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Abstract

We propose a simple distributed algorithm for balancing
indivisible tokens on graphs. The algorithm is completely
deterministic, though it tries to imitate (and enhance) a
random algorithm by keeping the accumulated rounding
errors as small as possible.

Our new algorithm approximates the idealized pro-
cess (where the tokens are divisible) on important net-
work topologies surprisingly closely. On d-dimensional torus
graphs with n nodes it deviates from the idealized process
only by an additive constant. In contrast to that, the ran-
domized rounding approach of Friedrich and Sauerwald [8]
can deviate up to Ω(polylog n) and the deterministic algo-
rithm of Rabani, Sinclair and Wanka [23] has a deviation

of Ω(n1/d). This makes our quasirandom algorithm the first
known algorithm for this setting which is optimal both in
time and achieved smoothness. We further show that also
on the hypercube our algorithm has a smaller deviation from
the idealized process than the previous algorithms.

To prove these results, we derive several combinatorial
and probabilistic results that we believe to be of independent
interest. In particular, we show that first-passage probabil-
ities of a random walk on a path with arbitrary weights
can be expressed as a convolution of independent geometric
probability distributions.

1 Introduction

Load balancing is an important requisite for the efficient
utilization of computational resources in parallel and
distributed systems. The aim is to reallocate the load
such that at the end each node has approximately
the same load. Load balancing problems have various
applications, e.g., for scheduling [25], routing [4], and
numerical computation [26, 27].

Typically, load balancing algorithms iteratively ex-
change load along edges of an undirected connected
graph. In the natural diffusion paradigm, an arbitrary
amount of load can be sent along each edge at each
step [21, 23]. For the idealized case of divisible load, a
popular diffusion algorithm is the first-order-scheme by
Subramanian and Scherson [24] whose convergence rate
is fairly well understood by Markov chain theory [17].

However, for many applications the assumption of
divisible load may be invalid. Therefore, we consider
the discrete case where the load can be decomposed in
indivisible unit-size tokens. It is a very natural question
by how much this integrality assumption decreases the

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany
†University of Liverpool, Liverpool, United Kingdom
‡Simon Fraser University, Burnaby, Canada

efficiency of load balancing. In fact, finding a precise
quantitative relationship between the discrete and the
idealized case is an open problem posed by many
authors, e.g., [7, 8, 10, 11, 18, 21, 23, 24].

A simple method for approximating the idealized
process was analyzed by Rabani et al. [23]. Their ap-
proach is to round down the fractional flow of the ide-
alized process. One drawback of this deterministic ap-
proach is that it can end up in rather unbalanced states
(cf. Theorem 3.1). To overcome this problem, [8] ana-
lyzed a new algorithm based on randomized rounding.
On many graphs, this algorithm approximates the ideal-
ized case much better than the deterministic approach
of Rabani et al. [23]. A natural question is whether
this randomized algorithm can be derandomized with-
out sacrificing on its performance. We answer this ques-
tion to the positive, by introducing a quasirandom load
balancing algorithm which rounds up or down deter-
ministically such that the accumulated rounding errors
on each edge are minimized. Our approach follows the
concept of quasirandomness as it deterministically imi-
tates the expected behavior of its random counterpart.
That is, our algorithm imitates the property that round-
ing up and down the flow between two vertices occurs
roughly equally often by a deterministic process which
minimizes these rounding errors directly.

Our Results. We focus on two network topolo-
gies: hypercubes and torus graphs. Both have been
intensively studied in the context of load balancing
(see e.g., [8, 9, 13, 22, 23]). We measure the smooth-
ness of the load by the so-called discrepancy (see
e.g. [7, 8, 11, 23]) which is the difference between the
maximum and minimum load among all nodes.

For d-dimensional torus graphs we prove that our
quasirandom algorithm approximates the idealized pro-
cess up to an (additive) constant. More precisely, for all
initial load distributions and time steps, the load of any
vertex in the discrete process differs from the respec-
tive load in the idealized process only by a constant.
This is to be compared with a deviation of Ω(polylogn)
for the randomized rounding approach and Ω(n1/d) for
the deterministic approach of [23]. Hence despite our
approach is deterministic, it also improves over its ran-
dom counterpart. Starting with an initial discrepancy of
K, the idealized process reaches a constant discrepancy
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after O(n2/d log(Kn)) steps (cf. Corollary 4.2). Hence
the same holds for our quasirandom algorithm, which
makes it the first known algorithm for the discrete case
which is optimal both in time and discrepancy.

For the hypercube we prove a deviation of our
quasirandom algorithm from the idealized process of
Θ(logn). For this topology we also show that the devi-
ation of the random approach is Ω(logn) while the one
of the deterministic approach of [23] is even Ω(log2 n).
Again, using the results of the idealized process, our
quasirandom algorithm is at least as good as the ran-
domized rounding algorithm and asymptotically better
than the algorithm of [23]. The results regarding the de-
viation between discrete and idealized process are sum-
marized in Table 1.

Our Techniques. Instead of analyzing our quasir-
andom algorithm directly, we examine a new generic
class of load balancing algorithms that we call bounded
error diffusion (BED). Roughly speaking, in a BED al-
gorithm the accumulated rounding error on each edge
is bounded by some constant at all times. This class
includes our quasirandom algorithm.

The starting point of [23] and [8] as well as our
paper is to express the deviation from the idealized
case by a certain sum of weighted rounding errors
(equation (4.1)). In this sum, the rounding errors are
weighted by transition probabilities of a certain random
walk. Roughly speaking, Rabani et al. [23] estimate
this sum directly by adding up all transition proba-
bilities. In the randomized approach of [8], the sum
is bounded by Chernoff-type inequalities relying on in-
dependent rounding decisions. We take a completely
different approach and prove that the transition proba-
bilites between two fixed vertices are unimodal in time
(cf. Theorem 5.9 for the hypercube). This allows us to
bound the sum by its maximal summand (Lemma 4.3)
for BED algorithms. The intriguing combinatorial prop-
erty of unimodality is the heart of our proof and seems
to be the main reason why we can outperform the pre-
vious approaches.

Though intuitively one would expect unimodality
to hold on these symmetric graphs, direct proofs tend
to be hard. The reason is that explicit formulas seem to
be intractable and typical approximations are way too
loose to compare consecutive transition probabilities.
For the d-dimensional torus, we reduce the question of
unimodality in time of the transition probabilities to a
recent combinatorial result by Cooper and Spencer [3]
for a random walk on the 2d-dimensional infinite grid.
Then we use a local central limit theorem to approxi-
mate the transition probabilities by a multivariate nor-
mal distribution which is known to be unimodal.

On hypercubes the above method fails as several in-

equalities for the torus graph are only true for constant
d. However, we can employ the additional symmetries
to prove unimodality of the transition probabilities di-
rectly. Somewhat surprisingly, this intriguing property
was unknown before, although random walks on hyper-
cubes have been intensively studied [5, 14, 19].

We prove this unimodality result by first establish-
ing a perhaps unexpected result concerning first-passage
probabilities on paths with arbitrary transition proba-
bilities: If the loop probabilities are at least 1/2, then
each first-passage probability distribution can be ex-
pressed as a convolution of independent geometric dis-
tributions. In particular, this implies that these proba-
bilities are log-concave. Reducing the random walk on a
hypercube to a random walk on a weighted path, we ob-
tain that the transition probabilities on the hypercube
are unimodal. Estimating the maximum probabilities
via a balls-and-bins-process, we finally obtain a tight
bound for the hypercube.

We believe that especially our probabilistic results
for paths are of independent interest, as random walks
on the paths are among the most extensively studied
stochastic processes. Moreover, many analyses of ran-
domized algorithms can be reduced to such random
walks (see e.g. [20, Thm. 6.1]).

Related Work. Aiello et al. [1] and Ghosh et al.
[11] studied balancing algorithms where in each round
at most one token is transmitted over each edge. Due
to this restriction, these algorithms take substantially
more time, i.e., they run in time at least linear in the
initial discrepancy K. Nonetheless, the best known
bounds on the discrepancy are only polynomial in n for
the torus and Ω(log5 n) for the hypercube [11]. In the
approach of Elsässer et al. [7] certain interacting ran-
dom walks are used to reduce the load deviation. This
randomized algorithm achieves a constant discrepancy
on hypercubes and torus graphs, however, the algorithm
is more complicated and less natural than ours. More
importantly, it is a factor Ω(log n) slower than our al-
gorithm (under the assumption that the initial discrep-
ancy K is polynomial).

In another common model, nodes are only allowed
to exchange load with at most one neighbor in each
round, see e.g., [8, 10, 23]. In fact, the afore-mentioned
random approach of [8] was analyzed in this model.
However, the idea of randomly rounding the fractional
flow such that the expected error is zero naturally
extends to our diffusive setting.

Similar concepts of quasirandomness have been
used for random walks [3], external mergesort [2],
and broadcasting [6]. The latter work presents a
quasirandom algorithm which is able to broadcast a
piece of information as fast as its random counterpart
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Graph class
Deviation between discrete

Algorithm Reference
and idealized process

Hypercube
Ω(log2 n) O(log3 n) D Theorem 3.1 & [23, Corollary 5]
Ω(log n) O(log2 n log log n) R Theorem 3.3 & Theorem 3.2
Ω(log n) O(log n) Q Theorem 5.1

d-dim. torus
Ω(n1/d) O(n1/d) D Theorem 3.1 & [23, Theorem 8]

Ω(polylog n) O(n1/d) R Theorem 3.4 & [23, Theorem 8]
Ω(1) O(1) Q Theorem 6.1

Table 1: Summary of the bounds on the deviation between the discrete and idealized process on d-dim. torus
graphs and hypercubes for the deterministic algorithm of [23] (D), the diffusive variant of the randomized
rounding approach of [8] (R), and our new quasirandom algorithm (Q). The upper bound for (R) on hypercubes
requires additionally that K is polynomial in n.

on the hypercube and on random graphs. However, [6]
could not show a significant performance improvement
of the quasirandom protocol. In this respect the load-
balancing algorithm presented here is the first example
of a quasirandom algorithm which provably outperforms
its random counterpart.

Organization of the paper. In Section 2, we
give a description of our bounded error diffusion (BED)
model. For a better comparison, we presents some re-
sults for the previous algorithms of [8] and [23] in Sec-
tion 3. In Section 4, we introduce our basic method
which is used in Sections 5 and 6 to analyze BED al-
gorithms on hypercubes and torus graphs, respectively.
For better readability we omit some of the proofs. They
will appear in the full version of this paper.

2 Model and algorithms

We aim at balancing load on a connected, undirected
graph G = (V,E) with n nodes. We will often assume
that V = {1, 2, . . . , n}. Denote by deg(u) the degree
of node u ∈ V and let ∆ = ∆(G) = maxu∈V deg(u)
be the maximum degree of G. The balancing process
is governed by an ergodic, doubly-stochastic diffusion
matrix P with

Pu,v =






1
2∆ if {u, v} ∈ E

1− deg(u)
2∆ if u = v

0 otherwise

.

Let x(t) be the load-vector of the vertices at step t (or
more precisely, after the completion of the balancing
procedure at step t). The discrepancy of such a (row)
vector x is maxi,j(xi − xj), and the discrepancy at step
0 is called initial discrepancy K.

The idealized process. In one round each pair
(i, j) of adjacent vertices shifts divisible tokens between
i and j. We have the following iteration, x(t) = x(t−1)P

and inductively, x(t) = x(0)Pt. Equivalently, for any

edge {i, j} ∈ E and step t, the flow from i to j at step

t is Pi,jx
(t−1)
i −Pi,jx

(t−1)
j .

The discrete process. There are different ways
how to handle non-divisible tokens. We define the
following bounded error diffusion (BED) algorithm. Let

Φ
(t)
i,j denote the integral flow from i to j at time t. As

Φ
(t)
i,j = −Φ

(t)
j,i , we have x

(t)
i = x

(t−1)
i −∑j : {i,j}∈E Φ

(t)
i,j .

Let e
(t)
i,j :=

(
Pi,jx

(t−1)
i − Pi,jx

(t−1)
j

)
− Φ

(t)
i,j be the

error allocated to i as a result of rounding on edge

{i, j} in round t. Note that for all vertices i, x
(t)
i =

(x(t−1)P)i+
∑

j : {i,j}∈E e
(t)
i,j . Let now Λ = Λ(t) measure

the accumulated rounding errors (deviation from the

idealized process), that is,
∣∣∑t

s=1 e
(t)
i,j

∣∣ 6 Λ(t) for all
t ∈ N. We say that an algorithm is a BED algorithm if
Λ = O(1).

Our new quasirandom diffusion algorithm chooses

for Pi,jx
(t)
i > Pi,jx

(t)
j the flow Φ

(t)
i,j from i to j to be

either Φ
(t)
i,j =

⌊
Pi,jx

(t)
i −Pi,jx

(t)
j

⌋
or Φ

(t)
i,j =

⌈
Pi,jx

(t)
i −

Pi,jx
(t)
j

⌉
depending how

∣∣∑t
s=1 e

(t)
i,j

∣∣ is minimized. This
yields a BED algorithm with Λ 6 1/2 and can be
implemented with ⌈log2 ∆⌉ storage per edge. Note that
one can imagine various other natural (deterministic or
randomized) BED algorithms. To do so, the algorithm
only has to ensure that the errors do not add up to more
than the threshold Λ.

With above notation, the deterministic algorithm

of Rabani et al. [23] uses Φ
(t)
i,j =

⌊
Pi,jx

(t)
i − Pi,jx

(t)
j

⌋
,

provided that Pi,jx
(t)
i > Pi,jx

(t)
j . In other words, the

flow on each edge is always rounded down. This gives
Λ = Θ(T ) after T time steps.

A simple randomized rounding diffusion algorithm
(similar the randomized rounding algorithm of [8] for

balancing circuits) chooses for Pi,jx
(t)
i > Pi,jx

(t)
j the

flow Φ
(t)
i,j as the randomized rounding of Pi,jx

(t)
i −
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Pi,jx
(t)
j , that is, it rounds down with probability

(Pi,jx
(t)
i − Pi,jx

(t)
j ) −

⌊
Pi,jx

(t)
i − Pi,jx

(t)
j

⌋
. This typ-

ically achieves an error Λ of order
√
T after T time

steps.
Handling Negative Loads. Unless there is a

lower bound on the minimum load of a vertex, negative
loads may occur during the balancing procedure. In the
following, we describe a simple approach to cope with
this problem.

Consider a graph G for which we can prove a
deviation of at most γ from the continuous process. Let
x(0) be the initial load vector with an average load of x̄.
Then at the beginning of the balancing procedure, each
node generates γ additional (virtual) tokens. During
the balancing procedure, these tokens are regarded as
common tokens, but at the end they are ignored. First
observe that since the minimum load at each node in
the continuous process is at least γ, it follows that at
each step, every node has at least a load of zero in the
discrete process. Since each node has a load of x̄+O(γ)
at the end, we end up with a load distribution where
the maximum load is still x̄+O(γ) (ignoring the virtual
tokens).

3 Bounds for previous algorithms

For a better comparison with previous algorithms, this
section gives some lower and upper bounds for other
discrete diffusion processes. For the deterministic al-
gorithm of Rabani et al. [23] we observe the following
general lower bound on the discrepancy.

Theorem 3.1. On all graphs G with maximum de-
gree ∆, there is an initial load-vector x(0) with discrep-
ancy ∆diam(G) such that for the deterministic algo-
rithm of [23], x(t) = x(t−1) for all t ∈ N.

Proof. Fix a pair of vertices i and j with dist(i, j) =
diam(G). Define an initial load-vector x(0) by

x
(0)
k := dist(k, i) ·∆.

Clearly, x(0) has discrepancy ∆diam(G). We claim that
x(1) = x(0). Consider an arbitrary edge {r, s} ∈ E(G).
Then,

∣∣Pr,sx
(t)
r −Pr,sx

(t)
s

∣∣ = 1

2∆

∣∣x(t)
r − x(t)

s

∣∣ 6 1

2∆
∆ =

1

2
.

Hence the flow on any edge {r, s} ∈ E(G) is rounded
down to 0 and the load-vector remains unchanged. The
claim follows.

Note that similar lower bounds for the related
balancing-circuit model have been derived in [8]. For
the randomized rounding diffusion algorithm described

in Section 2 one can show the following upper bound for
graphs with good expansion.

Theorem 3.2. On all graphs with second largest eigen-
value in absolute value λ2 = λ2(P), the deviation be-
tween the randomized rounding diffusion algorithm and

the idealized process is at most O
(

∆log logn
1−λ2

)
with prob-

ability at least 1 − n−1, if the initial discrepancy is
polynomial in K. Moreover, the randomized rounding
diffusion algorithm reduces an initial discrepancy K to

O
(

∆ log logn
1−λ2

)
within O

(
log(Kn)
1−λ2

)
rounds with probabil-

ity at least 1− n−1.

Note that for the interesting case when ∆ = O(1) and G
is an expander (graphs for which 1/(1−λ2) = O(1)), the
deviation is bounded by O(log logn). For hypercubes,
we get an upper bound of O(log2 n log logn). The corre-
sponding lower bound of Ω(log n) is given in the follow-
ing Theorem 3.3. Note that this implies that on hyper-
cubes the quasirandom approach is provably not worse
than the randomized rounding diffusion algorithm.

Theorem 3.3. There is an initial load vector of the
d-dimensional hypercube such that the deviation of the
randomized rounding diffusion algorithm and the ideal-
ized process is at least Ω(log n) with probability 1−o(1).

For the torus graph the following Theorem 3.4
shows that the deviation between the randomized
rounding diffusion algorithm and the continuous process
is not a constant (in contrast to our new quasirandom
diffusion model).

Theorem 3.4. There is an initial load vector of the
d-dimensional torus graph with n vertices such that the
difference between the randomized rounding diffusion
algorithm and the idealized process is Ω(polylogn) with
probability 1− o(1).

4 Basic method to analyze our quasirandom

algorithm

To bound runtime and discrepancy of a BED algorithm,
we always bound the deviation between the continuous
model and the discrete model which is an important

measure on its own. For this, let x
(t)
ℓ denote the load

on vertex ℓ in step t in the discrete model and ξ
(t)
ℓ denote

the load on vertex ℓ in step t in the continuous model.
As derived in Rabani et al. [23], this can be written as

x
(t)
ℓ − ξ

(t)
ℓ =

∑t−1
s=0

∑
[i:j]∈E e

(t−s)
i,j (Ps

i,ℓ −Ps
j,ℓ).(4.1)

where [i : j] refers to an edge {i, j} ∈ E with i < j. It
will be sufficient to bound equation (4.1) as the idealized
process is well understood by means of the following
result.
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Theorem 4.1. (e.g., [23, Thm. 1]) On all graphs
with second largest eigenvalue in absolute value
λ2 = λ2(P), the idealized process with divisible to-
kens reduces an initial discrepancy K to ε within

2
1−λ2

ln
(
Kn2

ε

)
rounds.

As λ2 = 1 − Θ(log−1 n) for the hypercube and
λ2 = 1−Θ(n−2/d) for the d-dimensional torus [10], one
immediately gets the following corollary.

Corollary 4.2. The idealized process reduces an
initial discrepancy of K to 1 within O(n2/d log(Kn))
rounds on the d-dimensional torus and within
O(log n log(Kn)) rounds on the hypercube.

An important observation for all examined graph
classes will be the unimodality or log-concavity of
certain transition probabilities. A function f : N 7→ R≥0

is log-concave if f(i+1)2 ≥ f(i) ·f(i+2) for all i ∈ N. A
function f : N → R is unimodal if there is a t1 ∈ N such
that f |x≤t1 as well as f |x≥t1 are monotone. Note that
log-concavity implies unimodality and that (in contrast
to unimodality) log-concavity is preserved under certain
operations, e.g., under convolution [15]. Our interest in
unimodality is based on the following lemma.

Lemma 4.3. Let f : X → R be non-negative with X ⊆
R. Let A0, . . . , An ∈ R and t0, . . . , tn ∈ X such that
t0 6 · · · 6 tn and |∑b

i=a Ai| 6 k for all 0 6 a 6 b 6 n.
If f has ℓ local extrema, then

∣∣∑n
i=0 Ai f(ti)

∣∣ ≤ (ℓ+ 1) k ·maxx∈X f(x).

Random Walks. To examine the diffusion pro-
cess, it will be useful to define a random walk based
on P. For any pair of vertices u, v, Pt

u,v is the proba-
bility that a random walk guided by P starting from u
is located at v at step t. In Section 5 it will be useful to
set Pu,v(t) := Pt

u,v and to denote with fu,v(t) for u 6= v
the first-passage probabilities, that is, the probability
that a random walk starting from u visits the vertex v
at step t for the first time.

5 Analysis on the hypercube

In this section we prove the following bound for diffusion
on the d-dimensional hypercube with n = 2d vertices.

Theorem 5.1. For all initial load vectors on the
d-dimensional hypercube with n vertices, the deviation
between the idealized process and a discrete process with
accumulated rounding errors at most Λ is O(Λ logn) at
all times. Moreover, there are load vectors for which
this deviation is at least logn for all time steps.

With Theorem 4.1 it follows that any BED algo-
rithm (and in particular our quasirandom algorithm)

reduces the discrepancy of any initial load vector with
discrepancy K to O(log n) within O(log n log(Kn))
rounds.

Log-concave passage time on paths. To prove
Theorem 5.1, we first consider a discrete-time random
walk on a path P = (0, 1, . . . , d) starting at node 0. Our
analysis should be compared with Keilson’s analysis of
the continuous-time process [15]. We make use of a
special generating function, called z-transform. The
z-transform of a function g : N 7→ R≥0 is defined by
G(z) =

∑∞
i=0 g(i) · z−i. We will use the fact that a

convolution reduces to multiplication in the z-plane.
Our analysis also uses the geometric distribution

with parameter p, which is defined by Geo(p)(t) =
(1 − p)t−1p for t > 0 and Geo(p)(0) = 0. It is easy
to check that Geo(p) is log-concave. Moreover, the
z-transform of Geo(p) is

∑∞
i=1 Geo(p)(i) ·z−i = p

z−(1−p) .

For each node i ∈ P , let µi be the loop probability
at node i and λi be the upward probability, i.e., the
probability to move to node i+1. Then, the downward
probability at node i is 1−µi−λi. We can assume that
λi > 0 for all i ∈ P \ {d}. We are interested in the
first-passage probabilities f0,d(t). Observe that

f0,d(t) = (f0,1 ∗ f1,2 ∗ · · · ∗ fd−1,d)(t).(5.2)

In the following, we will show that f0,d(t) is log-concave.
Indeed, we show a much stronger result:

Theorem 5.2. Consider a random walk on a path P =
(0, 1, . . . , d) starting at node 0. If µi ≥ 1

2 for all nodes
i ∈ P, then f0,d can be expressed as convolution of d
independent geometric distributions.

As the geometric distribution is log-concave we imme-
diately get the following corollary.

Corollary 5.3. Consider a random walk on a path
P = (0, 1, . . . , d) starting at node 0. If µi ≥ 1

2 for all
nodes i ∈ P, then f0,d(t) is log-concave in t.

Before proving the theorem, we will show how to obtain
f0,d(t) by a recursive argument.

Suppose, we are at node i ∈ P \ {d}. The next
step is a loop with probability µi. Moreover, the
next subsequent non-loop move ends at i + 1 with
probability λi

1−µi
and at i− 1 with probability 1−λi−µi

1−µi
.

Thus, for all i ∈ P \ {d}, fi,i+1(t) = λi

1−µi
· Geo(1 −

µi)(t) +
1−λi−µi

1−µi
· (Geo(1 − µi) ∗ fi−1,i ∗ fi,i+1)(t), with

corresponding z-transform Fi,i+1(z) = λi

1−µi
· 1−µi

z−µi
+

1−λi−µi

1−µi
· 1−µi

z−µi
· Fi−1,i(z) · Fi,i+1(z). Rearranging terms

yields

Fi,i+1(z) =
λi

z − µi − (1− λi − µi) · Fi−1,i(z)
,(5.3)
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for all i ∈ P \ {d}. So Fi,i+1(z) is obtained recursively
with F0,1(z) = λ0

z−(1−λ0)
. Finally the z-transform of

(5.2) is F0,d(z) = F0,1(z) · F1,2(z) · . . . · Fd−1,d(z). In
the following, we state some properties of Fi,i+1(z) for
i ∈ P \ {d}.

Lemma 5.4. Except for singularities, Fi,i+1(z) is
monotone decreasing in z.

Lemma 5.5. Fi,i+1(z) has exactly i+1 poles which are
all in the interval (0, 1). The poles of Fi,i+1(z) are
distinct from the poles of Fi−1,i(z).

Lemma 5.6. Let (bj,i)
i
j=0 be the poles of Fi,i+1(z) and

define Pi(z) =
∏i

j=0(z − bj,i). Then

Fi,i+1(z) = λi ·
Pi−1(z)

Pi(z)
.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. By Lemma 5.6, we get

F0,d(z) =

d−1∏

i=0

Fi,i+1(z) =

d−1∏

i=0

(
λi ·

Pi−1(z)

Pi(z)

)

=

∏d−1
i=0 λi

Pd−1(z)
= Kd ·

d−1∏

i=0

1− bi,d−1

z − bi,d−1
,

where (bi,d−1)
d−1
i=0 are the poles of Fd−1,d(z) as defined

in Lemma 5.6 and Kd =
∏d−1

i=0
λi

1−bi,d−1

. By Lemma 5.5,

bi,d−1 ∈ (0, 1) for all i. Now for each i the term
1−bi,d−1

z−bi,d−1

is the z-transform of the geometric distribution with
parameter 1− bi,d−1, i.e., Geo(1− bi,d−1)(t).

Thus, f0,d(t) can be expressed as the convolu-
tion of d independent geometric distributions f0,d(t) =
Kd · [Geo(1 − b0,d−1) ∗ Geo(1 − b1,d−1) ∗ . . . ∗ Geo(1 −
bd−1,d−1)](t). Moreover, since f0,d is a probability dis-
tribution over t and the convolution of probability dis-
tributions is again a probability distribution, we have
Kd = 1. The theorem follows.

Unimodal transition probabilities on the

hypercube. Projecting the random walk of the d-
dimensional hypercube to a random walk on a path with
d nodes, Theorem 5.2 implies the following.

Theorem 5.7. Let u, v ∈ V be two vertices of a d-
dimensional hypercube. Then fu,v(t) is log-concave.

Proof. We will use the following ’projection’ of a ran-
dom walk on a hypercube to a random walk on a path
(also known as Ehrenfest-chain [12]). More precisely,
instead of a random walk on {0, 1}d we consider the
induced random walk on the smaller state space [0, d].

The induced random walk is obtained from the mapping
x 7→ |x|1, so, vertices in {0, 1}d with the same number
of ones are equivalent. It is easy to check that this new
random walk is a random walk on a path with vertices
0, 1, . . . , d that moves up with probability λk = d−k

2k ,

down with probability µk = d
2k and loops with proba-

bility 1
2 .

Now fix two vertices u, v of the d-dimensional hyper-
cube. By symmetry, we may assume that u = 0d ≡ 0.
Conditioned on the event that the projected random
walk reaches a vertex with |v|1 ones at step t for the
first time, every vertex with |v|1 ones is equally likely to
be visited. This gives f0,v(t) = f0,|v|1(t)/

(
d

|v|1
)
, and the

log-concavity of f0,|v|1(t) (by Theorem 5.2) implies the
one of f0,v(t), as needed.

Lemma 5.8. For any transition matrix P with non-
negative eigenvalues, Pu,u(t) is monotone decreasing for
any u ∈ V .

Proof. Let A be the adjacency matrix of G, and let
D be the diagonal matrix with Di,i = deg(i). Let
v1, . . . , vn are the eigenvectors of D1/2AD−1/2 of unit-
length with corresponding eigenvalues λ1, . . . , λn. With
these notations, the spectral representation of transition
probabilities (cf. [17, p. 15]) gives

Pt
u,v =

n∑

k=1

λt
kvkuvkv

√
deg(v)

deg(u)
.

For u = v, vkuvkv > 0. Since by assumption, all
n eigenvalues are non-negative, it follows that Pt

u,u is
monotonously decreasing in t, as desired.

From Theorem 5.7 and Lemma 5.8 we derive:

Theorem 5.9. Let u, v ∈ V be two vertices of a d-
dimensional hypercube. Then, Pu,v(t) is unimodal.

Proof. Recall that Pu,v can be expressed as a convolu-
tion (cf. [12]) of P and f as follows, Pu,v = fu,v ∗Pv,v.
By Theorem 5.7, fu,v(t) is log-concave. Since the con-
volution of any log-concave function with any unimodal
function is again unimodal, it remains to prove thatPv,v

is unimodal.
For loop probabilities at least 1/2, all eigenvalues of

P are non-negative. Hence Pv,v is monotone decreasing
by Lemma 5.8. The claim follows.

With more direct methods, one can prove the fol-
lowing supplementary result that gives further insights
into the distribution of Pu,v(t).

Remark 5.10. If u and v are vertices with dist(u, v) >
d/2, then Pu,v(t) is monotone increasing.
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Analysis of the discrete algorithm. We are now
ready to prove our main result for hypercubes.

Proof of Theorem 5.1. For convenience, we label each
vertex of the hypercube by a bit vector v = (vi)

d
i=1 of

length d, such that the labels of neighboring vertices
differ by exactly one bit. By symmetry, it suffices to
bound the deviation at the vertex 0 ≡ 0d. Hence by
equation (4.1) we have to bound

∣∣x(t)
0 − ξ

(t)
0

∣∣ 6
∣∣∑t−1

s=0

∑
[i:j]∈E e

(t−s)
i,j (P0,i(s)−P0,j(s))

∣∣

6
∣∣∑t−1

s=0

∑
[i:j]∈E e

(t−s)
i,j P0,i(s)

∣∣+
∣∣∑t−1

s=0

∑
[i:j]∈E e

(t−s)
i,j P0,j(s)

∣∣.

Combining Theorem 5.9 and Lemma 4.3 we have

∣∣x(t)
0 − ξ

(t)
0

∣∣ 6 2
∣∣∑

[i:j]∈E

∑t−1
s=0 e

(t−s)
i,j P0,i(s)

∣∣

6 4Λ
∑

[i:j]∈E maxt−1
s=0 P0,i(s).(5.4)

To bound the last term, we view the random walk as
the following process. In each step t ∈ N we choose a
coordinate i ∈ {1, . . . , d} uniformly at random. Then
with probability 1/2 we flip the bit of this coordinate;
otherwise we keep it (equivalently, we set the bit to 1
with probability 1/2 and to zero otherwise).

Now we partition the random walk’s distribution at
step t according to the number of different coordinates
chosen (not necessarily flipped) until step t. Consider
P0,x(t). Since (i) the k chosen coordinates must contain
the first |x| = |x|1 ones and (ii) all k chosen coordinates
must be set to the correct value, we have P0,x(t) =∑d

k=0 Pr [exactly k coordinates chosen in t steps] ·2−k ·(d−|x|
k−|x|

)/(
d
k

)
. Using this to estimate P0,i(s), we can

bound equation (5.4) by

|x(t)
0 − ξ

(t)
0 |

64Λ
∑

[i:j]∈E maxt−1
s=0 P0,i(s)

64Λ logn

n∑

i=1

∞
max
s=0

P0,i(s)

=4Λ logn
∑d

ℓ=0

(
d
ℓ

)
max∞s=0

∑d
k=0

Pr [exactly k coordinates chosen in s steps]

· 2−k
(
d−ℓ
k−ℓ

)/(
d
k

)

64Λ logn
∑d

ℓ=0maxdk=0 2
−k
(
d−ℓ
k−ℓ

)(
d
ℓ

)/(
d
k

)

The fraction in the last term corresponds to the prob-
ability of a hyper-geometric distribution and is 0 for
k < ℓ and in general is trivially bounded above by 1.
This allows us to conclude that

|x(t)
0 − ξ

(t)
0 | 6 4Λ d

∑d
x=0 2

−x 6 8Λd

and the first claim of the theorem follows.
The second claim follows by the following simple

construction. Define a load vector x(0) such that
x
(0)
v = d for all vertices v with v1 = 0, and x

(0)
v = 0

otherwise. Then for each edge {i, j} ∈ E with 0 =
i1 6= j1 the fractional flow at this edge at step 1 is(
Pi,jx

(0)
i − Pi,jx

(0)
j

)
= + 1

2 . Since in the first round no
rounding errors have been occured so far, each edge is
allowed to round up and down arbitrarily. Hence we can

let all these edges round towards j, i.e., Φ
(1)
i,j := 1 for

each such edge {i, j} ∈ E. By definition, this implies for

the corresponding rounding error, e
(1)
i,j = − 1

2 . Moreover,
we have the following load distribution after step 1. We

have x
(1)
v = 0 for all vectors v if v1 = 0, and x

(1)
v = d

otherwise. Similarly, the fractional flow for each edge

{i, j} ∈ E with 0 = i1 6= j1 is
(
Pi,jx

(0)
i −Pi,jx

(0)
j

)
= − 1

2 .

Since e
(1)
i,j = − 1

2 , |
∑2

s=1 e
(s)
i,j | will be minimized if e

(2)
i,j =

1
2 . Now it follows by definition of our quasirandom
algorithm that the flow on each such edge {i, j} ∈ E
will be −1. This implies that we end up in exactly the
same situation as at the beginning: the load vector is
the same and also the sum over the previous rounding
errors along each edge is zero. We conclude that there
is an instance of the quasirandom algorithm for which
x(t) = x(tmod2) which gives the claim.

6 Analysis on the d-dimensional torus

In this section we prove the following bound for diffu-
sion on the d-dimensional torus with n vertices. For
simplicity, we assume d

√
n ∈ Z.

Theorem 6.1. For all initial load vectors on the
d-dimensional torus graph with n vertices, the deviation
between the idealized process and a discrete process with
accumulated rounding errors at most Λ is O(Λ) at all
times.

With Theorem 4.1 and (1 − λ2)
−1 = Θ(n2/d) it

follows that any BED algorithm (and in particular our
quasirandom algorithm) reduces the discrepancy of any
initial load vector with discrepancy K to O(1) within
O(n2/d log(Kn)) rounds.

Proof of Theorem 6.1. By symmetry of the torus graph,
we have Pi,j = Pi−j,0. Hence we set Pi = Pi,0. We will
first reduce the random walk on the finite d-dimensional
torus to a random walk on the infinite grid Z

2d. To
this end, let Pi,j be the transition probability from i
to j on Z

2d defined by Pi,j = 1/(2d) if |i − j|1 = 1
and 0 otherwise. The additional dimensions are used
to encode the loops of G by projecting the first d
coordinates of Z2d to {1, . . . ,√n }d. Let Pi = P0,i. We
set H(i) := (i1 + d

√
nZ, . . . , id + d

√
nZ,Z, . . . ,Z) ⊂ Z

2d
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for i = (i1, . . . , id) ∈ V . We observe Ps
i =

∑
k∈H(i) P

s

k

for all s and i ∈ V . We will also frequently use that
Z
2d =

⋃
i∈V H(i) is a disjoint union.

Let ARR = {±eℓ | ℓ ∈ {1, . . . , d}} ∈ Z
2d with eℓ

being the ℓ-th unit vector. It again suffices by symmetry
to bound the deviation at the vertex 0 ≡ 0d. From
equation (4.1) we get

∣∣∣x(t)
0 − ξ

(t)
0

∣∣∣ =
∣∣∣∣∣

t−1∑

s=0

∑

i∈V

∑

z∈ARR

e
(t−s)
i,i+z (Ps

i −Ps
i+z)

∣∣∣∣∣

=

∣∣∣∣∣

t−1∑

s=0

∑

i∈V

∑

z∈ARR

e
(t−s)
i,i+z

(
∑

k∈H(i)

P
s

k −
∑

ℓ∈H(i+z)

P
s

ℓ

)∣∣∣∣∣.

Note that
∑

ℓ∈H(i+z) P
s

ℓ =
∑

ℓ∈H(i) P
s

ℓ+(z) with (z) =

(z1, . . . , zd, 0, . . . , 0) ∈ Z
2d for z ∈ V and therefore we

obtain
∣∣∣x(t)

0 − ξ
(t)
0

∣∣∣

=

∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

t−1∑

s=0

e
(t−s)
i,i+z

(
P

s

k −P
s

k+(z)

) ∣∣∣∣∣.(6.5)

The inner sum can be easily bounded by a constant
for any fixed k ∈ Z

2d by a local central limit theorem
from [16, p. 14]. Therefore we can ignore k = 0 in
the remainder of the proof and proceed by fixing a

cutoff point T (k) :=
C1 ‖k‖2

2

ln2(‖k‖2)
of the inner sum for some

sufficiently small constant C1 > 0. For s 6 T (k), the
summands of equation (6.5) can be bounded by

∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

T (k)∑

s=0

e
(t−s)
i,i+z

(
P

s

k −P
s

k+(z)

)∣∣∣∣∣

6

∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

T (k)∑

s=0

(
P

s

k +P
s

k+(z)

)∣∣∣∣∣.(6.6)

It is known (see e.g. [16, p. 29]) that for random walks
on infinite grids there is a constant C2 > 0 such that

P
s

k 6 C2 exp
(
− ‖k‖2−‖z‖2√

s

)
for all s > 0, k ∈ Z

2d,

z ∈ ARR. Plugging this into equation (6.6) we obtain
that
∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

T (k)∑

s=0

e
(t−s)
i,i+z

(
P

s

k −P
s

k+(z)

)∣∣∣∣∣

6
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

T (k)∑

s=0

2C2 exp

(
− ‖k‖2 − ‖z‖2√

s

)

=
∑

k∈Z2d

T (k)∑

s=0

2dC2 exp

(
− ‖k‖2 − 1√

s

)
.

Bounding s by T (k), we obtain that for sufficiently small
C1 > 0,

∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

T (k)∑

s=0

e
(t−s)
i,i+z

(
P

s

k −P
s

k+(z)

)∣∣∣∣∣

= O
(
∑

k∈Z2d

T (k)∑

s=0

exp
(
− ln(‖k‖2) (‖k‖2−1)√

C1 ‖k‖2

))

= O
(
∑

k∈Z2d

T (k)∑

s=0

‖k‖−(2d+4)
2

)

= O
(
∑

k∈Z2d

‖k‖−(2d+2)
2

ln2(‖k‖2)

)
= O(1).

To bound the summands of equation (6.5) with s >

T (k), we approximate the transition probabilities of Z2d

with the multivariate normal distribution

P̃t
k := 2

(
d

πt

)d

exp

(−d ‖k‖22
t

)
.

This is done by a local central limit theorem from [16,
p. 14],

∣∣∣
(
P

s

k −P
s

k+(z)

)
−
(
P̃s

k − P̃s
k+(z)

)∣∣∣

= ‖k‖−2
2 O(s−(2d+1)/2).

Hence

∣∣∣x(t)
0 − ξ

(t)
0

∣∣∣ =
∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

t−1∑

s=0

e
(t−s)
i,i+z

((
P̃s

k − P̃s
k+(z)

)

︸ ︷︷ ︸
A

+ ‖k‖−2
2 O(s−(2d+1)/2)︸ ︷︷ ︸

B

)∣∣∣∣∣.(6.7)

For s > T (k) =
C ‖k‖2

2

ln2(‖k‖2)
we can bound the sum of

term B by

∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

t−1∑

s=T (k)

e
(t−s)
i,i+z ‖k‖−2

2 O(s−(2d+1)/2)

∣∣∣∣∣

= O
(
d
∑

k∈Z2d

‖k‖−2
2

t−1∑

s=T (k)

s−(2d+1)/2

)

= O
(
∑

k∈Z2d

‖k‖−2
2 T (k)−(2d−1)/2

)

= O
(
∑

k∈Z2d

ln2d−1(‖k‖2)
‖k‖2d+1

2

)
= O(1),
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where the last equality follows from the observation∑
06=k∈Zd ‖k‖−(d+ε)

2 = O(1) for constants d > 1 and
ε > 0.

To finally bound the sum of term A in equa-
tion (6.7) we use two facts from [3]. They showed that

P̃s
k − P̃s

k+(z) only has a constant number of local ex-

trema and can be bounded by O(‖k‖−(2d+1)
2 ). As for

BED algorithms we have |∑t
s=1 e

(t)
i,j | 6 Λ, applying

Lemma 4.3 yields
∣∣∣∣∣
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

t−1∑

s=0

e
(t−s)
i,i+z

(
P̃s

k − P̃s
k+(z)

) ∣∣∣∣∣

= O
(
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

Λ
t−1
max
s=0

(
P̃s

k − P̃s
k+(z)

))

= O
(
∑

i∈V

∑

z∈ARR

∑

k∈H(i)

Λ ‖k‖−(2d+1)

)

= O
(
Λ d

∑

k∈Z2d

‖k‖−(2d+1)

)
= O(Λ).

Combining our upper bounds on the sums of term A and

B in equation (6.7) we can conclude that
∣∣∣x(t)

0 − ξ
(t)
0

∣∣∣ =
O(1)+O(1)+O(Λ) = O(Λ), meaning that the deviation
between the idealized and our process at any time and
at any vertex is at most O(Λ).

7 Conclusions

We propose and analyze a new deterministic algorithm
for balancing indivisible tokens. By achieving a constant
discrepancy in optimal time on all torus graphs, our
algorithm improves upon all previous deterministic and
random approaches with respect to both running time
and discrepancy. For hypercubes we prove a discrepancy
of Θ(logn) which is also significantly better than the
deterministic algorithm of Rabani et al. [23] which
achieves a discrepancy of Ω(log2 n).

On a concrete level, it would be interesting to
extend these results to other network topologies. From
a higher perspective, our new algorithm provides a
striking example of quasirandomness in algorithmics.
Devising and analyzing similar algorithms for other
tasks such as routing, scheduling, synchronization, etc.
remains an interesting open problem.
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