. We first modify the schedule to make it more conve-
nient: round theC-machine speeds down to the nearest power of
2, and execute each jobj at a time which is a multiple of1/cm(j).



Each of these modifications at most doubles the length of the sched-
ule. Let C∗ and t∗(·) be the resulting capacities and execution
times.

Now let f be given by the Simulation Lemma. Consider the
machinesf−1(i) for somei. First, we merge each pair of machines
m1, m2 ∈ f−1(i) for which c∗m1

= c∗m2
by replacing them with

a machine of capacity2c∗m1
. We revise the execution time of each

job j ast∗(j) = t∗(j) if m(j) = m1, andt∗(j) = t∗(j) + 1
2
·

1/c∗m(1) if m(j) = m2. Completion times do not increase since
the machine capacity has doubled, and jobs do not overlap since
eacht∗(j) was a multiple of1/cm(j). Iterating this merging of the
machines inf−1(i), we are left withk machinesm1, . . . , mk of
unique power-of-two capacities21, . . . , 2k (some may be missing).

We can now schedule these machines’ jobs on a single machine
m of capacity2k+1 without changing the range of time in which
each job is executed, as follows. Break time into slots of length
1/2k+1, the length necessary to process one job on machinem. For
each jobj1 on machinemk, there are two available slots within its
scheduled time[t∗(j1), t∗(j1) + 1/2k]. Place each job in one of
these slots arbitrarily. For each jobj2 on machinemk−1, there still
remain two available slots within the larger time[t∗(j2), t∗(j2) +
1/2k−1], so we can recursively schedule the jobs on machinesm1,
. . . , mk−1 in the same manner.

The Simulation Lemma guaranteesc′i ≥
1
2

P

ℓ∈f−1(i) cmℓ
≥

1
2
· 2k. We used a machine of speed2k+1, so this increases the

makespan by a factor of4. Combining this with our earlier modifi-
cation of the schedule, the corollary follows.

D. PROOF OF THEOREM 5

PROOF. Let C = (1, 1) andC′ = (2, 0). SupposeJ consists
of mk jobs of size 1 arriving at times0, 1, . . . , mk − 1 and m
jobs of sizek arriving at times0, k, 2k, . . . , mk − k. These can
be scheduled as they arrive on theC-machines, for a total response
time of Θ(mk). Now consider scheduling these jobs on the single
C′-machine of nonzero capacity. For any schedule, we have one of
two cases:

In Case 1, fewer than1/2 of the large jobs are scheduled during
time [0, km]. Then≥ m/2 large jobs wait, on average, at least
time km/2 before they are executed. After normalizing by job
length, we have that the total response time of just these jobs is
≥ m

2
· km

2
· 1

k
= Θ(m2).

In Case 2, at least1/2 of the large jobs are scheduled during
time [0, km]. Ignoring all large jobs except these, we can produce
an optimal such schedule by settingt(j1) = r(j1) for each small
job j1, and inserting each large jobj2 at its specified timet(j2),
delaying the small jobs only as much as necessary. Since eachlarge
job takes timek/2 to execute on the machine of capacity2, we must
delay startingΘ(k) small jobs by timeΘ(k) each, so total response
time increases byΘ(k2). This occurs for each of≥ m/2 large jobs
that we insert, for a total slowdown of≥ Θ(mk2).

Finally, sincem is arbitrary, takem = k2 so in either case
total response time isΩ(k4), compared withΘ(k3) for the C-
machines.


